Aktuelles

Aktuelles

LWI | Optimale Meeresbedingungen in Braunschweig

[Abu Wibau, Abu Umnawi, Abu Umwelt, Abu Bau, Abu Aktuelles]

Europaweit einmalige Versuchseinrichtung unterstützt Forschung zur Offshore-Windenergie

Die Offshore-Windenergie gilt als wichtiger Baustein für das Gelingen der Energiewende. Bis 2045 soll der auf dem Meer in Deutschland erzeugte Strom verachtfacht werden. Allerdings sind diese Anlagen auch mit besonderen Herausforderungen konfrontiert – zum Beispiel der starken Belastung durch Wind und Wellen, Korrosion oder auch der Besiedlung durch marinen Bewuchs. Wie Muscheln, Algen und weitere Meeresbewohner die Tragfähigkeit von Offshore-Windenergieanlagen und anderen maritimen Bauwerken beeinflussen, wollen Wissenschaftler*innen der Technischen Universität Braunschweig herausfinden. Dazu wurde am 29. April 2024 am Leichtweiß-Institut für Wasserbau im Beisein des Niedersächsischen Ministerpräsidenten Stephan Weil eine neue salzwassertaugliche Großforschungsanlage in Betrieb genommen, die in ihrer Art europaweit einmalig ist. Ziel ist es, die Konstruktion von Offshore-Windenergieanlagen zu verbessern, den hohen Unterhaltungsaufwand zu reduzieren und die Laufzeit maritimer Anlagen zu verlängern.

Oberflächen unter Meerwasser werden schnell von marinen Organismen besiedelt. So bilden sich auch an den Tragstrukturen und Pfählen von Offshore-Windenergieanlagen kleine Riffe u.a. mit Muscheln, Seesternen, Seepocken und Seeanemonen. Was für die Meeresbewohner zum neuen Zuhause wird, beeinflusst jedoch die Belastung der Strukturen durch Meereswellen und Tideströmung. In den üblichen Auslegungsberechnungen der Windenergieanlagen wird zwar berücksichtigt, dass sich die Geometrie der Unterwasserstrukturen durch den Bewuchs verändert, die Auswirkungen auf die einwirkenden Lasten wurden jedoch bislang mangels genauer Daten nur durch konservative Abschätzungen modelliert.

Stärkung des Forschungsstandorts im Bereich Küsteningenieurwesen und Seebau

Im neuen Salzwasser-Wellen-Strömungskanal des Leichtweiß-Instituts für Wasserbau (LWI) der TU Braunschweig, der Teil des vom Bundeswirtschaftsministerium (BMWK) geförderten Projekts „EnviSim4Mare“ ist, sind jetzt erstmals Messungen unter realen Umweltbedingungen möglich. Neben dem Großen Wellenströmungskanal (GWK+) des Forschungszentrums Küste von TU Braunschweig und Leibniz Universität Hannover kommt nun eine weitere, europaweit einzigartige Forschungsanlage hinzu, die das Alleinstellungsmerkmal des Forschungsstandorts Braunschweig-Hannover im Bereich Küsteningenieurwesen, Seebau und maritimen Technologien noch einmal entscheidend stärkt und das ohnehin schon sehr umfangreiche Portfolio an klein- und großskaligen Experimentaleinrichtungen erweitert.

„Wir können hier die gesamte marine Umwelt modellieren und erhalten durch den Einsatz spezieller Messtechnik einen genauen Einblick in die Prozesse, die im Umfeld der mit marinem Bewuchs besetzten Strukturen im Meer ablaufen“, freut sich Professor Nils Goseberg, geschäftsführender Leiter des LWI. „Wir können sowohl die Temperatur als auch den pH-Wert, den Salzgehalt und den Sauerstoffgehalt in der Anlage einstellen. So haben wir die Möglichkeit, lebende Meeresbewohner einzubeziehen und die Wechselwirkung der Offshore-Windenergieanlage mit ihrer Umgebung zu modellieren.“

Aus Braunschweiger Wasser wird Meerwasser

Wie der Name schon sagt, werden in dem 30 Meter langen und drei Meter breiten Kanal Salzwasser, Wellen und Strömung kombiniert. Bis zu 80 Zentimeter hohe Wellen können die beiden eingebauten Wellenmaschinen erzeugen. Zusätzlich sorgen vier Pumpen für die Strömung. Darüber hinaus ist die Anlage auch mit einer Wasseraufbereitung ausgestattet. Um den Verbrauch von Frischwasser zu reduzieren und die geforderten Wasserbedingungen zu regulieren, wird das Wasser aufbereitet und in einem geschlossenen Kreislauf wiederverwendet. Aus normalem Braunschweiger Wasser wird Meerwasser, indem das LWI-Team Meersalzsole in die Wasseraufbereitungsanlage einleitet. „So können wir optimale Meeresbedingungen – ähnlich wie in der Nord- und Ostsee – für die Muscheln bieten“, erklärt Dr. David Schürenkamp, Oberingenieur der Abteilung Hydromechanik, Küsteningenieurwesen und Seebau im LWI.

