Weiterführende Literatur

Referenzen  
[w.1] SFB 477 (2001 - 2010) Sicherstellung der Nutzungsfähigkeit von Bauteilen mit Hilfe innovativer Bauwerksüberwachung, Braunschweig, DFG, Bonn
[w.2] SFB 398 (1996 - 2007) Lebensdauer orientierte Entwurfskonzepte unter Schädigungs- und Deteriorationsaspekten, Bochum, DFG, Bonn
[w.3] SFB 524 Werkzeuge und Konstruktionen für die Revitalisierung von Bauwerken (Bauhaus Universität Weimar 1999 - 2006), Weimar, DFG, Bonn
[w.4] GRK 802 (2002 - 2010) Risikomanagement bei Natur- und Zivilisationsgefahren für Bauwerke und Infrastrukturanlagen, Braunschweig, DFG, Bonn
[w.5] GRK 432 (2001 - 2009) Wechselwirkung von Struktur und Fluid, Braunschweig, DFG, Bonn
[w.6] SPP 1122 (2001 - 2007) Vorhersage des zeitlichen Verlaufs von physikalisch-chemischen Schädigungsprozessen an mineralischen Werkstoffen, DFG, Bonn
[w.7] DAfStB-Verbundforschungsvorhaben (2007) Nachhaltig Bauen mit Beton, Deutscher Ausschuß für Stahlbetonbau, Heft 572, Berlin
[w.8] DAfStb: Richtlinie Schutz und Instandsetzung von Betonbauteilen, Beuth Verlag, Berlin, 2001
[w.9] DIN EN 1504: Produkte und Systeme für den Schutz und die Instandsetzung von Betontragwerken - Definitionen, Anforderungen, Güteüberwachung und Beurteilung der Konformität, Beuth Verlag, Berlin, 2005
[w.10] DIN 18800: “Stahlbauten – Bemessung und Konstruktion”, Fassung von 1990, Deutsches Institut für Normung, Beuth Verlag, 1990
[w.11] DIN EN 1993-1-9 Eurocode 3: Bemessung und Konstruktion von Stahlbauten – Teil 1-9: Ermüdung, 2005 DIN 18800: “Stahlbauten – Bemessung und Konstruktion”, Fassung von 1990, Deutsches Institut für Normung, Beuth Verlag, 1990
[w.12] DNV-Standard: DNV-OS-J102, Design and Manufacture of Wind Turbine Blades, Oktober 2005
[w.13] DIN 1045/1: Tragwerke aus Beton, Stahlbeton und Spannbeton, Teil 1: Bemessung und Konstruktion. Deutsches Institut für Normung (Hrsg.). Berlin, Köln: Beuth, Juli 2001.
[w.14] DIN 1055/100: Grundlagen der Tragwerksplanung, Sicherheitskonzept, Bemessungsregeln. Deutsches Institut für Normung (Hrsg.). Berlin, Köln: Beuth, März 2001.
[w.15] DIN EN 1990: “Grundlagen der Tragwerksplanung“. Deutsche Fassung Oktober 2002. (EN 1990: Eurocode 0 - Basis of structural design. European Standard April 2002).
[w.16] Barlow, R.E.; Proschan, F.: Mathematical Theory of Reliability. John Wiley, New Yok (1965)
[w.17] First Order Reliability Concepts for Design Codes, CEB-Bulletin d’Informtion, No. 112 (1976)
[w.18] ISO/DIS 2394: General Principles on Reliability for Structures (1986)
[w.19] Germanischer Lloyd: Guideline for Certification of Offshore Wind Turbines, Part IV-2, 2004
[w.20] NTH-School „Strategien und Methoden des Life-Cycle-Engineerings für Ingenieurbauwerke und Gebäude“, Braunschweig-Hannover, MWK, Hannover
[w.21] Model Code for Service Life Design. Fib bulletin 34, 2006.
