Pin-Hsun Lin
Ph.D.
Institute for Communications Technology
Technische Universität Braunschweig
Schleinitzstraße 22 (room 212A)
38106 Braunschweig
Personal website https://sites.google.com/site/pinhsunlin/
lin(at)ifn.ing.tu-bs.de
phone: +49 (0) 531 391 - 2405
fax: +49 (0) 531 391 - 8218
Art der studentischen Arbeit: Studentische Hilfskraft (HiWi)
Betreuer: Pin-Hsun Lin
Abteilung: Informationstheorie und Kommunikationssysteme
Deriving capacities of memoryless multi-user (MU) channels usually relies on information-theoretic (IT) orders such as degraded, less noisy, or more capable, etc.
When there is no instantaneous channel state information at the transmitter (CSIT), identifying whether an MU channel satisfies a certain IT order or not is usually not
trivial. This makes deriving capacity results in this case much more involved than in cases with perfect CSIT. For example, when solely statistical CSIT is available,
capacity is known only for very few cases such as the layered broadcast (BC), the binary fading interference channel (IC) under weak and strong interference, the one-sided layered IC, and the Gaussian wiretap channel (GWTC) under certain conditions. Our group has partly answered the following questions for fast fading Gaussian BC, Gaussian IC with strong and very strong interferences, and Gaussian WTC under statistical CSIT: When is it possible to reorder the realizations of random channel gains between different transmitter-receiver pairs to obtain an equivalent channel, such that the new channel gains satisfy a certain IT order within one codeword length? Besides, how to construct such equivalent channels? Finally, what are the capacity results?
Tasks:
In this work, we aim to broaden our investigation of the aforementioned open problems. More specifically, recently, we have explicitly adopted the rate splitting from the Han-Kobayashi (HK) coding scheme with a non-uniform time sharing (TS), to analyze the achievable rate of an fast fading asymmetric B-IC with
moderate interference with statistical CSIT, whose capacity region is still open. In this work, you will work closely with me on generalizing the scheme of HK coding with TS in the following 2 possible directions:
1. By inserting more degree of freedom on the HK code with respect to TS.
2. Considering a higher dimension of TS.
We will publish our results in international conferences and/or journal.
Requirements:
• High interests on mathematical modeling and theoretical analysis
• Sufficient background knowledge of information theory
Art der studentischen Arbeit: Bachelorarbeit, Masterarbeit
Betreuer: Pin-Hsun Lin
Abteilung: Informationstheorie und Kommunikationssysteme
Deriving capacities of memoryless multi-user (MU) channels usually relies on information-theoretic (IT) orders such as degraded, less noisy, or more capable, etc.
When there is no instantaneous channel state information at the transmitter (CSIT), identifying whether a MU channel satisfies a certain IT order is usually not trivial.
This makes deriving capacity results in this case much more involved than in cases with perfect CSIT.
For example, when solely statistical CSIT is available, capacity is known only for very few cases such as the layered broadcast channel (BC), the binary fading interference channel (IC) under weak and strong interference, the one-sided layered IC, and the Gaussian wiretap channel (GWTC) under certain conditions. Our group has partly answered the following questions for fast fading Gaussian BC, Gaussian IC with strong and very strong interferences, and Gaussian WTC under statistical CSIT: When is it possible to reorder the realizations of random channel gains between different transmitter-receiver pairs to obtain an equivalent channel, such that the new channel gains satisfy a certain IT order within one codeword length? Besides, how to construct such equivalent channels? Finally, what are the capacity results?
Tasks:
In this work, we aim to broaden our investigation of the aforementioned open problems. More specifically, recently, we have explicitly adopted the rate splitting from the Han-Kobayashi (HK) coding scheme with a non-uniform time sharing (TS), to analyze the achievable rate of a fast fading asymmetric B-IC with
moderate interference with statistical CSIT, whose capacity region is still open. In this work, you will generalize the scheme of HK coding with TS in the following 2 possible directions:
1. By inserting more degrees of freedom on the HK code with respect to TS.
2. Considering a higher dimension of TS.
We will publish our results in international conferences and/or journals.
Requirements:
• High interests on mathematical modeling and theoretical analysis
• Sufficient background knowledge of information theory
Art der studentischen Arbeit: Masterarbeit
Betreuer: Pin-Hsun Lin
Abteilung: Informationstheorie und Kommunikationssysteme
Neben Kryptografie bildet Physical Layer Security einen vielversprechenden Ansatz zur sicheren Übertragung von Daten. Dabei werden die physikalischen Eigenschaften der Übertragungskanäle ausgenutzt um eine informationstheoretisch sichere Übertragung zu ermöglichen.
Die Modellierung der physikalen Eigenschaften geschieht mittels Zufallsvariablen. In existierender Literatur wurde bereits gezeigt, dass die erreichbare Sicherheit maßgeblich von der Korrelation dieser Zufallsvariablen abhängt.
Diese existierenden Ergebnisse sollen in dieser Arbeit genauer untersucht werden. Im Speziellen soll der Fokus auf der Zero-Security-Outage-Kapazität liegen, also der maximalen Übertragungsrate mit der ohne Sicherheitsausfälle
übertragen werden kann.
Ein gutes Verständnis von Zufallsvariablen und Wahrscheinlichkeitsrechnung ist für die erfolgreiche Bearbeitung notwendig.
Weiterhin können Vorkenntnisse im Bereich Nachrichtentechnik, wie sie zum Beispiel in den Modulen "Informationstheorie", "Netzwerk-Informationstheorie" oder "Physical Layer Security" erworben werden können, hilfreich sein.