Dafür ist auch das dreistufige Filterungssystem mit Sandfilter, Abschäumer inklusive Ozonbehandlung und biologischem Rieselfilter notwendig. Bis zu 350 Kubikmeter, also 350.000 Liter, Salzwasser pro Stunde kann die Wasserbehandlungsanlage reinigen. Für die Meeresbewohner – Miesmuscheln, Seepocken und Algen, die zuvor an Offshore-Standorten rund um Helgoland und im Windpark Nordergründe in der Nordsee Versuchskörper bewachsen haben – ist ein extra Hälterungsbecken vorgesehen. Hier sollen sie sich an die Bedingungen im Salzwasser-Wellen-Strömungskanal langsam gewöhnen.

Blick durchs Unterwasserfenster

Schon bald werden die Wissenschaftler*innen die ersten Experimente starten. Beobachten und dokumentieren können sie diese von der Steuerkanzel aus mit verschiedenen Kameras in der Anlage und durch ein großes Unterwasserfenster, durch das die Forschenden wie in einem Aquarium in den Kanal schauen können.

Vom Kanal selbst ist in der Versuchshalle nicht viel zu sehen. Er hat eine Einhausung erhalten, die für die Experimente mit Schiebeelementen verschlossen werden kann. „Damit haben wir ideale Bedingungen“, so Professor Goseberg. „Die richtige Luftfeuchtigkeit, die Temperatur bleibt in der Luft bzw. im Wasser erhalten und wir können so energieeffizient und nachhaltig forschen.“

Nach den Untersuchungen im Projekt „EnviSim4Mare“ sind weitere Forschungsvorhaben geplant. „Durch die zunehmende Nutzung mariner Flächen werden Forschungsaktivitäten zur Funktionalität und Optimierung von maritimen Technologien zunehmen während gleichzeitig die Notwendigkeit von Technikfolgenabschätzungen an der Schnittstelle mit der marinen Umwelt an Relevanz gewinnen wird“, sagt Professor Goseberg. Mögliche nächste Studienthemen könnten sich zum Beispiel mit dem marinen Bewuchs an Schiffen oder mit der Wechselwirkung von Ökologie, Wellen und Strömung im Wattenmeer befassen.

EnviSim4Mare

Die Versuchseinrichtung ist Teil des vom Bundeswirtschaftsministerium (BMWK) mit insgesamt rund 8,79 Millionen Euro geförderten Projekts „EnviSim4Mare“. Das Leichtweiß-Institut der TU Braunschweig, Abteilung Hydromechanik, Küsteningenieurwesen und Seebau, erhält von der Gesamtfördersumme für ihr Teilvorhaben 7,86 Millionen Euro. Davon entfallen auf die Planungs- und Baukosten der Forschungsanlage rund sieben Millionen Euro. Beteiligt sind neben dem Leichtweiß-Institut für Wasserbau das Alfred-Wegener-lnstitut Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) und das Unternehmen Jörss-Blunck-Ordemann GmbH sowie weitere assoziierte Industriepartner und Behörden.

Stimmen zur Forschungsanlage

Prof. Dr. Angela Ittel, Präsidentin der Technischen Universität Braunschweig

„Die Eröffnung des Kanals ist ein bedeutender Tag für unsere Universität, aber noch bedeutender für die Wissenschaftler*innen, die sich mit großer Begeisterung für dieses Vorhaben eingesetzt haben. Unsere Forschung am Leichtweiß-Institut für Wasserbau insgesamt und insbesondere unsere Arbeit am Salzwasser-Wellen-Strömungskanal unterstreichen unser deutliches Bekenntnis zur Nachhaltigkeit und die exzellenten Leistungen unserer Forschenden. Die aktuellen und zukünftigen Forschungsthemen tragen unmittelbar zur Energiesicherheit und zukünftigen Klimaneutralität in Deutschland bei.“

Stephan Weil, Niedersächsischer Ministerpräsident

„Mit dem neuen Salzwasser-Wellen-Strömungskanal ist eine europaweit einmalige Versuchs- und Forschungseinrichtung entstanden. Die hier gewonnenen Erkenntnisse werden die Planung und den Bau von Offshore-Windenergieanlagen weiter optimieren und damit den Ausbau der Windkraft auf See beschleunigen. Neben dem Großen Wellenkanal „GWK +“ in Hannover ist der Salzwasser-Wellen-Strömungskanal in Braunschweig ein weiterer Leuchtturm des Wissenschaftsstandortes Niedersachsen und sicherlich ein Meilenstein für die niedersächsischen und deutschen Küsteningenieurwissenschaften – zukunftsorientierte Forschung made in Niedersachsen.“

