Technische Universität Braunschweig
  • Study & Teaching
    • Beginning your Studies
      • Prospective Students
      • Degree Programmes
      • Application
      • Fit4TU
      • Why Braunschweig?
    • During your Studies
      • Fresher's Hub
      • Term Dates
      • Courses
      • Practical Information
      • Beratungsnavi
      • Additional Qualifications
      • Financing and Costs
      • Special Circumstances
      • Health and Well-being
      • Campus life
    • At the End of your Studies
      • Discontinuation and Credentials Certification
      • After graduation
      • Alumni
    • For Teaching Staff
      • Strategy, Offers and Information
      • Learning Management System Stud.IP
    • Contact
      • Study Service Centre
      • Academic Advice Service
      • Student Office
      • Career Service
  • Research
    • Research Profile
      • Core Research Areas
      • Clusters of Excellence at TU Braunschweig
      • Research Projects
      • Research Centres
      • Professors‘ Research Profiles
    • Early Career Researchers
      • Support in the early stages of an academic career
      • PhD-Students
      • Postdocs
      • Junior research group leaders
      • Junior Professorship and Tenure-Track
      • Habilitation
      • Service Offers for Scientists
    • Research Data & Transparency
      • Transparency in Research
      • Research Data
      • Open Access Strategy
      • Digital Research Announcement
    • Research Funding
      • Research Funding Network
      • Research funding
    • Contact
      • Research Services
      • Academy for Graduates
  • International
    • International Students
      • Why Braunschweig?
      • Degree seeking students
      • Exchange Studies
      • TU Braunschweig Summer School
      • Refugees
      • International Student Support
      • International Career Service
    • Going Abroad
      • Studying abroad
      • Internships abroad
      • Teaching and research abroad
      • Working abroad
    • International Researchers
      • Welcome Support for International Researchers
      • Service for Host Institutes
    • Language and intercultural competence training
      • Learning German
      • Learning Foreign Languages
      • Intercultural Communication
    • International Profile
      • Internationalisation
      • International Cooperations
      • Strategic partnerships
      • International networks
    • International House
      • About us
      • Contact & Office Hours
      • News and Events
      • International Days
      • 5th Student Conference: Internationalisation of Higher Education
      • Newsletter, Podcast & Videos
      • Job Advertisements
  • TU Braunschweig
    • Our Profile
      • Aims & Values
      • Regulations and Guidelines
      • Alliances & Partners
      • The University Development Initiative 2030
      • Facts & Figures
      • Our History
    • Career
      • Working at TU Braunschweig
      • Vacancies
    • Economy & Business
      • Entrepreneurship
      • Friends & Supporters
    • General Public
      • Check-in for Students
      • CampusXperience
      • The Student House
      • Access to the University Library
    • Media Services
      • Communications and Press Service
      • Services for media
      • Film and photo permits
      • Advices for scientists
      • Topics and stories
    • Contact
      • General Contact
      • Getting here
  • Organisation
    • Presidency & Administration
      • Executive Board
      • Designated Offices
      • Administration
      • Committees
    • Faculties
      • Carl-Friedrich-Gauß-Fakultät
      • Faculty of Life Sciences
      • Faculty of Architecture, Civil Engineering and Environmental Sciences
      • Faculty of Mechanical Engineering
      • Faculty of Electrical Engineering, Information Technology, Physics
      • Faculty of Humanities and Education
    • Institutes
      • Institutes from A to Z
    • Facilities
      • University Library
      • Gauß-IT-Zentrum
      • Professional and Personnel Development
      • International House
      • The Project House of the TU Braunschweig
      • Transfer Service
      • University Sports Center
      • Facilities from A to Z
    • Equal Opportunity Office
      • Equal Opportunity Office
      • Family
      • Diversity for Students
  • Search
  • Quicklinks
    • People Search
    • Webmail
    • cloud.TU Braunschweig
    • Messenger
    • Cafeteria
    • Courses
    • Stud.IP
    • Library Catalogue
    • IT Services
    • Information Portal (employees)
    • Link Collection
    • DE
    • EN
    • Instagram
    • YouTube
    • LinkedIn
    • Mastodon
    • Bluesky
Menu
  • Organisation
  • Faculties
  • Faculty of Architecture, Civil Engineering and Environmental Sciences
  • Institutes
  • Institute of Geodesy and Photogrammetry
  • Education
Logo Institut für Geodäsie und Photogrammetrie der TU Braunschweig
Machine Learning: WiSe 2021

Machine Learning: WiSe 2021

Course Description

Machine learning is a key to analyze data in different science and engineering disciplines. This course will provide an introduction to the fundamental methods at the core of machine learning, including -but not limited to- classification, regression analysis, clustering, and dimensionality reduction. This course is designed for Bachelor students in different disciplines who employ machine learning algorithms in their fields. Students will learn about the basic concepts of machine learning and will apply the learned concepts on the practical problems using open source libraries from the Python programming ecosystem. The course will also briefly cover neural networks and will be closed by a short introduction to deep learning. Classes on theoretical aspects will be complemented by practical lab sessions. In this course we do not concentrate on a specific type of data and various datasets will be used in the practical example.

Upon completion of the course, the students will be able to understand basic principles of ML techniques and to apply them for simple problems.

 

Prerequisites: 

Students are expected to have knowledge of basic programming skills. While this course will also provide an introduction to the basics of the Python programming language for machine learning, the students need some background in programming for the programming assignments. Moreover, familiarity with the basic probability theory as well as linear algebra is necessary. Along with introducing the concepts of machine learning, the lectures will provide a refresher on relevant concepts from calculus and linear algebra. However, familiarity with these concepts would be necessary. 

 

Content:
Linear regression
Cost function and optimization
Gradient descent
Performance assessment
Logistic regression
Nearest neighbor and KNN
Decision trees
SVM
Non-supervised learning, clustering
Dimensionality reduction and PCA
Ensemble and boosting methods
Neural Networks I
Neural Networks II
Introduction to Deep learning 

Instructor

Mitarbeiterbild Mehdi Maboudi
Dr. -Ing. Mehdi Maboudi

Quick Information

ECTS: 5 (Lecture+Lab session)

Class time (WS 2022): Tuesdayss, 11:30 - 13:00, Fridays 13:00-14:30

Location: Big Blue Button (meeting link on STUDIP)
 

Photo credits on this page

For All Visitors

Vacancies of TU Braunschweig
Career Service' Job Exchange 
Merchandising

For Students

Term Dates
Courses
Degree Programmes
Information for Freshman
TUCard

Internal Tools

Glossary (GER-EN)
Change your Personal Data

Contact

Technische Universität Braunschweig
Universitätsplatz 2
38106 Braunschweig

P. O. Box: 38092 Braunschweig
GERMANY

Phone: +49 (0) 531 391-0

Getting here

© Technische Universität Braunschweig
Legal Notice Privacy Accessibility

TU Braunschweig uses the software Matomo for anonymised web analysis. The data serve to optimise the web offer.
You can find more information in our data protection declaration.