Technische Universität Braunschweig
  • Study & Teaching
    • Beginning your Studies
      • Prospective Students
      • Degree Programmes
      • Application
      • Fit4TU
      • Why Braunschweig?
    • During your Studies
      • Fresher's Hub
      • Term Dates
      • Courses
      • Practical Information
      • Beratungsnavi
      • Additional Qualifications
      • Financing and Costs
      • Special Circumstances
      • Health and Well-being
      • Campus life
    • At the End of your Studies
      • Discontinuation and Credentials Certification
      • After graduation
      • Alumni
    • For Teaching Staff
      • Strategy, Offers and Information
      • Learning Management System Stud.IP
    • Contact
      • Study Service Centre
      • Academic Advice Service
      • Student Office
      • Career Service
  • Research
    • Research Profile
      • Core Research Areas
      • Clusters of Excellence at TU Braunschweig
      • Research Projects
      • Research Centres
      • Professors‘ Research Profiles
    • Early Career Researchers
      • Support in the early stages of an academic career
      • PhD-Students
      • Postdocs
      • Junior research group leaders
      • Junior Professorship and Tenure-Track
      • Habilitation
      • Service Offers for Scientists
    • Research Data & Transparency
      • Transparency in Research
      • Research Data
      • Open Access Strategy
      • Digital Research Announcement
    • Research Funding
      • Research Funding Network
      • Research funding
    • Contact
      • Research Services
      • Academy for Graduates
  • International
    • International Students
      • Why Braunschweig?
      • Degree seeking students
      • Exchange Studies
      • TU Braunschweig Summer School
      • Refugees
      • International Student Support
      • International Career Service
    • Going Abroad
      • Studying abroad
      • Internships abroad
      • Teaching and research abroad
      • Working abroad
    • International Researchers
      • Welcome Support for International Researchers
      • Service for Host Institutes
    • Language and intercultural competence training
      • Learning German
      • Learning Foreign Languages
      • Intercultural Communication
    • International Profile
      • Internationalisation
      • International Cooperations
      • Strategic partnerships
      • International networks
    • International House
      • About us
      • Contact & Office Hours
      • News and Events
      • International Days
      • 5th Student Conference: Internationalisation of Higher Education
      • Newsletter, Podcast & Videos
      • Job Advertisements
  • TU Braunschweig
    • Our Profile
      • Aims & Values
      • Regulations and Guidelines
      • Alliances & Partners
      • The University Development Initiative 2030
      • Facts & Figures
      • Our History
    • Career
      • Working at TU Braunschweig
      • Vacancies
    • Economy & Business
      • Entrepreneurship
      • Friends & Supporters
    • General Public
      • Check-in for Students
      • CampusXperience
      • The Student House
      • Access to the University Library
    • Media Services
      • Communications and Press Service
      • Services for media
      • Film and photo permits
      • Advices for scientists
      • Topics and stories
    • Contact
      • General Contact
      • Getting here
  • Organisation
    • Presidency & Administration
      • Executive Board
      • Designated Offices
      • Administration
      • Committees
    • Faculties
      • Carl-Friedrich-Gauß-Fakultät
      • Faculty of Life Sciences
      • Faculty of Architecture, Civil Engineering and Environmental Sciences
      • Faculty of Mechanical Engineering
      • Faculty of Electrical Engineering, Information Technology, Physics
      • Faculty of Humanities and Education
    • Institutes
      • Institutes from A to Z
    • Facilities
      • University Library
      • Gauß-IT-Zentrum
      • Professional and Personnel Development
      • International House
      • The Project House of the TU Braunschweig
      • Transfer Service
      • University Sports Center
      • Facilities from A to Z
    • Equal Opportunity Office
      • Equal Opportunity Office
      • Family
      • Diversity for Students
  • Search
  • Quicklinks
    • People Search
    • Webmail
    • cloud.TU Braunschweig
    • Messenger
    • Cafeteria
    • Courses
    • Stud.IP
    • Library Catalogue
    • IT Services
    • Information Portal (employees)
    • Link Collection
    • DE
    • EN
    • Instagram
    • YouTube
    • LinkedIn
    • Mastodon
    • Bluesky
Menu
  • Research
  • Research Profile
  • Clusters of Excellence at TU Braunschweig
  • SE²A - Sustainable and Energy-Efficient Aviation
  • Research
  • ICA B "Flight Physics and Vehicle Systems"
Logo Sustainable and Energy Efficient Aviation of TU Braunschweig
B1.3 - Fast non empiric prediction of propulsion installation related noise
  • ICA B "Flight Physics and Vehicle Systems"
    • B5.2 - Application of physics-based finite-element tools in stiffness tailored structures for cryogenic hydrogen storage for improved mechanical and thermo-mechanical response
    • B4.2 - Consistent Multilevel Model Coupling and Knowledge Representation in Multidisciplinary Analysis and Design
    • B4.1- Collaborative Multidisciplinary Structural Design and Thermal Management for Electric Aircraft
    • B3.5 - Production technologies for hybrid suction designs - Bonding of micro-perforated sheets for hybrid laminar flow control suction panels
    • B3.2 - Advancing the additive xHLFC suction panel concept towards wind-tunnel readiness
    • B3.1 - Protective, multifunctional suction shells for hybrid laminar flow control: Design, integration, simulation and testing
    • B2.5 - EverScale - Enhancement and verification of load alleviation technologies by subscale flight testing
    • B2.4- Hybrid load alleviation by fluidic/reversed control and nonlinear structures
    • B2.3 - ARGO2 - Integrated design of control methods for stability of elastic aircraft
    • B1.9 - Validation of turbulent boundary layer-induced sound transmission through a fuselage section
    • B1.8 - Wind-tunnel experiments of advanced design of swept-wing with suction surfaces
    • B1.7 - Extension of Correlation-based Transition Transport Models for Laminar Aircraft Design
    • B1.6 - Effective Design Methods and Design Exploration for Laminar Wing and Fuselage
    • B1.5 - Sensitivities of Laminar Suction Boundary Layers for Large Reynolds Numbers
    • B1.3- Physics of broadband noise of sound sources from installed propulsors
    • JRG-B1 - Physics of Laminar Wing and Fuselage
    • JRG-B2 - Flow Physics of Load Reduction
    • B1.1 - Propeller and wing aerodynamics of distributed propulsion
    • B1.2 - Aerodynamic analysis of partly embedded boundary layer ingesting propulsors
    • B1.3 - Fast non empiric prediction of propulsion installation related noise
    • B1.4 - Transition Prediction and Design of Hybrid Laminar Flow Control on Blended Wing Bodies Based on 3D Parabolized Stability Equations
    • B2.1 - Load reduction potential of nonlinear stiffness and damping technologies
    • B2.2 - Structural technologies enabling load alleviation
    • B2.3 - Active load Reduction for enabling a 1-G wing using fOrward-looking and distributed sensors (ARGO)
    • B2.4 - Morphing structures for the 1g-wing
    • B3.1 - Global and Local Design Methodology for Laminar Flow Control
    • B3.2 - Process simulation and multiscale manufacturing of suction panels for laminar flow control
    • B3.3 - Thin Plies in Application for Next Generation Aircraft (TANGA)
    • B3.4 - New methods for failure and fatigue analysis of suction panels for laminar flow control
    • B5.1 - ADEMAO: Aircraft Design Engine based on Multidisciplinary Analysis and Optimization
    • JRG-B5 - Long-Range Aircraft Configurations and Technology Analyses
    • JRP - Permeation assessment for cryogenic applications by means of Fiber Bragg Grating sensors
    • ⯇ back to research

