P. Carrara, L. De Lorenzis, (2015), A Coupled Damage-Plasticity Model for the Cyclic Behavior of Shear-Loaded Interfaces, Journal of the Mechanics and Physics of Solids, 85: 33-53
DOI: http://dx.doi.org/10.1016/j.jmps.2015.09.002
R. Kruse, N. Nguyen-Thanh, L. De Lorenzis, T.J.R. Hughes (2015) Isogeometric collocation for large deformation elasticity and frictional contact problems, Computer Methods in Applied Mechanics and Engineering, 296: 72-112.
DOI: http://dx.doi.org/10.1016/j.cma.2015.07.022
R. Dimitri, M. Trullo, L. De Lorenzis, G. Zavarise (2015). Coupled cohesive zone models for mixed-mode fracture: a comparative study. Engineering Fracture Mechanics, 148: 145-179.
DOI: http://dx.doi.org/10.1016/j.engfracmech.2015.09.029
J. Ma, S. Sahraee, P. Wriggers, F. Wang, L. De Lorenzis (2015). Stochastic multiscale homogenization analysis of heterogeneous materials under finite deformations with full uncertainty in the microstructure. Computational Mechanics, 55: 819-835.
DOI: http://dx.doi.org/10.1007/s00466-015-1136-3
M. Ambati, T. Gerasimov, L. De Lorenzis (2015) Phase-field modeling of ductile fracture,Computational Mechanics 55:1017-1040
DOI: http://dx.doi.org/10.1007/s00466-015-1151-4
T. Wu and P. Wriggers (2015), Multiscale diffusion–thermal–mechanical cohesive zone model for concrete, Computational Mechanics, 55, 999-1016.
C. Maruccio, L. De Lorenzis, L. Persano, D. Pisignano (2015). Computational homogenization of fibrous piezoelectric materials. Computational Mechanics, 55: 983-998.
DOI: http://dx.doi.org/10.1007/s00466-015-1147-0
P. Cornetti, M. Corrado, L. De Lorenzis, A. Carpinteri (2015). An analytical cohesive crack modeling approach to the edge debonding failure of FRP-plated beams, International Journal of Solids and Structures, 53: 92-106.
DOI: http://dx.doi.org/10.1016/j.ijsolstr.2014.10.017
N. Nguyen-Thanh, N. Valizadeh, M.N. Nguyen, H. Nguyen-Xuan, X. Zhuang, P. Areias, G. Zi, Y. Bazilevs, L. De Lorenzis, T. Rabczuk (2015). An extended isogeometric thin shell analysis based on Kirchhoff-Love theory. Computer Methods in Applied Mechanics and Engineering, 284: 265-291
DOI: http://dx.doi.org/10.1016/j.cma.2014.08.025
R. Sauer, L. De Lorenzis (2015). An unbiased computational contact formulation for 3D friction. International Journal for Numerical Methods in Engineering, 101(4): 251-280.
DOI: http://dx.doi.org/10.1002/nme.4794
L. De Lorenzis, J.A. Evans, T.J.R. Hughes, A. Reali (2015), Isogeometric collocation: Neumann boundary conditions and contact, Computer Methods in Applied Mechanics and Engineering, 284: 21-54
DOI: http://dx.doi.org/10.1016/j.cma.2014.06.037
P. Phung-Van, L. De Lorenzis, C. H. Thai, M. Abdel-Wahab, H. Nguyen-Xuan (2015), Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using higher-order shear deformation theory and isogeometric finite elements, Computational Materials Science, 96B: 495-505
DOI: http://dx.doi.org/10.1016/j.commatsci.2014.04.068
M. Ambati, T. Gerasimov, L. De Lorenzis (2015), A review on phase-field models of brittle fracture and a new fast hybrid formulation, Computational Mechanics, 55: 383-405
DOI: http://dx.doi.org/10.1007/s00466-014-1109-y