[w.22] LIFECON (2003) Generic Technical Handbook for a Predictive Life-Cycle-Management-System of Concrete Structures (LIFECON LMS), Edtr. Asko Sarja, Techn. Res. Center of Finland (VTT)
[w.23] Barlow, R. E.Haibach, E.: Betriebsfestigkeit – Verfahren und Daten zur Bauteilberechnung, 3. Auflage, Springer Verlag, Berlin, 2006
[w.24] Baroghel-Bouny, V.; Mainguy, M.; Lassabatere, T.; Coussy, O.: Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials. In Cement and Concrete Research 29 (1999) S. 1225-1238
[w.25] Gawin, D.; Majorana, C.; Schrefler, B.A.: Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature. In Mechanics of cohesive-frictional materials 4 (1999) S. 37-74
[w.26] Gawin, D.; Pesavento, F.; Schrefler, B.A.: Modeling of cementitious materials exposed to isothermal calcium leaching, considering process kinetics and advective water flow. Part 1: Theoretical model. In International Journal of solids and structures 45 (2008) S. 6221-6240
[w.27] Bazant, Z.; Baweja, S. : Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures: Model B3. Adam Neville Symposium: Creep and Shrinkage-Structural Design Effects, ACI SP 194, A. Al-Manaseer ed., American Concrete Institute (2000)
[w.28] Bazant, Z. : Prediction of Concrete Creep Effects Using Age-Adjusted Effective Modulus Method. Journal of the American Concrete Institute (1972)
[w.29] Hundt, J.: Wärme-und Feuchtigkeitsleitung in Beton unter Einwirkung eines Temperaturgefälles. In: Deutscher Ausschuss für Stahlbeton Heft 256 (1975)
[w.30] Kiessl, K.: Kapillarer und dampfförmiger Feuchte Transport in mehrschichtigen Bauteilen, Rechnerische Erfassung und Bauphysik. Dissertation, Universität Essen, 1983
[w.31] Oeljeklaus, M., Natke, H. G. (2000): Damage Detection in Subsystems. In H.G.Natke et. al. (Ed.): Dynamische Probleme – Modellierung und Wirklichkeit, Schwerpunkt Systemüberwachung, Volume 6
[w.32] Natke, H. G.; Oeljeklaus, M. (2001): Smart Online Structural Monitoring and Diagnosis. In ASCE, Proceedings of the 2001 Structures Congress & Exposition, Washington DC, USA
[w.33] Thiele, K.; Dazio, A.; Bachmann, H.: Bewehrungsstahl unter zyklischer Beanspruchung, Bericht Nr. 264 am IBK der ETH Zürich, 2001, Birkhäuser Verlag Basel, 2001
[w.34] Peil, U.: Assessment of bridges via monitoring. Structure and Infrastructure Engineering 1, Taylor & Francis, Oxon/ UK, 2005, S. 101-117
[w.35] Frangopol, D. M., Peil, U.: Life-Cycle Assessment and Life Extension of Structures via Innovative Methods. 2006, Proceedings of the Third European Workshop Structural Health Monitoring, S. 49-56, DEStech Public. Inc., Lancaster, Granada, Spanien
[w.36] U. Peil, M. Frenz, I. Schendel: Life time assessment of steel bridges via monitoring and testing. Life-Cycle Civil Engineering, CRC Press, 2008, Varenna, IT, IALCE'08, Biondini&Frangopol, ISBN 978-0-415-46857-2.
[w.37] Molzer, C.; Fußeis, W.; Litzka, J.; Steierwald, G.: Auswirkung von Achslasterhöhungen auf das Bundesstraßennetz, Bundesministerium für wirtschaftliche Angelegenheiten, Straßenforschung Heft 450, Wien 1995.
[w.38] Heitel, S. et al.: Vergleichende Lebenszykluskostenanalyse für Fußgängerbrücken aus unterschiedlichen Werkstoffen. In: Bautechnik 85, Heft 10, Ernst & Sohn, Berlin, 2008
[w.39] Silva. A.P. et al.: Probabilistic approach for predicting life cycle costs and performance of bridges. In: Proceedings of the 3rd international conference on bridge maintenance, safety and management, Porto, Portugal, 16-19 July, 2006
[w.40] Frangopol, D.M.: Cost-Reliability Interaction in Life-Cycle Cost Optimization of Deteriorating Structures. In: ASCE, journal of Structures, 0733-9445, 2004
[w.41] Strauss, A.; Frangopol, D. M.; Kim, S.: Structural Monitoring under Uncertainty. 6th International Probabilistic Workshop, Darmstadt 2008.
[w.42] Gehlen, C.; Deutscher Ausschuss für Stahlbeton (Hrsg.): Probabilistische Lebensdauerbemessung von Stahlbetonbauwerken: Zuverlässigkeitsbetrachtungen zur wirksamen Vermeidung von Bewehrungskorrosion. DAfStb, Heft 510, Berlin, Beuth 2007.
[w.43] Schießl, P.; Mayer, T.: DAfStB-Verbundforschungsvorhaben „Nachhaltig Bauen mit Beton“, Teilprojekt A3. DAfStb, Berlin, 2007, Heft 572.