Dr. Thorsten Kornblum, Oberbürgermeister der Stadt Braunschweig

„Der neue Salzwasser-Wellen-Strömungskanal der Technischen Universität ist ein beeindruckendes Beispiel dafür, dass in Braunschweig nach Lösungen für die Herausforderungen der Zukunft gesucht wird. Unsere Wissenschaftsregion setzt mit diesem europaweit einzigartigen Forschungsgerät ein bedeutendes Zeichen in Sachen zukunftsorientierter Forschung. Die Windenergie wird in Zukunft eine zentrale Rolle für unsere Stromversorgung aus erneuerbaren Quellen spielen. Die Forschungsergebnisse der TU werden dabei einen wichtigen Beitrag zur Optimierung von Offshore-Windenergieanlagen leisten.“

Dieter Janecek, Koordinator der Bundesregierung für die Maritime Wirtschaft und Tourismus

„Die Offshore-Windenergie stellt mittlerweile einen zentralen Eckpfeiler der Energiewende dar und versorgt Millionen von Menschen mit grünem Strom. Auf dem Weg zur Klimaneutralität müssen wir jedoch den Bau neuer Windparks weiter beschleunigen. Die Bundesregierung wird alle Hebel daransetzen, um die Schnelligkeit von Genehmigungsverfahren zu erhöhen und die Produktion von Konverterplattformen in Deutschland voranzutreiben. Gleichzeitig stärken wir im Rahmen der maritimen Forschungsförderung die Entwicklung neuer Offshore-Technologien und deren Widerstandsfähigkeit in rauen Umweltbedingungen, die mit der innovativen Großforschungsanlage untersucht werden können. Auch dies trägt dazu bei, die Offshore-Windkapazitäten zu erhöhen.“

Nils Goseberg, Professor Küsteningenieurwesen und Seebau, Technische Universität Braunschweig

„Mit dem Salzwasser-Wellen-Strömungskanal können wir nun erstmalig alle wesentlichen Umweltparameter zur Exposition maritimer Technologien im Meer in einer Versuchsanlage und auf einer sehr großen Längenskala kontrollieren. Dies ist ein entscheidender Schritt auf dem Weg zur Synthese zwischen Nutzung und Schutz unserer Meere. Neben kostenintensiven Naturbeobachtungen in unseren Meeren durch Forschungsschiffe können wir nun in definierten Laborbedingungen an Land erforschen, welchen Einfluss das Meer und seine Kräfte auf die Anlagen und umgekehrt haben.“

Kontakt
Prof. Dr.-Ing. Nils Goseberg
Technische Universität Braunschweig
Leichtweiß-Institut für Wasserbau
Abteilung Hydromechanik, Küsteningenieurwesen und Seebau
Beethovenstraße 51a
38106 Braunschweig
Tel.: 0531 391-3930
E-Mail: n.goseberg(at)tu-braunschweig.de
www.tu-braunschweig.de/lwi/hyku

Dr.-Ing. David Schürenkamp
Technische Universität Braunschweig
Leichtweiß-Institut für Wasserbau
Abteilung Hydromechanik, Küsteningenieurwesen und Seebau
Beethovenstraße 51a
38106 Braunschweig
Tel.: 0531 391-3937
E-Mail: d.schuerenkamp(at)tu-braunschweig.de
www.tu-braunschweig.de/lwi/hyku

Presseinformation aus dem MAGAZIN der TU Braunschweig

Nächstes ISM-Seminar, Zachary Jones: "A Saddle Point Algorithm for Inequality Constrained Stochastic Multi-Objective Optimization Problem" am 4. Juli um 11:00 Uhr

Wir freuen uns, für das nächste Seminar Zachary Jones, M.Sc., Doktorand am INRIA in Palaiseu in Frankreich, begrüßen zu drüfen. Seinen spannenden Vortrag über seine Arbeit können Sie am 4. Juli um 11:00 Uhr im Vorlesungssaal 003 am ISM (Hermann-Blenk-Str. 37, Braunschweig) verfolgen.

Abstract:

Der Fokus liegt auf dem Finden von Punktlösungen eines stochastischen Multi-Objektiv-Optimierungsproblems mit Ungleichungsnebenbedingungen. In diesem Zusammenhang haben wir weder direkten Zugang zu analytischen Ausdrücken der Zielfunktionen, der Nebenbedingungen noch ihrer jeweiligen Gradienten, sondern lediglich Zugriff auf Realisierungen dieser stochastischen Größen. Dadurch wird es schwieriger zu prüfen, ob ein gegebener Designpunkt die gestellten Bedingungen erfüllt. Zudem verändert die Hinzunahme von Ungleichungsnebenbedingungen die Gestalt der Pareto-Menge, was den Optimierungsprozess weiter verkompliziert.

