Technische Universität Braunschweig
  • Studium & Lehre
    • Vor dem Studium
      • Informationen für Studieninteressierte
      • Studiengänge von A-Z
      • Bewerbung
      • Fit4TU - Self-Assessment
      • Beratungsangebote für Studieninteressierte
      • Warum Braunschweig?
    • Im Studium
      • Erstsemester-Hub
      • Semestertermine
      • Lehrveranstaltungen
      • Informationen für Erstsemester
      • Studien-ABC
      • Studienorganisation
      • Beratungsnavi
      • Zusatzqualifikationen
      • Finanzierung und Kosten
      • Besondere Studienbedingungen
      • Hinweise zum Coronavirus
      • Gesundheit & Wohlbefinden
      • Campusleben
    • Nach dem Studium
      • Exmatrikulation und Vorlegalisation
      • Nach dem Abschluss
      • Alumni
    • Strategien und Qualitätsmanagement
      • Strategiepapiere für Studium und Lehre
      • Studienqualitätsmittel
      • Studiengangsentwicklung
      • Qualitätsmanagement
      • Rechtliche Grundlagen
    • Für Lehrende
      • Informationen für Lehrende
      • Lernmanagementsystem Stud.IP
      • Lehre und Medienbildung
    • Kontakt
      • Studienservice-Center
      • Sag's uns - in Studium und Lehre
      • Zentrale Studienberatung
      • Immatrikulationsamt
      • Abteilung 16 - Studium und Lehre
      • Career Service
      • Projekthaus
  • Forschung
    • Forschungsprofil
      • Forschungsschwerpunkte
      • Exzellenzcluster
      • Forschungsprojekte
      • Forschungszentren
      • Forschungsprofile der Professuren
    • Wissenschaftlicher Nachwuchs
      • Förderung des wissenschaftlichen Nachwuchs
      • Promotion
      • Postdocs
      • Nachwuchsgruppenleitung
      • Junior Professur und Tenure-Track
      • Habilitation
      • Service-Angebote für Wissenschaftler*innen
    • Forschungsdaten & Transparenz
      • Transparenz in der Forschung
      • Forschungsdaten
      • Open Access Strategie
      • Digitale Forschungsanzeige
    • Forschungsförderung
      • Netzwerk Forschungsförderung
      • Datenbanken und Stiftungen
    • Kontakt
      • Forschungsservice
      • Graduiertenakademie
  • International
    • Internationale Studierende
      • Warum Braunschweig?
      • International Student Support
      • Studium mit Abschluss
      • Austauschstudium
      • Geflüchtete
      • TU Braunschweig Summer School
    • Wege ins Ausland
      • Studium im Ausland
      • Praktikum im Ausland
      • Lehren und Forschen im Ausland
      • Arbeiten im Ausland
    • Internationale Wissenschaftler*innen
      • Internationale Postdocs und Professor*innen
      • Internationale Promovierende
      • Service für gastgebende Einrichtungen
    • Sprachen und interkulturelle Kompetenzvermittlung
      • Deutsch lernen
      • Fremdsprachen lernen
      • Interkulturelle Kompetenzvermittlung
    • Internationales Profil
      • Internationalisierung
      • Internationale Kooperation
    • International House
      • Wir über uns
      • Kontakt & Sprechstunden
      • Aktuelles und Termine
      • Newsletter, Podcast & Videos
      • Stellenausschreibungen
  • Die TU Braunschweig
    • Unser Profil
      • Ziele & Werte
      • Ordnungen und Leitlinien
      • Allianzen & Partner
      • Die Initiative Hochschulentwicklung 2030
      • Internationale Strategie
      • Fakten & Zahlen
      • Unsere Geschichte
    • Karriere
      • Arbeiten an der TU
      • Stellenmarkt
      • Berufsausbildung an der TU
    • Wirtschaft & Unternehmen
      • Unternehmensgründung
      • Freunde & Förderer
    • Öffentlichkeit
      • Veranstaltungskalender
      • Check-in für Schüler*innen
      • Hochschulinformationstag (HIT)
      • Kinder-Uni
      • Gasthörer*innen & Senior*innenstudium
      • Nutzung der Universitätsbibliothek
    • Presse & Kommunikation
      • Stabsstelle Presse und Kommunikation
      • Medienservice
      • Ansprechpartner*innen
      • Tipps für Wissenschaftler*innen
      • Themen und Stories
    • Kontakt
      • Allgemeiner Kontakt
      • Anreise
      • Für Hinweisgeber
  • Struktur
    • Leitung & Verwaltung
      • Das Präsidium
      • Stabsstellen
      • Verwaltung
      • Organe, Statusgruppen und Kommissionen
    • Fakultäten
      • Carl-Friedrich-Gauß-Fakultät
      • Fakultät für Lebenswissenschaften
      • Fakultät Architektur, Bauingenieurwesen und Umweltwissenschaften
      • Fakultät für Maschinenbau
      • Fakultät für Elektrotechnik, Informationstechnik, Physik
      • Fakultät für Geistes- und Erziehungswissenschaften
    • Institute
      • Institute von A-Z
    • Einrichtungen
      • Universitätsbibliothek
      • Gauß-IT-Zentrum
      • Zentrale Personalentwicklung
      • International House
      • Projekthaus
      • Transfer- und Kooperationshaus
      • Hochschulsportzentrum
      • Einrichtungen von A-Z
    • Studierendenschaft
      • Studierendenparlament
      • Fachschaften
      • Studentische Wahlen
    • Lehrer*innenbildung
      • Lehrer*innenfortbildung
      • Forschung
    • Chancengleichheit
      • Gleichstellung
      • Familie
      • Diversität
    • Kontakt
      • Personensuche
  • Suche
  • Schnellzugriff
    • Personensuche
    • Webmail
    • cloud.TU Braunschweig
    • Messenger
    • Mensa
    • TUconnect (Studierendenportal)
    • Lehrveranstaltungen
    • Im Notfall
    • Stud.IP
    • UB Katalog
    • Status GITZ-Dienste
    • Störungsmeldung GB3
    • IT Self-Service
    • Informationsportal (Beschäftigte)
    • Beratungsnavi
    • Linksammlung
    • DE
    • EN
    • Facebook
    • Twitter
    • Instagram
    • YouTube
    • LinkedIn
Menü
  • Technische Universität Braunschweig
  • Struktur
  • Fakultäten
  • Fakultät für Elektrotechnik, Informationstechnik, Physik
  • Institute
  • Institut für Nachrichtentechnik
  • Studium & Lehre
  • Lehrveranstaltungen im Sommersemester
  • Deep Learning Lab
Logo Institut für Nachrichtentechnik der TU Braunschweig
  • Lehrveranstaltungen im Sommersemester
    • Advanced Topics in Mobile Radio Systems
    • Bildkommunikation II
    • Codierungstheorie
    • Computer Lab Mustererkennung
    • Digitale Signalübertragung
    • Digitale Signalverarbeitung
    • Deep Learning Lab
    • Einführung in die Elektrotechnik für Medienwissenschaftler
    • Elektrotechnische Grundlagen der Technischen Informatik
    • Introduction to Quantum Networks
    • Labor Mobilfunksysteme
    • Maschinelles Lernen und seine Anwendung in der Nachrichtentechnik
    • Modellierung und Simulation von Mobilfunksystemen
    • Netzwerk-Informationstheorie
    • Oberseminar Machine Learning
    • Optimierungs- und Spieltheorie in der Nachrichtentechnik
    • Pattern Recognition (Mustererkennung)
    • Planung terrestrischer Funknetze
    • Rechnerübung zur Codierungstheorie
    • Rechnerübung zur Digitalen Signalverarbeitung
    • Rechnerübung zur Modellierung und Simulation von Mobilfunksystemen
    • Rechnerübung zur Planung terrestrischer Funknetze
    • Rechnerübung zur digitalen Signalübertragung
    • Ringvorlesung Elektrotechnik und Informationstechnik
    • Sicherheit auf der Übertragungsschicht
    • Softwareentwicklungspraktikum
    • Teamprojekt Digitale Signalverarbeitung
    • ⤶ Studium & Lehre
    • ⌂ IfN