[w.44] Schueremans, L.; van Gemert, D.; Giessler, S.: Deteration in quay-wall structures and effect of hydrophobic treatment. Second International Forum on Engineering Decision Making, Lake Louise, Canada (2006)
[w.45] Rucker-Gramm, P.: Modellierung des Feuchte- und Salztransports unter Berücksichtigung der. Selbstabdichtung in zementgebundenen Baustoffen, Dissertation TU München, 2008
[w.46] Kruschwitz, Jens: Instationärer Angriff auf nanostrukturierte Werkstoffe - eine Modellierung des Frostangriffs auf Beton, Dissertation, Univ. Duisburg-Essen, 2008
[w.47] Koster, Matthias: Mikrostruktur-basierte Simulation des Feuchtetransports in Zement- und Sandstein, Dissertation, RWTH Aachen, 2007
[w.48] Hain, M.: Computational Homogenization of micro-structural Damage due to Frost in Hardened Cement Paste:, Dissertation, Leibniz Universität Hannover, 2007
[w.49] Peerlings, R.J.H., de Borst, R. , Brekelmans, W.A.M., Geers, M.G.D. (1998) Gradient-en-hanced damage modelling of concrete fracture, Mech. Cohes.-Frict. Mater., pp. 323-342
[w.50] Bangert, F., Kuhl, D., Meschke, G. (2004) Chemo-hygro-mechanical modeling and numerical simulation of concrete deterioration caused by alkali-silica reaction. International Journal for Numerical and Analytical Methods in Geomechanics 28, 361-371
[w.51] Meschke, G., Grassberger, S. (2003) Numerical modeling of coupled hygromechanical degradation of cementious materials. Journ. of Eng. Mechanics 129, pp. 383-392
[w.52] Jox, S., Becker, C., Meschke, G. (2008) 3-D higher order X-FEM model for hygro-chemical analysis of cracked cementious materials. Proc. of WCCM 8, Venice
[w.53] Gawin, D., Pesavento, F., Schrefler, B. A. (2003) Modelling of Hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation. Comput. Methods Appl. Mech. Engrg. 192, pp. 1731-1771
[w.54] Bazant,Z.P., Pijaudier-Cabot, G. : Nonlocal Damage, Localization, Instability and Convergence, Journal of Applied Mechanics 55 (1988)
[w.55] Chaboche, J. L.: Development of Continuum Damage Mechanics for Elastic Solids Sustaining Anisotropic and Unilateral Damage, Int. Journ. of Damage Mechanics (1993)
[w.56] Cordebois, J. P., Sidoroff, F. : Damage induced Elastic Anisotropy, un J. P. Boehler edtr. , Proceedings of the Euomech Colloquium 115, pps. 761 – 774, Martinus Nijhoff Publishers (1982)
[w.57] Perez, F. et al.: Correlation between the roughness of the substrate surface and the debonding risk. In:
[w.58] Hobbacher, A.: Recommendations for fatigue design of welded joints and components, IIW-Doc. XIII-2151-07/XV-1254-07, Int. Institute of Welding, 2007
[w.59] Miner, M.A. (1945): “Cumulative damage in fatigue”, Journal of Applied Mechanics, 67, A159-A164
[w.60] Radaj, D.; Sonsino, C.M.; Fricke, W.: Fatigue assessment of welded joints by local approaches, second edition, Woodhead Publishing, 2006
[w.61] Stefanou, G.: The stochastic finite element method: Past, present and future, Comput. Methods in Appl. Mech. Engrg. 198 (2009) 1031-1051
[w.62] Schueller, G.I.: Computational stochastic mechanics – recent advances, Computers and Structures 79 (2001) 2225-2234
[w.63] Keese, A.: A Review of Recent Developments in the Numerical Solution of Stochastic Partial Differential Equations, PhD Thesis, TU Braunschweig, 2003
[w.64] Pavliotis, G.; Stuart, A.: Multiscale Methods – Averaging and Homogenization, Springer, 2008
[w.65] Xu, X.F.: A multiscale stochastic finite element method on elliptic problems involving uncertainties, Comput. Methods in Appl. Mech. Engrg. 196 (2007) 2723-2736
[w.66] Hohberg, R.: Zum Ermüdungsverhalten von Beton, Dissertation TU Berlin, 2004
[w.67] Holmen, J.: Fatigue of Concrete by Constant and Variable Amplitude Loading, The Norwegian Institute of Technology, The University of Trondheim, Norway, 1979
[w.68] Kessler-Kramer, C.: Zugverhalten von Beton unter Ermüdungsbeanspruchung, Dissertation, TH Karlsruhe, 2002
[w.69] Lubliner, J.: A plastic-damage model for concrete, Int. J. Solids Structures Vol. 25, No3, pp.299-326, 1989
[w.70] Pfanner, D.: Zur Degradation von Stahlbetonbauteilen unter Ermüdungsbeanspruchung, Fortschr.-Ber. VDI Reihe 4 Nr. 189. Düsseldorf: VDI Verlag 2002
[w.71] Rilem Committee36-RDL, Lenschow, R.: Long term random dynamic loading of concrete structures. Materials and Structures, Vol. 17, Nr. 97, 1984
[w.72] Subramaniam, V.K.; O’Neil, E.F.; Popovics, J.S.; Shah, S.P.: Crack Propagation in Flexural Fatigue of Concrete. Journal of Engineering Mechanics, 2000
[w.73] Walraven J.; Bigaj, A.: A new future-oriented Model Code for Concrete structures, Taylor & Friends Group, London, 2008
[w.74] Hsu, T.: Fatigue of Plain Concrete, ACI Journal, pp. 292 – 305, 1981
[w.75] Deeny S., Stratford T., Dhakal R., Moss P., Buchanan A., Spalling of Concrete – Implications for Structural Performance in Fire, Proceedings of International Conference, p. 202-207, Prague, 2009
[w.76] Zhang, H., Davie, C., T., Pearce, C., J., Bicanic, N., A Numerical Model for Prediction of Spalling of Concrete Exposed to Elevated Temperatures, Proceedings of International Conference, p. 202-207, Prague, 2009
[w.77] Alisa, M.; Andrade, C.; Gehlen, C.; Rodriguez, J.; Vogels, R.: Modelling of Degradation. Brussels: European Union – Brite EURam, 1998-CT95-0132, Project BE95-1347, Document BE95-1347/R4-5, 1998
[w.78] Bergmeister, K. et al: Monitoring and safety evaluation of existing concrete structures. State of the art report. FIB bulletin 22, 2003.
