TU BRAUNSCHWEIG

Dr. Hendrik Ranocha

Technische Universität Braunschweig
Institut Computational Mathematics
Universitätsplatz 2
38106 Braunschweig

Raum 614
Telefon: +49 531 391 7417
h.ranocha@tu-bs.de

Sprechstunde: Nach Vereinbarung (schreiben Sie bitte eine E-Mail).

Hendrik Ranocha
© Hendrik Ranocha

Betreute Lehrveranstaltungen

Sommersemester 2018

  • Funktionentheorie (Prof. Sonar)
    Tragen Sie sich bitte im Stud.IP für die (Vorlesung) Funktionentheorie ein. Alle weiteren Informationen werden dort bereitgestellt.
    Die Veranstaltung beginnt regulär mit der Vorlesung am Dienstag, dem 03.04.2018, 1500-1630 Uhr im PK 14.316a. Die erste Übung findet in der dritten Vorlesungswoche statt, also am Montag, dem 16.04.2018, 1500-1630 Uhr im PK 14.316a.

Frühere Semester

  • Wintersemester 2017/2018:
    Analysis 3 (Prof. Sonar)
  • Sommersemester 2017:
    Lineare Algebra 2 (Prof. Löwe)
    Partielle Differentialgleichungen (Prof. Hempel)
  • Wintersemester 2016/2017:
    Lineare Algebra 1 (Prof. Löwe)
  • Sommersemester 2016:
    Globale Analysis (Prof. Sonar)
    Partielle Differentialgleichungen (Prof. Hempel)

Veröffentlichungen

Fachzeitschriften

  1. H. Ranocha, P. Öffner. L2 Stability of Explicit Runge-Kutta Schemes. Journal of Scientific Computing, 75.2: 1040-1056, 2018. [bibtex]
    A full-text view-only version is available at http://rdcu.be/x6Rl.
  2. H. Ranocha. Generalised Summation-by-Parts Operators and Variable Coefficients. Journal of Computational Physics, 362: 20-48, 2018. arXiv:1705.10541 [math.NA]. [bibtex]
    The full-text is available at https://authors.elsevier.com/a/1Wbh-508HeRTj until 2018-04-12.
  3. H. Ranocha, J. Glaubitz, P. Öffner, T. Sonar. Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators. Applied Numerical Mathematics, 2018. See also arXiv:1606.00995 [math.NA] and arXiv:1606.01056 [math.NA]. [bibtex]
    The full-text is available at https://authors.elsevier.com/a/1WWcX_3rqbu4MC until 2018-03-29.
  4. H. Ranocha. Comparison of Some Entropy Conservative Numerical Fluxes for the Euler Equations. Journal of Scientific Computing, 76(1): 216-242, 2018. arXiv:1701.02264 [math.NA]. [bibtex]
    A full-text view-only version is available at http://rdcu.be/AefL.
  5. H. Ranocha, P. Öffner, T. Sonar. Extended skew-symmetric form for summation-by-parts operators and varying Jacobians. Journal of Computational Physics, 342: 13-28, 2017. arXiv:1511.08408 [math.NA]. [bibtex]
  6. H. Ranocha. Shallow water equations: Split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM - International Journal on Geomathematics, 8(1): 85-133, 2017. arXiv:1609.08029 [math.NA]. [bibtex]
  7. H. Ranocha, P. Öffner, T. Sonar. Summation-by-parts operators for correction procedure via reconstruction. Journal of Computational Physics, 311: 299-328, 2016. arXiv:1511.02052 [math.NA]. [bibtex]
  8. C. Koenders, K.-H. Glassmeier, I. Richter, H. Ranocha, U. Motschmann. Dynamical features and spatial structures of the plasma interaction region of 67P/Churyumov-Gerasimenko and the solar wind. Planetary and Space Science, 105:101-116, 2015. [bibtex]

Preprints

  1. P. Öffner, H. Ranocha. Error Boundedness of Flux Reconstruction with Variable Coefficients. arXiv:1806.02018 [math.NA], 2018. Submitted. [bibtex]
  2. H. Ranocha. Mimetic Properties of Difference Operators: Product and Chain Rules as for Functions of Bounded Variation and Entropy Stability of Second Derivatives. arXiv:1805.09126 [math.NA], 2018. Submitted. [bibtex]
  3. P. Öffner, J. Glaubitz, H. Ranocha. Stability of Correction Procedure via Reconstruction With Summation-by-Parts Operators for Burgers' Equation Using a Polynomial Chaos Approach. arXiv:1703.03561 [math.NA], 2017. Submitted. [bibtex]
  4. H. Ranocha, J. Glaubitz, P. Öffner, T. Sonar. Time discretisation and L2 stability of polynomial summation-by-parts schemes with Runge-Kutta methods. arXiv:1609.02393 [math.NA], 2016. Submitted. [bibtex]

Abschlussarbeiten

Vorträge und Konferenzen

  • Generalised Summation-by-Parts Operators, Entropy Stability, and Split Forms. Numerical Analysis Group Internal Seminar, Oxford (United Kingdom), October 2017.
  • Correction Procedure via Reconstruction Using Summation-by-Parts Operators. International Conference on Hyperbolic Problems: Theory, Numerics, Applications (HYP), Aachen (Germany), August 2016.
  • Summation-by-Parts and Correction Procedure via Reconstruction. International Conference on Spectral and High Order Methods (ICOSAHOM), Rio de Janeiro (Brazil), June 2016.
    H. Ranocha, P. Öffner, T. Sonar. Summation-by-Parts and Correction Procedure via Reconstruction.. Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016. Ed. by M. L. Bittencourt, N. A. Dumont, J. S. Hesthaven. Vol. 119. Lecture Notes in Computational Science and Engineering. Cham: Springer, 2017, pp. 627-637. [bibtex]
  • Correction procedure via reconstruction using summation-by-parts operators. Vincent Lab Internal Seminar, Imperial College London (United Kingdom), April 2016.

  aktualisiert am 10.06.2018
TU_Icon_E_Mail_1_17x17_RGB Zum Seitenanfang