Publications

Publications in journals with peer-review

  1. From pharmacophore to warhead: NAD+-targeting triazoles as mechanism-based sirtuin inhibitors. F. Friedrich, M. Meleshin, N. Papenkordt, L. Gaitzsch, I. Prucker, M. Borso, J. Ruprecht, C. Vorreiter, S. Rast, L. Zhang, M. Schiedel, W. Sippl, A. Imhof, H.J. Jessen, O. Einsle, M. Schutkowski, M. Jung. Angew. Chem. Int. Ed. 64 (2025), e16782. https://doi.org/10.1002/anie.202516782. Impact factor: 16.900
  2. A Warm Welcome to MedChem: The Frontiers in Medicinal Chemistry 2025. M. Schiedel,# M. Pinto, A. Unzue Lopez, P. Barbie, F. Pape, A. Tarasewicz, G. Hessler, P. Gmeiner, C. Lamers,# M. Gehringer.# ChemMedChem 20 (2025), e202500609 [#shared corresponding authorship]. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cmdc.202500609. Impact factor: 3.400
  3. Target engagement studies and kinetic live-cell degradation assays enable the systematic characterization of histone deacetylase 6 degraders. M. Hanl, F. Feller, I. Honin, K. Tan, M. Miranda, L. Schäker-Hübner, N. Bückreiß, M. Schiedel, M. Gütschow, G. Bendas, F.K. Hansen. ACS Pharmacol. Transl. Sci. 8 (2025), 3074-3089. https://pubs.acs.org/doi/full/10.1021/acsptsci.5c00247. Impact factor: 3.700
  4. Efficient crystallization of apo Sirt2 for small-molecule soaking and structural analysis of ligand interactions. F. Friedrich, M. Schiedel, S. Swyter, L. Zhang, W. Sippl, M. Schutkowski, O. Einsle, M. Jung. J. Med. Chem. 68 (2025), 10771-10780. https://pubs.acs.org/doi/full/10.1021/acs.jmedchem.4c02896. Impact factor: 7.100
  5. Antiproliferative effects, mechanism of action and tumor reduction studies in a lung cancer xenograft mouse model of an organometallic gold(I) alkynyl complex. U. Basu, A. Wilsmann, S. Türck, H. Hoffmeister, M. Schiedel, G. Gasser, I. Ott. RSC Med. Chem. 16 (2025), 2663-2676. https://pubs.rsc.org/en/content/articlelanding/2025/md/d4md00964a. Impact factor: 4.100
  6. From bones to bugs: Structure-based development of raloxifene-derived pathoblockers that inhibit pyocyanin production in Pseudomonas aeruginosa. M. Thiemann, M. Zimmermann, C. Diederich, H. Zhand, M. Lebedevh, J. Pletzi, J. Baumgarten, Maria Handke, M. Müsken, R. Breinbauer, G. Krasteva-Christ, E. Zanin, M. Empting, M. Schiedel,# C. Kunick,# W. Blankenfeldt.# J. Med. Chem. 68 (2025), 7390-7420. https://pubs.acs.org/doi/full/10.1021/acs.jmedchem.4c03065. Impact factor: 7.100 [#shared corresponding authorship]. Impact factor: 6.900
  7. A fluorescent probe enables the discovery of improved antagonists targeting the intracellular allosteric site of the chemokine receptor CCR7. S.L. Wurnig, M.E. Huber, C. Weiler, H. Baltrukevich, N. Merten, I. Stötzel, Y. Chang, R.H.L. Klammer, D. Baumjohann, E. Kiermaier, P. Kolb, E. Kostenis,# M. Schiedel,# F.K. Hansen.# J. Med. Chem. 68 (2025), 4308-4333. [#shared corresponding authorship]. https://doi.org/10.1021/acs.jmedchem.4c02102. Impact factor: 7.100
  8. New fluorogenic triacylglycerols as sensors for dynamic measurement of lipid oxidation. M. Handke, F. Beierlein, P. Imhof, M. Schiedel,# S. Hammann.# Anal. Bioanal. Chem. 417 (2025), 287-296 [#shared corresponding authorship]. https://link.springer.com/article/10.1007/s00216-024-05642-w. Impact factor: 3.800