B1.3 - Fast non empiric prediction of propulsion installation related noise

With an ever more increasing integration of propulsor and airframe at modern and future aircraft, new sources of sound occur, which can neither be classically categorized into engine noise nor airframe noise. Instead, a new category of sound source occurs, which is due to the fact, that two or more aircraft components are in mutual aerodynamics interaction.

These sources are named “installation sources”, which occur only as a result of installing components at an aircraft and which would not be present, when considering these components in isolation. For instance, if a propeller is installed as a pusher configuration downstream of a wing, the wake of the wing produces unsteadiness on the propeller blade loading and thus additional excess noise with quite different characteristics as propeller-alone sound. This type of sound source is characteristic for all aircraft configurations considered in SE2A.

In view EU’s “Flightpath 2050” goal for an environmentally more friendly future aviation it is mandatory to assess the noise impact of any future technology and aircraft concepts proposed to reach the aggressive objectives of the EU. Such aircraft configurations are characterized by an unconventional propulsion integration, no matter if for a short, medium, or long range mission.

A new, necessarily non-empiric prediction approach is proposed for the quantification of sound generated as a result of the integration of propulsors (propeller, fan) at the aircraft. Since –by nature- empirical noise models do not exist for new engine integrations, the challenge to overcome is to enable predictions for largely arbitrary (tight) arrangements of propulsor and airframe, while being fast enough to cover a respective design space.

The proposed prediction concept therefore rests upon a non-empiric approach in the sense that modelling is restricted to mostly universal features of fluid mechanics and acoustics. This means turbulence modelling in the sense of a RANS approach to aerodynamics, as well as actuator disk approaches to model the effect of a propulsor aerodynamically. Moreover, by representing aerodynamic sound sources at rotor blades by respective (unsteady) forces the source wise installation as well as radiation wise installation may be described appropriately. In that way the modelling is configuration independent and the working hypothesis of the proposal is that with this aeroacoustic prediction approach the excess noise of arbitrary propulsor integration may be quantified.

Objectives

  • quantify integration related excess noise generated at the propulsor (propeller or fan)
  • determine the relation of noise reduction by shielding/reflection at the airframe vs. the above mentioned excess noise
     

Contact

Project lead

Prof. Dr. Jan Delfs

Institute of Aerodynamics and Flow Technology
+49 531 295-2170

 

 

Organisation

Institute of Aerodynamics and Flow Technology

German Aerospace Center (DLR)
Lilienthalplatz 7
38108 Braunschweig

 

Photo credits on this page

Open Positions
Research
About us
Diversity
Contact 

SE²A on LinkedIn

Linkedin Icon

Contact information

Cluster of Excellence SE²A –
Sustainable and Energy-Efficient Aviation
Technische Universität Braunschweig
Hermann-Blenk-Str. 42
38108 Braunschweig

se2a(at)tu-braunschweig.de
+49 531 391 66661

 

 

© Technische Universität Braunschweig
Legal Notice Privacy Accessibility

TU Braunschweig uses the software Matomo for anonymised web analysis. The data serve to optimise the web offer.
You can find more information in our data protection declaration.