Zur Lösung des Problems wird ein Sattelpunkts-Algorithmus auf Basis stochastischer Approximation vorgeschlagen. In jeder Iteration wird zunächst einen Lagrange-Multiplikator aktualisiert und anschließend im Designraum einen Schritt unter Verwendung des entschärften stochastischen Multigradienten – einer auf den stochastischen Mehrziel-Fall verallgemeinerten Abstiegsrichtung - durchgeführt. Anschließend wird ein Konvergenzbeweis für unseren Ansatz im diskreten Zeitbereich mithilfe einer maßgeschneiderten Lyapunov-Funktion erbracht.

Biografie von Zachary Jones, M.Sc.:

Zachary Jones ist Doktorand in Platon-Team des Inria Saclay Center und Mitglied des Zentrums für angewandte Mathematik an der École Polytechnique. Er stammt aus den USA und hat zunächst seinen Bachelorabschluss in Physik an der Queen Mary University in London absolviert. Für seinen Master in Statistik wechselte er an die KU Leuven nach Belgien. Bei seiner Forschung am Inria beschäftigt er sich hauptsächlich mit stochastischen Multizielmethoden, die auch der Kern seiner Doktorarbeit sind.

Neue Vorlesung im SoSe '25: Biological Fluid Dynamics

Das Instititut für Strömungsmechanik bietet im Sommersemester 2025 die neue Vorlesung "Biological Fluid Dynamics" an.

Kurzbeschreibung:
We seek motivated students from a broad range of disciplines eager to join us in this
inaugural course at TU Braunschweig. We will study topics that cross traditional
boundaries, and therefore look forward to the participation of students from STEM
fields ranging from Biology, Chemistry, Engineering, Medicine, Physics, to name but
a few. Via active participation in this course students will, for instance, be able to:
• Conduct analysis and/or design optimization through the lens of Evolution, and subsequently perform validation against theory (or experiment);
• Understand and manipulate the governing equations for unsteady flows across a broad range of scales, e.g. from cellular motility to bio-propulsion;
• Solve problems relating to pulsatile internal flows (with e.g. curvature, bifurcations) as well as to unsteady aerodynamics/hydrodynamics; and
• Apply qualitative and quantitative reasoning to support real-world biomedical or biologically-inspired designs (e.g. biomedical devices, physiological mechanisms, imaging techniques and autonomous robots).

Lehrender: Prof. Dr.-Ing. David E. Rival
Sprache: Englisch
Wann: Dienstag, 9:45-12:15 (VL) & 11:30-12:15 (Übung)
Wo: SN 19.3 (Altgebäude, TU Braunschweig)
Erste Vorlesung am: Dienstag, 22.04.2025
Lehrmaterial: Rival, D., 2022, Biological and Bio-Inspired Fluid Dynamics – Theory and Application, Springer-Nature

Mehr Informationen: stud.ip

Nächstes ISM-Seminar, Prof. Hirotaka Sakaue: "Temperatur- und Phasenmessungen mittels Lumineszenzbildgebung" am 28. Februar um 14:00 Uhr

Wir freuen uns, unser nächstes Seminar ankündigen zu können, bei dem Prof. Hirotaka Sakaue, außerordentlicher Professor am Fachbereich Luft- und Raumfahrt und Maschinenbau der University of Notre Dame, seine Arbeit zur Luminiszenz-Bildgebung zur Messung von Temperatur und Phase in unterkühlten Tröpfchen vorstellen wird. Kommen Sie am 28. Februar um 14:00 Uhr in den Hörsaal 003 des ISM (Hermann-Blenk-Str. 37, Braunschweig) und erleben Sie einen spannenden Vortrag über seine Forschung.

Abstract:

Es wird ein Lumineszenz-Imaging zur Messung der räumlich-zeitlichen Temperatur von unterkühltem Wasser im Vereisungsprozess vorgestellt. Sie kann zur Identifizierung der Wasser/Eis-Phase bei Vereisungsstudien verwendet werden. Die Präsentation konzentriert sich auf das grundlegende Prinzip der Lumineszenzbildgebung und ihre Merkmale. Neben dem Lumineszenz-Imaging für Vereisungsstudien werden auch aktuelle Studien zur Flugzeugvereisung vorgestellt. Dabei handelt es sich um eine Studie zum Tropfenaufprall und eine eisabweisende Beschichtung zur Verhinderung von Eisbildung.