  9. We are MedChem: The Frontiers in Medicinal Chemistry 2024. M. Schiedel, P. Barbie, F. Pape, M. Pinto, A. Unzue Lopez, M. Méndez, G. Hessler, D. Merk, M. Gehringer, C. Lamers. ChemMedChem 19 (2024), e202400543. https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cmdc.202400543. Impact factor: 3.540
  10. Development of a NanoBRET assay platform to detect intracellular ligands for the chemokine receptors CCR6 and CXCR1. M.E. Huber, S.L Wurnig, A.F.A Moumbock, L. Toy, E. Kostenis, A. Alonso Bartolomé, M. Szpakowska, A. Chevigné, S. Günther, F.K. Hansen,# M. Schiedel.# ChemMedChem 19 (2024), e202400284 [#shared corresponding authorship]. https://doi.org/10.1002/cmdc.202400284. Impact factor: 3.540

  11. Fluorophore-labeled pyrrolones targeting the intracellular allosteric binding site of the chemokine receptor CCR1. L. Toy, M.E. Huber, M. Lee, A. Alonso Bartolomé, N.V. Ortiz Zacarías, S. Nasser, S. Scholl, D.P. Zlotos, Y. M. Mandour, L.H. Heitman, M. Szpakowska, A. Chevigné, M. Schiedel. ACS Pharmacol. Transl. Sci. 7 (2024), 2080-2092. https://doi.org/10.1021/acsptsci.4c00182. Impact factor: 6.000

  12. Development of a fluorescent ligand for the intracellular allosteric binding site of the neurotensin receptor 1. H. Vogt, P. Shinkwin, M.E. Huber, N. Staffen, H. Hübner, P. Gmeiner, M. Schiedel, Dorothee Weikert. ACS Pharmacol. Transl. Sci. 7 (2024), 1533-1545. https://pubs.acs.org/doi/10.1021/acsptsci.4c00086. Impact factor: 6.000

  13. Development and initial characterization of the first 18F-CXCR2-targeting radiotracer for PET imaging of neutrophils. P. Spatz, X. Chen, K. Reichau, M.E. Huber, S. Mühlig, Y. Matsusaka, M. Schiedel, T. Higuchi, M. Decker.  J. Med. Chem. 67 (2024), 6327-6343. https://doi.org/10.1021/acs.jmedchem.3c02285. Impact factor: 7.300

