Knut Andreas Meyer

Dr. Knut Andreas Meyer

Institut für Angewandte Mechanik

Pockelsstraße 3

38106 Braunschweig

Telephone: 0531 391-94357

k.a.meyer(at)tu-braunschweig.de

Knut Andreas has a background from Chalmers University of Technology in computational and experimental finite strain plasticity, with particular emphasis on anisotropy evolution. Currently, he is working with scientific machine learning for plasticity modeling and computational and experimental analysis of freezing of reinforced concrete. The latter is related to the GRK activities and involves analyzing the phase transformation process in our micro-CT at the Institute of Applied Mechanics. Further work will also consider the corrosion of reinforcements. Understanding these complex phenomena requires discussions and collaborations with other domain-specific experts, to which end the GRK is a perfect fit.

 

Publications:

K. A. Meyer, D. Gren, J. Ahlström, and A. Ekberg, “A method for in-field railhead crack detection using digital image correlation,” Int. J. Rail Transp., 2022, doi: 10.1080/23248378.2021.2021455.

K. A. Meyer, R. Skrypnyk, and M. Pletz, “Efficient 3d finite element modeling of cyclic elasto-plastic rolling contact,” Tribol. Int., vol. 161, p. 107053, 2021, doi: 10.1016/j.triboint.2021.107053.

K. A. Meyer and A. Menzel, “A distortional hardening model for finite plasticity,” Int. J. Solids Struct., vol. 232, p. 111055, 2021, doi: 10.1016/j.ijsolstr.2021.111055.

E. Natesan, K. A. Meyer, S. Eriksson, J. Ahlström, and C. Persson, “Effects of dwell time on the deformation and fatigue behaviour of A356-T7 cast aluminium alloys used in high specific power IC engine cylinder heads,” Materials (Basel)., vol. 13, no. 12, 2020, doi: 10.3390/ma13122727.

K. A. Meyer, “Evaluation of material models describing the evolution of plastic anisotropy in pearlitic steel,” Int. J. Solids Struct., vol. 200–201, pp. 266–285, 2020, doi: 10.1016/j.ijsolstr.2020.04.037.

K. A. Meyer, M. Ekh, and J. Ahlström, “Anisotropic yield surfaces after large shear deformations in pearlitic steel,” Eur. J. Mech. - A/Solids, vol. 82, p. 103977, 2020, doi: 10.1016/j.euromechsol.2020.103977.

K. A. Meyer, M. Ekh, and J. Ahlström, “Material model calibration against axial-torsion-pressure experiments accounting for the non-uniform stress distribution,” Finite Elem. Anal. Des., vol. 163, pp. 1–13, Oct. 2019, doi: 10.1016/J.FINEL.2019.05.006.

M. Pletz, K. A. Meyer, D. Künstner, S. Scheriau, and W. Daves, “Cyclic plastic deformation of rails in rolling/sliding contact –quasistatic FE calculations using different plasticity models,” Wear, vol. 436–437, p. 202992, Oct. 2019, doi: 10.1016/J.WEAR.2019.202992.

K. A. Meyer, D. Nikas, and J. Ahlström, “Microstructure and mechanical properties of the running band in a pearlitic rail steel: Comparison between biaxially deformed steel and field samples,” Wear, vol. 396–397, pp. 12–21, 2018, doi: 10.1016/j.wear.2017.11.003.

K. A. Meyer, M. Ekh, and J. Ahlström, “Modeling of kinematic hardening at large biaxial deformations in pearlitic rail steel,” Int. J. Solids Struct., vol. 130–131, pp. 122–132, 2018, doi: 10.1016/j.ijsolstr.2017.10.007.