Biografie von Prof. Hirotaka Sakaue:

Dr. Hirotaka Sakaue ist außerordentlicher Professor an der Abteilung für Luft- und Raumfahrt und Maschinenbau der Universität von Notre Dame. Bevor er nach Notre Dame kam, war er über zehn Jahre als Forscher bei der Japan Aerospace Exploration Agency (JAXA) tätig. Er erwarb 1996 seinen BS in Biomolekulartechnik am Tokyo Institute of Technology, Japan, und 1999 bzw. 2003 seinen MS und PhD in Luft- und Raumfahrttechnik an der Purdue University.

Nächstes ISM-Seminar, Francesco Caccia, M.Sc.: "Stromröhren- und Stokes-Zahl-Effekte in 2D- und 3D-Simulationen von Partikeldynamiken in axialen Rotorströmungen für Eisanwendungen" am 24. Februar um 14:00 Uhr

Wir freuen uns, unser nächstes Seminar anzukündigen, in dem Francesco Caccia, M.Sc., sprechen wird. Francesco schließt derzeit seine Doktorarbeit am Department of Aerospace Science and Technology des Politecnico di Milano ab. Seien Sie am 24. Februar um 14:00 Uhr im Hörsaal 003 des ISM (Hermann-Blenk-Str. 37, Braunschweig) dabei für einen spannenden Vortrag über seine Forschung und die bedeutenden Implikationen für Vereisungssimulationen und Eisschutzsysteme.

Wir freuen uns darauf, Sie bei dieser informativen Sitzung zu sehen!

Abstract:
Für hochpräzise, mehrstufige Vereisungssimulationen oder beim Entwurf effektiver Eisschutzsysteme für dreidimensionale Geometrien sind erhebliche Rechenressourcen erforderlich. Ein effizienterer Ansatz, insbesondere für schlanke Rotorblätter, wie sie bei Propellern, Windturbinen und Hubschraubern zu finden sind, besteht darin, die Vereisung an isolierten Abschnitten statt am gesamten Blatt zu analysieren. In solchen Abschnittssimulationen müssen die relative Geschwindigkeit und der Anstellwinkel angegeben werden. Für kleinere Partikel können weniger präzise aerodynamische Modelle verwendet werden, um die induzierten Geschwindigkeiten zu berechnen. Für größere Tropfen kann die geometrische Geschwindigkeit angewendet werden, ohne die Induktionseffekte zu berücksichtigen. In diesem Seminar wird das Verhalten von Tropfen in 2D- und 3D-Simulationen gezeigt und charakterisiert. Für Tropfen mit einer kleinen Stokes-Zahl (Stk≪1) sind genaue Vorhersagen zur Auffang-Effizienz notwendig, die einen korrekten aerodynamischen Anstellwinkel erfordern. Wenn Stk≫1 wird, werden die Tropfenbahnen ballistisch, was zu zwei verschiedenen Grenzfällen führt - einem, der durch den aerodynamischen Anstellwinkel und einen anderen, der durch den geometrischen Anstellwinkel bestimmt wird. Die vollständige 3D-Lösung liegt zwischen diesen Grenzen und kann potenziell im ballistischen Regime bei einer anderen Stokes-Zahl erreicht werden. Der Anstellwinkel des Partikels wird in der Strömungsröhre stromaufwärts der Rotorplatte bestimmt, wo die zeitliche Skala der Flüssigkeit erheblich größer ist als die der Blattsektion. Um eine ballistische Trajektorie unabhängig von den induzierten Geschwindigkeiten zu erreichen, ist außerdem Stk≫1 in der Strömungsröhre erforderlich. Je nach Rotorabmessungen kann dieses zwischenzeitliche Regime unter Appendix-C oder Appendix-O-Bedingungen auftreten.

Biografie von Francesco Caccia, M.Sc.:
Francesco Caccia schließt derzeit seine Doktorarbeit am Department of Aerospace Science and Technology des Politecnico di Milano ab. Dort erhielt er 2018 seinen Bachelor-Abschluss in Luft- und Raumfahrttechnik und 2021 seinen Master-Abschluss in Aeronautik. Seine Forschung konzentriert sich auf Eisansammlung und Aeroakustik von Rotoren. Während seiner Doktorarbeit entwickelte er numerische Methoden, um die Auswirkungen der Blattflexibilität in der Lagrangeverfolgung von Wassertropfen zu berücksichtigen.

 

Nächstes ISM-Seminar, Prof. Sven Grundmann: "Neueste Fortschritte in der MRI-basierten Messung in turbulenten Strömungen" am 28. Februar um 11:00 Uhr

Wir freuen uns, unser nächstes ISM-Seminar anzukündigen, in dem Prof. Sven Grundmann, ein Universitätsprofessor und Direktor des Instituts für Strömungsmechanik an der Universität Rostock, seine Forschung vorstellen wird. Seien Sie am 28. Februar um 11:00 Uhr im Hörsaal 003 des ISM (Hermann-Blenk-Str. 37, Braunschweig) dabei für einen aufschlussreichen Vortrag über seine Forschung.