Deep Learning Lab

Inhalt:

Das Deep Learning Lab soll dazu dienen, die Fachkenntnisse der Studierenden im Bereich der Mustererkennung bzw. des Machine Learnings mittels praktischer Anwendung zu vertiefen. Durch Implementierung und Parametrierung wichtiger Klassifikationsalgorithmen wie linearer Trennfunktionen, Support-Vektor-Maschinen und neuronaler Netze sollen wichtige Methodenkompetenzen erlangt werden. Auch moderne und neuartige Methoden des Lernens besonderer tiefer neuronaler Netze sind Bestandteil dieses Praktikums.

Als Motivation zum weiterführenden Selbststudium arbeiten die Studierenden mit frei verfügbaren Datensätzen, der freien Programmiersprache Python und Open-Source-Software-Bibliotheken. Für die aufwendigen Berechnungen der dazugehörigen Trainingsalgorithmen wird den Studierenden aktuelle, zentralisierte GPU-Hardware zur Verfügung gestellt.

Foto einer Präsentation beim Deep Learning Lab
Foto von Studierenden beim Deep Learning Lab

Das Deep Learning Lab unterteilt sich in 3 Praxisphasen:

• In der ersten Phase erarbeiten sich die Studierenden selbstständig, anhand vorgegebener Übungsaufgaben, grundlegende Kenntnisse der Programmiersprache Python und der benötigten Bibliotheken für die folgenden Aufgaben.