[w.79] Faber, M.H.; Siemes, T.; Vrouwenfelder, T.: Probabilistic Methods for Durability Design. Brussels: European Union – Brite EURam, 1999-CT95-0132, Project BE95-1347, Document BE95-1347/R0, 1999
[w.80] Petryna, Y.: Schädigung, Versagen und Zuverlässigkeit von Tragwerken des Konstruktiven Ingenieurbaus. Habilitationsschrift. Bochum, 2004.
[w.81] Petschacher, M.: Probabilistic Ageing Model for Infrastructure Buildings. 3rd Probabilistic Workshop, Technical Systems, Natural Hazards, Wien 2005.
[w.82] Sörensen, J. D.; Rizzuto, E.; Narasimhan, H., Faber, M. H.: Robustness – Theoretical Framework. Structural Engineering International 22, IABSE, 2012
[w.83] Winter, S.; Kreuzinger, H.: The Bad Reichenhall ice-arena collapse and the necessary consequences for wide span timber structures. Proc. WCTE 2008 Conf., Miyazaki, Japan, 2008
[w.84] Burgoyne, C.; Scantlebury, R.: Why did the Palau Bridge collapse? The Structural Engineer, 2006
[w.85] Rackwitz, R.: Optimization and risk acceptability based on the Life Quality Index. Struct. Safety 24, 2002
[w.86] Leicester, R.H.: Engineered durability for timber construction. Progress in Structural Engineering and Materials. Volume: 3, Issue: 3, Publisher: John Wiley & Sons, Ltd. Chichester, UK, Pages: 216-227, 2001
[w.87] Zabel, R.A. and Morrell, J.: Wood Microbiology: Decay and Its Prevention, Academic Press, San Diego, 1992
[w.88] Giebson, C.; Seyfarth, K. and Stark, J.: Influence of acetate and formate-based deicers on ASR in airfield concrete pavements. Cement and Concrete Research 40, pp. 537-545, 2010
[w.89] Teworte, F.; Hegger, J. (2013): Ermüdung von Spannbetonträgern mit Bügelbewehrung unter Querkraftbeanspruchung. Beton- und Stahlbetonbau, 108: 475–486.
[w.90] Randl, N.; Zilch, K.; Müller, A. (2008): Bemessung nachträglich ergänzter Betonbauteile mit längsschubbeanspruchter Fuge. Vergleichende Beurteilung aktueller Konzepte für die Baupraxis. Beton- und Stahlbetonbau, Jg. 103, H. 7, S. 482–497
[w.91] England, J.; Agarwal, J.; Blockley, D.: The vulnerability of structures to unforeseen events. Computers and Structures 86, pp 1042-1051, 2008
[w.92] Stark, J.; Wicht, B.: Dauerhaftigkeit von Beton. Birkhäuser Verlag, Basel, Schweiz, 2001
[w.93] Chtourou, H., B. Riedl and B.V. Kokta. 1995. Surface Characterizations of Modified Polyethylene Pulp and Wood Pulps Fibers Using XPS and Inverse Gas-Chromatography. Journal of Adhesion Science and Technology 9(5): 551-574.
[w.94] Desimoni, E., A.M. Salvi, I.G. Casella and D. Damiano. 1993. Controlled chemical oxidation of carbon fibers: an XPS-XAES-SEM study. Surface and Interface Analysis 20(11): 909-18.
[w.95] Leite FL, Bueno CC, Da Róz AL, Ziemath EC, Oliveira ON . 2012. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy. Int. J. Molecular Sciences ((http://openi.nlm.nih.gov/detailedresult.php?img=3497299_ijms-13-12773f16&req=4)
[w.96] Uner, B. 2002. Adhesion Mechanism between Polymer and Metal Interface. Ph.D. Thesis, Wood and Paper Science. Raleigh, North Carolina State University.