Wir freuen uns darauf, Sie dort zu sehen, zu einer vielversprechend spannenden Diskussion!

Titel: Neueste Fortschritte in der MRI-basierten Messung in turbulenten Strömungen

Abstract:

Die Magnetresonanztomographie (MRT) hat sich als leistungsfähiges Werkzeug für nichtinvasive, dreidimensionale Strömungsmessungen erwiesen und bietet einzigartige Einblicke in die Komplexität turbulenter Strömungen. Neueste Fortschritte in MRT-basierten Techniken haben die Anwendbarkeit dieser Messmethode für die Analyse turbulenter Strömungen erheblich erweitert. Zu diesen Entwicklungen gehören die Erweiterung des messbaren Geschwindigkeitsbereichs, die Verbesserung der Präzision von Reynolds-Spannungsmessungen, die Verbesserung von Temperatur- und Konzentrationsmessungen sowie die Ermöglichung von Anwendungen in turbulenten Mehrphasenströmungen.

In dieser Präsentation werden die neuesten Fortschritte in der MRT-Technologie, die in Studien zu turbulenten Strömungen angewendet werden, vorgestellt, wobei innovative Pulssequenzen und fortschrittliche Rekonstruktionsalgorithmen hervorgehoben werden, die für die Forschung in der Strömungsdynamik entwickelt wurden. Der Vortrag wird die erfolgreiche Anwendung dieser Fortschritte auf kanonische turbulente Strömungen wie Rohr- und Kanalsströmungen sowie auf komplexere Geometrien, die für Ingenieur- und biomedizinische Anwendungen relevant sind, diskutieren. Ziel dieses Vortrags ist es, das Potenzial von MRT als ein äußerst produktives Werkzeug zur Untersuchung turbulenter Strömungen sowie zur Verbesserung und Validierung von Methoden der numerischen Strömungsmechanik aufzuzeigen.

Biografie von Prof. Sven Grundmann:

Die akademische Laufbahn von Prof. Grundmann begann mit einem Abschluss in Maschinenbau an der Technischen Universität Darmstadt im Jahr 2003. Er promovierte 2008 an derselben Universität unter der Anleitung von Prof. Dr.-Ing. C. Tropea, wobei er sich auf Strömungsmechanik und Aerodynamik konzentrierte. Nach seiner Promotion wurde Prof. Grundmann mit einem DAAD-Postdoc-Stipendium ausgezeichnet und verbrachte 2009-2010 an der Stanford University, USA, wo er mit Prof. John K. Eaton am Center for Turbulence Research zusammenarbeitete. Nach seiner Rückkehr nach Deutschland leitete er eine junge Forschungsgruppe am Center of Smart Interfaces, in der er Themen wie Plasmaaktoren zur Übergangskontrolle und Magnetresonanztomographie (MRT) in der Thermofluids-Technik erforschte. 2014 erwarb Prof. Grundmann die Habilitation (Venia Legendi) in Strömungsmechanik an der TU Darmstadt und ist seit 2015 Vollprofessor und Leiter des Instituts für Strömungsmechanik an der Universität Rostock. Seit 2015 ist er Mitglied des Fakultätsrats, seit 2018 akademischer Dekan und seit 2020 Mitglied des DFG-Senats und des Vergabesausschusses für Graduiertenkollegs. Die Forschung von Prof. Grundmann umfasst ein breites Spektrum, einschließlich Strömungsregelung, aktive Übergangskontrolle, Dielektrische Barrierendurchbruch-Aktoren und der Einsatz von MRT in Strömungsmessungen.

ISM Seminars: "Einblicke in die Atmosphärische Dynamik"