  14. Small molecule ligands of the BET-like bromodomain, SmBRD3, affect Schistosoma mansoni survival, oviposition, and development. M. Schiedel*, D. McArdle*, G. Padalino*, A.K.N. Chan, J. Forde-Thomas, M. McDonough, H. Whitel, M. Beckmann, R. Cookson, K.F. Hoffmann, S.J. Conway. J. Med. Chem. 66 (2023), 15801-15822. https://doi.org/10.1021/acs.jmedchem.3c01321. [*shared first authorship]. Impact factor: 7.300
  15. Development of first-in-class dual Sirt2/HDAC6 inhibitors as molecular tools for dual inhibition of tubulin deacetylation. L. Sinatra, A. Vogelmann, F. Friedrich, M.A. Tararina, E. Neuwirt, A. Colcerasa, P. König, L. Toy, T.Z. Yesiloglu, S. Hilscher, L. Gaitzsch, N. Papenkordt, S. Zhai, L. Zhang, C. Romier, O. Einsle, W. Sippl, M. Schutkowski, O. Groß, G. Bendas, D. Christianson, F. Hansen, M. Jung, M. Schiedel. J. Med. Chem. 66 (2023), 14787-14814. https://pubs.acs.org/doi/full/10.1021/acs.jmedchem.3c01385. Impact factor: 7.300
  16. Mutate and conjugate: A method to enable rapid in-cell target validation. A.M. Thomas, M. Serafini, E.K. Grant, E.A.J. Coombs, J.P. Bluck, M. Schiedel, M.A. McDonough, J.K. Reynolds, B. Lee, M. Platt, V. Sharlandjieva, P.C. Biggin, F. Duarte, T.A. Milne, J.T. Bush, S.J. Conway. ACS Chem. Biol. 18 (2023), 2405-2417. https://pubs.acs.org/doi/10.1021/acschembio.3c00437.  Impact factor: 4.000
  17. Fluorescent ligands enable target engagement studies for the intracellular allosteric binding site of the chemokine receptor CXCR2. M.E. Huber, S. Wurnig, L. Toy, C. Weiler, N. Merten, E. Kostenis#, F.K. Hansen#, M. Schiedel#J. Med. Chem. 66 (2023), 9916–9933 [#shared corresponding authorship]. https://doi.org/10.1021/acs.jmedchem.3c00769. Impact factor: 7.300
  18. Back in person: Frontiers in Medicinal Chemistry 2023. M. Gehringer, F. Pape, M. Méndez, P. Barbie, A. Unzue Lopez, J. Lefranc, F.-M. Klingler, G. Hessler, T. Langer, E. Diamanti#, M. Schiedel#. ChemMedChem (2023), e202300344 [#shared corresponding authorship]. https://doi.org/10.1002/cmdc.202300344. Impact factor: 3.540
  19. Small molecule tools to study cellular target engagement for the intracellular allosteric binding site of GPCRs. M.E. Huber, L. Toy, M.F. Schmidt, D. Weikert, M. Schiedel. Chem. Eur. J., 29 (2023), e202202565. https://doi.org/10.1002/chem.202202565. Impact factor: 5.020
  20. Fluorescent ligands targeting the intracellular allosteric binding site of the chemokine receptor CCR2. L. Toy, M.E. Huber, M.F. Schmidt, D. Weikert, M. Schiedel. ACS Chem. Biol., 17 (2022), 2142-22152. https://pubs.acs.org/doi/10.1021/acschembio.2c00263. Impact factor: 4.634
  21. Development of a NanoBRET assay to validate dual inhibitors of Sirt2-mediated lysine deacetylation and defatty-acylation that block prostate cancer cell migration. A. Vogelmann, M. Schiedel, N. Wössner, A. Merz, D. Herp, S. Hammelmann, A. Colcerasa, G. Komaniecki, J.Y. Hong, M. Sum, E. Metzger, E. Neuwirt, L. Zhang, O. Einsle, O. Groß, R. Schüle, H. Lin, W. Sippl, M. Jung. RSC Chem. Biol. 3 (2022), 468-485. https://doi.org/10.1039/D1CB00244A. Impact factor: 4.100
  22. Comparison of cellular target engagement methods for the tubulin deacetylases Sirt2 and HDAC6: NanoBRET, CETSA, tubulin acetylation, and PROTACs. A. Vogelmann, M. Jung, F.K. Hansen, M. Schiedel. ACS Pharmacol. Transl. Sci. 5 (2022), 138-140. https://doi.org/10.1021/acsptsci.2c00004. Impact factor: 3,500
  23. A chemical biology toolbox targeting the intracellular binding site of CCR9: Fluorescent ligands, new drug leads and PROTACs. E. Huber, L. Toy, M.F. Schmidt, H. Vogt, J. Budzinski, M.F.J. Wiefhoff, N. Merten, E. Kostenis, D. Weikert, M. Schiedel. Angew. Chem. Int. Ed., 61 (2022), e202116782. https://doi.org/10.1002/anie.202116782Angew. Chem., 134 (2022), e202116782. https://doi.org/10.1002/ange.202116782. Impact factor: 15,336
  24. Controlling Intramolecular Interactions in the Design of Selective, High-Affinity, Ligands for the CREBBP Bromodomain. M. Brand, J. Clayton, M. Moroglu, M. Schiedel, S. Picaud, J. Bluck, A. Skwarska, H. Bolland, A.K.N. Chan, C.M.C. Laurin, A.R. Scorah, L. See, T.P.C. Rooney, K.H. Andrews, O. Fedorov, G, Perell, P. Kalra, K.B. Vinh, W.A. Cortopassi, P. Heitel, K.E. Christensen, R.I. Cooper, R.S. Paton, W.C.K. Pomerantz, P.C. Biggin, E.M. Hammond, P. Filippakopoulos, S.J Conway. J. Med. Chem. 64 (2021), 10102-10123. https://doi.org/10.1021/acs.jmedchem.1c00348. Impact factor: 6.205