[w.97] Uner, B., S., Zauscher, M., Ramasubramanian, J.F., Kadla. 2006. Determination of Adhesion Forces between poly(vinyl alcohol) and an Iron Oxide Surface using Atomic Force Microscopy”. Journal of Applied Polymer Science. 99: 3528-3534.
[w.98] Niemz, P., S. Clauß, P. Haß, O. Kläusler, F. Ritschel, S. Schlegel. 2014. Untersuchungen zur Optimierung der Verklebung von Vollholz für den konstruktiven Holzbau. Holztechnologie (55) 2014. 5: 39-43.
[w.99] J. Sirignano , K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential equations, J. Comp. Physics, Volume 375, p. 1339-1364 (2018)
[w.100] H. Jiequn, A. Jentzen and E. Weinan, Solving high-dimensional partial differential equations using deep learning, PNAS 115 (34), https://doi.org/10.1073/pnas.1718942115, pp. 8505-8510 (2018)
[w.101] M. Pantoja, A. Behrouzi and D. Fabris, An Introduction to Deep Learning, Concrete International Vol. 40 (9) (2018)
[w.102] D. Lee, J. Kim, D. Lee, Robust Concrete Crack Detection Using Deep Learning-Based Semantic Segmentation, Int. J. Aeronaut. Space Sci. https://doi.org/10.1007/s42405-018-0120-5 (2019)
[w.103] H. Kim, E. Ahn, M. Shin, S.-H. Sim, Crack and Non-crack Classification from Concrete Surface Images Using Machine Learning, Structural Health Monitoring, https://doi.org/10.1177/1475921718768747 (2018)
[w.104] K. Jang, N. Kim, Y.-K. An, Deep learning–based autonomous concrete crack evaluation through hybrid image scanning. Structural Health Monitoring, https://doi.org/10.1177/1475921718821719 (2019)
[w.105] Y-J. Cha, W. Choi, O. Buyukozturk, Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Computer-Aided Civil and Infrastructure Engineering, Vol. 32, pp. 361-378 (2017)
[w.106] J.-S. Chou, C.-F. Tsai, A.-D. Pham, Y.-H. Lu, Machine learning in concrete strength simulations: Multi-nation data analytics, Construction and Building Materials, Vol. 73, https://doi.org/10.1016/j.conbuildmat.2014.09.054., ISSN 0950-0618, pp. 771-780 (2014)
[w.107] S. Yokoyama, T. Matsumoto, Development of an Automatic Detector of Cracks in Concrete Using Machine Learning, Procedia Engineering, Vol. 171, ISSN 1877-7058, https://doi.org/10.1016/j.proeng.2017.01.418, pp. 1250-1255 (2017)
[w.108] A. Rimkus, A. Podviezko, V. Gribniak, Processing Digital Images for Crack Localization in Reinforced Concrete Members, Procedia Engineering, Vol. 122, ISSN 1877-7058, https://doi.org/10.1016/j.proeng.2015.10.031, pp. 239-243 (2015)
[w.109] A. Mohan, S. Poobal, Crack detection using image processing: A critical review and analysis, Alexandria Engineering Journal, Vol. 57 (2), ISSN 1110-0168, https://doi.org/10.1016/j.aej.2017.01.020, pp. 787-798 (2018)
[w.110] M. Rabah, A. Elhattab, A. Fayad, Automatic concrete cracks detection and mapping of terrestrial laser scan data, NRIAG Journal of Astronomy and Geophysics, Vol. 2 (2), ISSN 2090-9977, https://doi.org/10.1016/j.nrjag.2013.12.002, pp. 250-255 (2013)
[w.111] Nitschke-Pagel T.: Comparison of residual stress depth profiles in welded joints, Materials Science Forum 404-407 (2002), S. 381-386.
[w.112] Healy J., Billingham J.: A review of the corrosion fatigue behaviour of structural steels in the strength range 350-900 MPa and associated high strength weldments, Offshore Technology Report OTH 532, HSE, Sheffield, 1997.
[w.113] Ummenhofer, T., Gkatzogiannis, S., Weidner, P.: Einfluss der Korrosion auf die Ermüdungsfestigkeit von Konstruktionen des Stahlwasserbaus. In: Bundesanstalt für Wasserbau (Hrsg.): Korrosionsschutz und Tragfähigkeit bestehender Stahlwasserbauverschlüsse. Karlsruhe: Bundesanstalt für Wasserbau 2017, S. 80-86.
[w.114] Raissi, M., Perdikaris, P., Karniadakis, G.: Physics Informed Deep Learning (Part I). Data-driven Solutions of Nonlinear Partial Differential Equations, 2017.
[w.115] Raissi, M., Perdikaris, P., Karniadakis, G.: Physics Informed Deep Learning (Part II). Data-driven Discovery of Nonlinear Partial Differential Equations. (2017)
[w.116] Raissi, M., Karniadakis, G.: Hidden Physics Models. Machine Learning of Nonlinear Partial Differential Equations. Journal of Computational Physics 357 (2018), S. 125–141.