ISM Seminars Prof. Aksamit

Am Freitag, den 7. Februar, hatten wir das Vergnügen, Prof. Nikolas Aksamit, einen außerordentlichen Professor an der UiT – The Arctic University of Norway, zu einem aufschlussreichen Seminar mit dem Titel "Einblicke in die atmosphärische Dynamik mit rahmenunabhängigen Flüssen und Strukturen" willkommen zu heißen. In seinem Vortrag sprach Prof. Aksamit über die Komplexität der multiskalaren Transport- und Mischprozesse in der Erdatmosphäre und betonte die entscheidende Rolle kohärenter Strukturen bei der Organisation turbulenter Strömungen. Er präsentierte kürzliche theoretische Fortschritte, die präzise Diagnosen dieser Strukturen und deren Einfluss auf die atmosphärische Dynamik ermöglichen. Durch die Anwendung eines rahmenunabhängigen Ansatzes hob Prof. Aksamit wichtige Trends im Impuls- und Wärmetransport über verschiedene Simulationen hervor und offenbarte das Potenzial dieser Methodik zur Verbesserung unseres Verständnisses der atmosphärischen Grenzschicht. Seine interdisziplinäre Forschung beleuchtet die komplexen Verhaltensweisen geophysikalischer Fluidströmungen und ebnet den Weg für zukünftige Studien, die unser Verständnis turbulenter Prozesse in der Atmosphäre erheblich voranbringen könnten. Wir danken Prof. Aksamit für seine wertvollen Einblicke und die anregende Diskussion! Bleiben Sie dran für zukünftige ISM-Seminare!

Aufforderung zur Einreichung von Bewerbungen für eine Master's Thesis oder Studentarbeit in Adjoint-Optimierung des Lufteinlasses für Brennstoffzellen-Flugzeuge

Am ISM ist ein spannendes neues Projekt eröffnet worden! Die Ausschreibung finden Sie in der Rubrik Stellenangebote!

TRACES Doctoral Network - Second Training School started at the ISM

Start of TRACES second training school

We are pleased to announce that the Institute of Fluid Mechanics is hosting the Second TRACES Training School this week, from Monday, 23 September to Friday, 27 September. TRACES is a European Joint Doctoral Network focused on the challenging topic of aircraft icing.

The event at TU Braunschweig will feature a combination of lectures by network experts and experimental labs on measurement techniques for icing and multiphase flow. Additionally, TRACES doctoral researchers will present their projects during dedicated poster sessions.

Several lectures by TRACES partners are open to external participants; these public lectures are marked in green on the official programme, https://traces-project.eu/second-training-school/

Stay updated on the latest network activities by visiting the official website: https://traces-project.eu/

Aufforderung zur Einreichung von Bewerbungen für eine Master's Thesis oder Studentarbeit in Untersuchung von Wolkenbedingungen und Vereisung für UAS

Am ISM ist ein spannendes neues Projekt eröffnet worden! Die Ausschreibung finden Sie in der Rubrik Stellenangebote!

Aufforderung zur Einreichung von Bewerbungen für eine Master's Thesis oder Studentarbeit in: Injektion von Nanopartikeln: Eine alternative aktive Kühlungstechnik für Hyperschallströmungen

Am ISM ist ein spannendes neues Projekt eröffnet worden! Die Ausschreibung finden Sie in der Rubrik Stellenangebote!

Neue Master-Vorlesung im WS 2024/25: "Flow-induced Vibrations of Bluff-body Structures"

Wir freuen uns, dass Dr. Nils van Hinsberg vom DLR Göttingen im Wintersemester seine neue Master-Vorlesung "Flow-induced Vibrations of Bluff-body Structures" am Institut für Strömungsmechanik anbieten wird.

 

Beschreibung:
The lecture series focuses on the physical understanding, mathematical prediction, and possible prevention of different types of vortex- and motion-induced vibrations that result from massive flow separation, and the ensuing (partly catastrophic) aero- and hydroelastic problems that may occur.

Inhalt:
static and dynamic aeroelastic problems, steady and unsteady aerodynamics of bluff bodies, potential theory, boundary layer behaviour and detached flows, properties and phenomena of vortex - induced and motion-induced vibrations, differences between forced and free structural oscillations, one- and two- degrees-of-freedom galloping, (wake-induced) flutter, turbulence-induced buffeting, linear and non-linear quasi-steady and unsteady modelling of structural oscillations, methods of prevention and damping

Lehrender: Dr.-Ing. Nils van Hinsberg
Wann: Montag, 7.10.24 - Freitag, 11.10.24, jeweils 9.00 - 12.00 Uhr und 14.00 - 17.00 Uhr
Wo: Hörsaal 003, Hermann-Blenk-Str. 37, 38108 Braunschweig
 

 

Aufforderung zur Einreichung von Bewerbungen für eine Masterarbeit oder Studienarbeit in:Validierung der Wirbelerzeugungsmethode für zonale LES

Am ISM ist ein spannendes neues Projekt eröffnet worden! Die Ausschreibung finden Sie in der Rubrik Stellenangebote!