• In der zweiten Phase sollen die Studierenden Aufgaben zu einigen Methoden des Maschinellen Lernens bearbeiten, die in der Vorlesung Mustererkennung vorgestellt worden sind.

• In der dritten Phase, der sog. Machine Learning Challenge, sollen die erlernten Methoden selbstständig zur Lösung eines Problems angewendet werden.

Die Studierenden bekommen hier echte Daten (ggf. aus dem industriellen Anwendungsbereich) zur Verfügung gestellt und haben die Aufgabe mit den erlernten Methoden ein eigenes System zur Mustererkennung zu entwickeln. Die Studierenden sollen dabei im Wettbewerb untereinander eine bestmögliche Performanz ihres Systems erzielen.

Zur Förderung der Teamfähigkeit werden das Praktikum und der anschließende Wettbewerb in kleinen Gruppen von 3 Personen durchgeführt. Die maximale Anzahl der Teilnehmer*innen ist auf 30 begrenzt. Bei mehr Anmeldungen als Teilnehmer:innen entschiedet ein Losverfahren.

Vorab wird ein Besuch der Lehrveranstaltung Mustererkennung im Wintersemester (oder einer vergleichbaren Veranstaltung) als Grundlage für die Lehrveranstaltung empfohlen.

Die Ergebnisse der ersten beiden Phasen werden im Rahmen eines Kolloquiums mit einem Betreuer/einer Betreuerin abgefragt. Die Ergebnisse der Machine Learning Challenge werden von den einzelnen Teams bei einer Abschlussveranstaltung vorgestellt.

Dozent: Prof. Tim Fingscheidt

Assistent:innen: Jasmin Breitenstein, Marvin Klingner

Labor (DLL Lab) (ET-NT-111):
 
Umfang (SWS): 4h =  5 LPs
Zeit: individuell gestaltbar
Ort: R 316 CIP Pool IfN


Kickoff Termin:  siehe unten.
Sprache: deutsch / englisch

Aktuelles

Die Anmeldung für das Deep Learning Lab 2023 findet vom 6. bis 9. Februar 2023 statt.

Die Kick-Off Veranstaltung 2023 findet am 13.04.2023 um 16 Uhr statt. Nach aktueller Planung findet die Veranstaltung im SN 22.2 statt.
Aktuelle Informationen finden sich im StudIP.

 

Anmeldung

Die Anmeldung für das Deep Learning Lab 2023 findet vom 06.02.2023 bis 09.02.2023 statt. Die Zu- und Absagen werden per E-Mail verschickt. Die Anmeldung für das Deep Learning Lab 2023 erfolgt per E-Mail an Tanja Kaib (kaib(at)ifn.ing.tu-bs.de) mit CC an Marvin Klingner (klingner(at)ifn.ing.tu-bs.de).

Bei der Anmeldung sind folgende Informationen zwingend anzugeben:
- Vorname, Name
- Matrikelnummer
- Studiengang (Fachrichtung, sowie ob Bachelor oder Master)
- Universitäts-E-Mail-Adresse

Für das Deep Learning Lab sind 30 Plätze zu vergeben. Bei mehr Bewerbungen werden die Teilnehmer:innen ausgelost.

Weitere Informationen

Für mehr Informationen zum Deep Learning Lab schauen Sie gerne auch in die Presseartikel aus den letzten Jahren:

2021: https://magazin.tu-braunschweig.de/m-post/ki-gegen-pixelfaelscher-verteidigen/
2020: https://magazin.tu-braunschweig.de/m-post/praxislabor-mit-perspektive/
2019: https://magazin.tu-braunschweig.de/m-post/kleidungsstuecke-erkennen-mit-kuenstlicher-intelligenz/
2018: https://magazin.tu-braunschweig.de/m-post/mit-echten-daten-neuronale-netze-trainieren/

 

 

Bildnachweise dieser Seite

Für alle

Stellen der TU Braunschweig
Jobbörse des Career Service
Merchandising
Sponsoring- & Spendenleistungen
Drittmittelgeförderte Forschungsprojekte
Vertrauenspersonen für Hinweisgeber

Für Studierende

Semestertermine
Lehrveranstaltungen
Studiengänge von A-Z
Informationen für Erstsemester
TUCard

Interne Tools

Status GITZ-Dienste
Handbuch für TYPO3 (Intern)
Corporate Design-Toolbox (Intern)
Glossar (DE-EN)
Meine Daten ändern
Hochschulöffentliche Bekanntmachungen

Kontakt

Technische Universität Braunschweig
Universitätsplatz 2
38106 Braunschweig
Postfach: 38092 Braunschweig
Telefon: +49 (0) 531 391-0

Anreise

© Technische Universität Braunschweig
Impressum Datenschutz Barrierefreiheit

Zur anonymisierten Reichweitenmessung nutzt die TU Braunschweig die Software Matomo. Die Daten dienen dazu, das Webangebot zu optimieren.
Weitere Informationen finden Sie in unserer Datenschutzerklärung.