[w.117] J. Sirignano, K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential equations, J. Comp. Physics, Volume 375 (2018) p. 1339-1364
[w.118] J. Nirschl, A. Janowczyk, E. G. Peyster, R. Frank, K. B. Margulies, M. D. Feldman, A. Madabhushi, Deep Learning Tissue Segmentation in Cardiac Histopathology Images, Editor(s): S. K. Zhou, H. Greenspan, D. Shen, Deep Learning for Medical Image Analysis, Academic Press, https://doi.org/10.1016/B978-0-12- 810408-8.00011-0 (2017) Pages 179-195
[w.119] Y. Guo, Y. Gao, D. Shen, Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching, Editor(s): S. K. Zhou, H. Greenspan, D. Shen, Deep Learning for Medical Image Analysis, Academic Press, https://doi.org/10.1016/B978-0-12-810408-8.00012-2, (2017) Pages 197-222
[w.120] K. Ritter and K. Thiele: Monitoring Micro-damage Evolution in Structural Steel S355 using Speckle Interferometry. Lecture Notes in Mechanical Engineering, 7. International Conference on Fracture, Fatigue and Wear. Ghent, Belgium, Springer, 2018.
[w.121] J. C. Gelin, O. Ghouati: An inverse method for determining viscoplastic properties of aluminium alloys. Journal of Materials Processing Technology, 45, 1–4, (1994), S. 435-440.
[w.122] A. Gavrus, E. Massoni, J. L. Chenot: An inverse analysis using a finite element model for identification of rheological parameters. Journal of Materials Processing Technology, 60, 1–4 (1996) S. 447-454.
[w.123] McCLUNG, R.: A literature survey on the stability and significance of residual stresses during fatigue. Fatigue & Fracture of Engineering Materials and Structures 30 (2007), S. 173–205.
[w.124] Olveda, D., Beyer, J., Panic, D., Beier, T.: Gewindeverbindungen örtlich II. Vorhaben Nr. 297, Örtliche Bewertung der Schwingfestigkeit von Gewindeverbindungen II ; Abschlussbericht. Frankfurt, M 2014.
[w.125] Unglaub, J., Hensel, J., Wimpory, R., Nitschke-Pagel, T., Dilger, K., Thiele, K.: Analysis of Residual Stress State in Deep-Rolled HT-Bolts. Residual Stresses 2018 - ECRS-10 (2018), S. 209–214.
[w.126] Unglaub, J.: Einfluss von Eigenspannungen auf die Ermüdungsfestigkeit von großen Schrauben. Dissertation, TU Braunschweig (2019).
[w.127] Julien Bect, Li Ling, und Emmanuel Vazquez. "Bayesian subset simulation." SIAM/ASA Journal on Uncertainty Quantification, 5.1 (2017): 762-786.
[w.128] Trenton Kirchdoerfer, und Michael Ortiz. "Data-driven computational mechanics." Computer Methods in Applied Mechanics and Engineering, 304 (2016): 81-101.
[w.129] Trenton Kirchdoerfer, und Michael Ortiz. "Data driven computing with noisy material data sets." Computer Methods in Applied Mechanics and Engineering, 326 (2017): 622-641.
[w.130] Khachik Sargsyan, Huan Xun, und Habib N. Najm. "Embedded Model Error Representation for Bayesian Model Calibration." arXiv preprint arXiv:1801.06768 (2018).
[w.131] T. Leusmann: Das Verbundtragverhalten auf Beton geklebter Kohlefaserkunststoffe unter schwingender Beanspruchung. Dissertation, TU Braunschweig (2015).
[w.132] C. Carloni, T. Leusmann und H. Budelmann: “Fatigue Behaviour”, Chapter 6.2 in: Design Procedures for the Use of Composites in Strengthening of Reinforced Concrete Structures – State of the Art Report of the RILEM TC 234-DUC, (Eds: C. Pellegrino and J. Sena-Cruz), pp. 349-391, Springer, RILEM STAR Book Series.
[w.133] Salvado, R., Lopes, C. et al.: Carbon fiber epoxy composites for both strengthening and health monitoring of structures, In: Sensors 2015, Vol. 15, pp. 10753-10770
[w.134] Gao Ma, Libo Yan, Wenkai Shen, Deju Zhu, Liang Huang, Bohumil Kasal. Effects of water, alkali solution and temperature ageing on water absorption, morphology and mechanical properties of natural FRP composites: Plant-based jute vs. mineral-based basalt. Composites Part B: Engineering. Volume 153, 2018, Pp. 398-412
[w.135] Anuj Kumar, Pavla Ryparovà, Bohumil Kasal, Stergios Adamopoulos, Petr Hajek. Resistance of bamboo scrimber against white-rot and brown-rot fungi. Wood Material Science & Engineering. 2018/5/22: 1-7.