ISM SEMINAR: "Persistenz von Wirbelstrukturen in dichten Suspensionen und Shearthinning-Flüssigkeiten: Charakterisierung der Wirbelbildung und -entwicklung" by Moira Barnes

Moira Barnes ISM Seminar
Moira Barnes- ISM Seminar

Wir hatten das Privileg, am 11. April Moira Barnes zu empfangen. Moira Barnes hat vor Kurzem ihren Master of Applied Science an der Fakultät für Maschinenbau der Queen's University in Zusammenarbeit mit Prof. Rival abgeschlossen. Ihre Forschung konzentriert sich auf die Untersuchung instationärer nicht-newtonscher Strömungen von dichten Suspensionen und scherverdünnenden Flüssigkeiten unter Verwendung neuartiger experimenteller Techniken zum besseren Verständnis kardiovaskulärer Strömungen. Moira schloss ihr Studium an der Queen's University im Jahr 2022 mit einem Bachelor of Science (mit Auszeichnung) in Maschinenbau ab, nachdem sie eine Bachelorarbeit über die Dynamik von Nicht-Newtonschen Wirbeln geschrieben hatte. 

Sie teilte wertvolle Erkenntnisse aus ihrer Masterarbeit mit dem Titel "Persistenz von Wirbelstrukturen in dichten Suspensionen und Shearthinning-Flüssigkeiten: Charakterisierung der Wirbelbildung und -entwicklung"

Aufforderung zur Einreichung von Bewerbungen für eine Masterarbeit oder Studienarbeit in: Wirbel in dichten Suspensionen - Erste Schritte auf dem Weg zu Experimenten am ISM

An der ISM ist ein spannendes neues Projekt eröffnet worden! Die Ausschreibung finden Sie in der Rubrik Stellenangebote!

ISM SEMINARS: "Volkswagen Travel Assist - Einblicke in die Serienentwicklung einer Fahrerassistenzfunktion" von Dr.-Ing. Daniel Münning

Volkswagen Travel Assist Seminar
Volkswagen Travel Assist Seminar

Am Freitag durften wir mit Dr. Ing. Daniel Münning einen Fachmann aus der Automobilindustrie in unserem Institut begrüßen. Dr. Münning hat ein Studium des Maschinenbaus mit der Vertiefungsrichtung Fahrzeugtechnik an der RWTH Aachen absolviert.

Daniel Münning vertiefte sein Fachwissen mit einer Promotion an der Technischen Universität Braunschweig und bei Volkswagen mit dem Schwerpunkt der Optimierung von Verbrennungsmotoren für Hybridfahrzeuge. In den letzten zehn Jahren war Daniel Münning bei der Volkswagen AG in verschiedenen Funktionen tätig, von seiner Doktorarbeit über die Entwicklung von Hybridkonzepten bis hin zur Leitung von Projekten für Spitzentechnologien wie Mobile Online Service und Travel Assist. Zurzeit ist er stark in das funktionale Management und die Umsetzung involviert, wobei er sich besonders auf Travel Assist konzentriert.

Im ISM-Seminar am Freitag gab er einen aufschlussreichen Überblick über die SAE Level 2 Fahrerassistenzfunktion und die damit verbundenen Sensoren. Nach einer kurzen Diskussion über Vorschriften wie UN R79 und Methoden für Sicherheitskonzepte ging der Vortrag auf Beispiele ein, die den Testaufwand veranschaulichten, der erforderlich ist, um die Serienzulassung für die Implementierung der Funktion in Millionen von Fahrzeugen weltweit zu erhalten.

Behalten Sie unsere Website im Auge, um aktuelle Informationen über kommende Veranstaltungen und Seminare zu erhalten.

 

Besuch des "Labors für Fluidphysik, Musterbildung und Biokomplexität (LFPB)" am Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen.

Dr. Claudia Brunner (LFPB) und Mariachiara Gallia (ISM) in der Teststrecke des Turbulenztunnels mit variabler Dichte (VDTT) während der Besichtigung der Versuchsanlagen / Dr. Claudia Brunner (LFPB) and Mariachiara Gallia (ISM) in the test section of the Variable Density Turbulence Tunnel (VDTT) during the visit to the experimental facilities

Am Freitag besuchten einige unserer WissenschaftlerInnen das "Laboratory for Fluid Physics, Pattern Formation and Biocomplexity (LFPB)" am Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen. Das von Professor Eberhard Bodenschatz geleitete Labor befasst sich mit verschiedenen Bereichen wie biologische Strömungsdynamik, Teilchen in Flüssigkeiten, Turbulenz und Atmosphärenphysik. Die Gespräche mit dem LFPB-Team, einschließlich der Experten Dr. Claudia Bruner und Dr. Mohsen Bagheri, sowie der Besuch ihrer experimentellen Einrichtungen waren sehr ergiebig. Wir freuen uns auf den künftigen Austausch und die gemeinsame Arbeit auf dem Gebiet der Strömungsmechanik und verwandter Gebiete.

 

 

Studentische Arbeiten

Hier können aktuell ausgeschriebene studentische Arbeiten (Bachelor-, Studien- und Masterarbeiten) am Institut für Strömungsmechanik eingesehen werden.