[w.136] X Jin, B Kasal. Adhesion force mapping on wood by atomic force microscopy: influence of surface roughness and tip geometry. Royal Society open science. 2016. 3/10.
[w.137] Lenth, C. A., and F. A. Kamke. 2001. Moisture dependent softening behavior of wood. Wood and Fiber Science. 33 (3). 497:507.
[w.138] Yan L, Kasal B, et al. Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Construction and Building Materials 2016; 112: 168-182.
[w.139] Yan L, Kasal B, et al. Behavior of flax FRP tube encased recycled aggregate concrete with clay brick aggregate. Construction and Building Materials 2017; 136: 265-276.
[w.140] Yan L, Kasal B, et al. Reinforced concrete beams strengthened with externally bonded natural flax FRP plates. Composites Part B: Engineering 2016; 91: 569-578.
[w.141] Yan L, Kasal B. Effects of water, alkali solution and temperature ageing on water absorption, morphology and mechanical properties of natural FRP composites: Plant-based jute vs. mineral-based basalt. Composites Part B: Engineering 2018; 153:398-412.
[w.142] Yan L, Kasal B. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Composites Part B: Engineering 2016; 92: 94-132.
[w.143] Maximierung der Verfügbarkeit von Bestandsbrücken aus Stahl und Beton (BASt 2117005)
[w.144] Lebensdauerprognose von Betonbrücken (BASt 2116017)
[w.145] Verfahren zur wirtschaftlichen Instandsetzung von Brückenkappen (BASt 89.298)
[w.146] Intelligente Brücke – Verfahren zur Auswertung, Verifizierung und Aufbereitung von Messdaten (BASt 15.636)
[w.147] WinConFat (BMWi - 2016) – Materialermüdung von On- und Offshore Windenergieanlagen aus Stahlbeton und Spannbeton unter hochzyklischer Beanspruchung,
[w.148] HyTowering (BMWi - 2018) Optimierung der Bemessung hybrider Türme und Entwicklung eines geeigneten Monitoringkonzepts zur Schadensdetektion und -quantifizierung.
[w.149] DFG SPP 2020, Zyklische Schädigungsprozesse in Hochleistungsbetonen im Experimental-Virtual-Lab.
[w.150] SPP 1886 Polymorphe Unschärfemodellierungen für den numerischen Entwurf von Strukturen
[w.151] DFG - Forschungsgruppe FOR 2825 „Concrete Damage Assessment by Coda Waves“,
[w.152] T. Wu, I. Temizer and P. Wriggers: Computational thermal homogenization of concrete, Cement & Concrete Composites, 35 pp. 59-70 (2013)
[w.153] M. Hain, und P. Wriggers: “Mikrostruktursimulation von Zementstein” Bauingenieur 80 pp. 313-319 (2005).
[w.154] P. Wriggers and M. Hain: “Frostschädigung von Zementstein”, Bauingenieur, 82 pp. 479-486 (2007)
[w.155] M. Holl, S. Loehnert, P. Wriggers: An adaptive multiscale method for crack propagation and crack coalescence, International Journal for Numerical Methods in Engineering, 93 pp. 23-51 (2013)
[w.156] T. Wu, I. Temizer and P. Wriggers: Multiscale Hydro-Thermo-Chemo-Mechanical Coupling: Application to Alkali-Silica Reaction, Journal of Computational Material Science, Vol 84, 381-395 (2014).
[w.157] Holst, A.; Budelmann, H.; Wichmann, H.-J.: Korrosionsmonitoring von Stahlbetonbauwerken als Element des Lebensdauermanagements: Einsatz innovativer Drahtsensorik zur Überwachung der Bewehrungskorrosion. In: Beton- und Stahlbetonbau 105 (2010).
[w.158] Holst, A.; Budelmann, H.; Hariri, K.; Wichmann, H.-J.: Korrosionsmonitoring und Bruchortung in Spannbetonbauwerken - Möglichkeiten und Grenzen. In: Beton- und Stahlbetonbau 102 (2007).
[w.159] Budelmann, H.; Starck, T.: Integration of degradation prognosis of concrete structures into life cycle management. Proceedings of the 1st International Symposium on Life Cycle Management, Varenna, Italy, 2008.
[w.160] Leusmann, T.; Budelmann, H.: Fatigue Design Concept for Externally Bonded CFRP-Plates. In: Proceedings of the 6th International Conference on FRP Composites in Civil Engineering, CICE 2012, 13-15 June 2012, Rome. [CD-ROM].
[w.161] H. G. Matthies: Stochastic Finite Elements: Computational Approaches to Stochastic Partial Difierential Equations. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 88 (2008) 849-873.
[w.162] M. Hautefeuille, J.-B. Colliat, A. Ibrahimbegović, H. G. Matthies, P. Villon: A multi-scale approach to model localized failure with softening. Computers & Structures 94-95 (2012)
[w.163] O. Pajonk, B. V. Rosić, A. Litvinenko, H. G. Matthies: A deterministic filter for non-Gaussian Bayesian estimation - applications to dynamical system estimation with noisy measurements. Physica D: Nonlinear Phenomena 241 (2012) 775-788
[w.164] A. Kučeroa, J. Sýkora, B. Rosić, H. G. Matthies: Acceleration of uncertainty updating in the description of transport processes in heterogeneous media. J. Comp. and Applied Mathematics 236 (2012) 4862-4872.
[w.165] O. Pajonk, B. V. Rosić, H. G. Matthies: Sampling-free linear Bayesian updating of model state and parameters using a square root approach. Computers & Geosciences 55 (2013)
[w.166] B. V. Rosić, H. G. Matthies: Variational Theory and Computations in Stochastic Plasticity. Archive of Computational Methods in Engineering, published online 2014, DOI: 10.1007/s11831-014-9116-x
[w.167] Kasal, B., Polocoser T., Guindos P., Urushadze S., Pospisil S., Heiduschke A., Rüther N., and Z. Zembaty. 2015. High-Performance Composite-Reinforced Earthquake Resistant Buildings with Self-Aligning Capabilities. In: Experimental Research in Earthquake Engineering. EU-SERIES Concluding Workshop. Springer International Publishing. 614 p. Taucer, Fabio, Apostolska, Roberta (Eds.) ISBN 978-3-319-10135-4.
[w.168] Kasal, B., and Blass R. 2013. Experimental and analytical investigation of crack development in composite reinforced laminated arch. Journal of Materials and Structures. Vol. 46, Issue 1-2:173-180. DOI 10.1617/s11527-012-9892-4.
[w.169] Angst, U. M.: Predicting the time to corrosion initiation in reinforced concrete structures exposed to chlorides. Cement and Concrete Research, vol. 115, pp. 559-567, 2019. DOI: 10.1016/j.cemconres.2018.08.007
[w.170] Marchand, J.; Samson, E.: Predicting the service-life of concrete structures – Limitations of simplified models. Cement and Concrete Composites, vol. 31, pp. 515-521, 2009. DOI: 10.1016/j.cemconcomp.2009.01.007
[w.171] Samson, E.; Marchand, J.: Modelling the transport of ions in unsaturated cement based materials. Computers & Structures, vol. 85, pp. 1740-1756, 2007. DOI: 10.1016/j.compstruc.2007.04.008
[w.172] Johannesson, B. F.: A theoretical model describing diffusion of a mixture of different types of ions in pore solution of concrete coupled to moisture transport. Cement and Concrete Research, vol. 33, pp. 481-488, 2003. DOI: 10.1016/S0008-8846(02)00993-6
[w.173] Andrade, C.; Bijak, R.: Effects of some mineral additions to Portland cement on reinforcement corrosion. Cement and Concrete Research, vol. 53, pp. 59-67, 2013. DOI: 10.1016/j.cemconres.2013.06.004
[w.174] Otieno, M.; Beushausen, H.; Alexander. M.: Effect of chemical composition of slag on chloride penetration resistance of concrete. Cement and Concrete Composites, vol. 46, pp. 56-64, 2014. DOI: 10.1016/j.cemconcomp.2013.11.003
[w.175] https://www.tensorflow.org
[w.176] W. Ehlers and C. Luo. A phase-field approach embedded in the theory of porous media for the description of dynamic hydraulic fracturing, part ii: The crack opening indicator. Computer Methods in Applied Mechanics and Engineering, 341:429-442, 2018.
[w.177] A. Mikelic, M. Wheeler, and T. Wick. Phase-field modeling through iterative splitting of hydraulic fractures in a poroelastic medium. GEM – International Journal on Geomathematics 13, 367-398, 2018.
[w.178] J. White, N. Castelletto, and H. Tchelepi. Block-partitioned solvers for coupled poromechanics: A unified framework. Computer Methods in Applied Mechanics and Engineering 303, 55-74, 2016.
[w.179] C. Di Bella, A. Michel, H. Stang, and P. Lura. Early age fracture properties of microstructurally-designed mortars. Cement and Concrete Composites 75, 62-73, 2017.
[w.180] C. Di Bella, M. Wyrzykowski, and P. Lura. Evaluation of the ultimate drying shrinkage of cement-based mortars with poroelastic models. Materials and Structures 50, 52, 2017.
[w.181] A. Leemann, R. Loser, B. Münch, and P. Lura. Steady-state o2 and co2 diffusion in carbonated mortars produced with blended cements. Materials and Structures 50, 247, 2017.
[w.182] P. Zhang, F. Wittmann, P. Lura, S. Müller, and S. Han. Application of neutron imaging to investigate fundamental aspects of durability of cement-based materials: a review. Cement and Concrete Research, 108:152-166, 2018.