  25. Call for Papers: “Epigenetics 2.0”—A Joint Virtual Special Issue on Epigenetics. Bhatia#, F.K. Hansen#, M. Schiedel#ACS Pharmacol. Transl. Sci. 4 (2021), 1262-1263. https://doi.org/10.1021/acsptsci.1c00156 [#shared corresponding authorship]. Impact factor: 3,500
  26. Fragment-based identification of ligands for bromodomain-containing factor 3 of Trypanosoma cruzi. C. Laurin, J. Bluck, A. Chan, M. Keller, A. Boczek, A. Scorah, K.F. See, L. Jennings, D. Hewings, F. Woodhouse, J. Reynolds, M. Schiedel, P. Humphreys, P. Biggin, S. Conway,  ACS Infect. Dis. 7 (2021), 2238-2249. https://doi.org/10.1021/acsinfecdis.0c00618. Impact factor: 4.614
  27. HaloTag-targeted Sirtuin rearranging ligand (SirReal) for the development of proteolysis targeting chimeras (PROTACs) against the lysine deacetylase Sirtuin 2 (Sirt2). M. Schiedel, A. Lehotzky, S. Szunyogh, J. Oláh, S. Hammelmann, N. Wössner, D. Robaa, O. Einsle, W. Sippl, J. Ovádi, M. Jung. ChemBioChem 21 (2020), 3371-3376. https://doi.org/10.1002/cbic.202000351. Impact factor: 2.576
  28. Validation of slow off-kinetics of sirtuin rearranging ligands (SirReals) by means of the label-free electrically switchable nanolever technology. M. Schiedel*, H. Daub*, A. Itzen, M. Jung [*contributed equally]. ChemBioChem 21 (2020), 1161-1166. https://doi.org/10.1002/cbic.201900527. Impact factor: 2.576
  29. Chemical epigenetics: the impact of chemical- and chemical biology techniques on bromodomain target validation. M. Schiedel, M. Moroglu, D.M.H. Ascough, A.E.R. Chamberlain, J.J.A.G. Kamps, A.R. Sekirnik, S.J. Conway. Angew. Chem. Int. Ed. 58 (2019), 17930-17952. https://doi.org/10.1002/anie.201812164. Chemische Epigenetik: der Einfluss chemischer und chemo‐biologischer Techniken auf die Zielstruktur‐Validierung von Bromodomänen. Angew. Chem. 131 (2019), 18096-18120. https://doi.org/10.1002/ange.201812164. Impact factor: 12.959
  30. Opening the selectivity pocket in the human lysine deacetylase sirtuin 2 – New opportunities, new questions. Robaa, D. Monaldi, N. Wössner, N. Kudo, T. Rumpf, M. Schiedel, M. Yoshida, M. Jung. Chem. Rec. 18 (2018), 1701-1707. https://doi.org/10.1002/tcr.201800044. Impact factor: 5.387
  31. Small molecules as tools to study the chemical epigenetics of lysine acetylation. M. Schiedel#, S.J. Conway# [#shared corresponding authorship]. Curr. Opin. Chem. Biol. 45 (2018), 166-178. https://doi.org/10.1016/j.cbpa.2018.06.015. Impact factor: 8.544
  32. BET bromodomain ligands: Probing the WPF shelf to improve BRD4 bromodomain affinity and metabolic stability. L.E. Jennings*, M. Schiedel*, D.S. Hewings, S. Picaud, C.M.C. Laurin, P.A. Bruno, J.P. Bluck, A.R. Scorah, L. See, J.K. Reynolds, M. Moroglu, I.N. Mistry, A. Hicks, P. Guzanov, J. Clayton, C.N.G. Evans, G. Stazi, P.C. Biggin, A.K. Mapp, E.M. Hammond, P.G. Humphreys, P. Filippakopoulos, S.J. Conway [*contributed equally]. Bioorg. Med. Chem. 26 (2018), 2937-2957. https://doi.org/10.1016/j.bmc.2018.05.003. Impact factor: 2.802
  33. New chemical tools for probing activity and inhibition of the NAD+ dependent lysine deacylase sirtuin 2. S. Swyter*, M. Schiedel*, D. Monaldi, S. Szunyogh, A. Lehotzky, T. Rumpf, J. Ovádi, W. Sippl, M. Jung [*contributed equally]. Phil. Trans. R. Soc. B 373 (2018), 20170083. https://doi.org/10.1098/rstb.2017.0083. Impact factor: 6.139
  34. Chemically induced degradation of sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (SirReals). M. Schiedel, D. Herp, S. Hammelmann, S. Swyter, A. Lehotzky, D. Robaa, J. Olah, J. Ovádi, W. Sippl, M. Jung. J. Med. Chem. 61 (2018), 482-491. https://doi.org/10.1021/acs.jmedchem.6b01872. Impact factor: 6.054
  35. The current state of NAD+-dependent histone deacetylases (sirtuins) as novel therapeutic targets. M.  Schiedel, D, Robaa, T. Rumpf, W. Sippl, M. Jung. Med. Res. Rev. 38 (2018), 147-200. https://doi.org/10.1002/med.21436. Impact factor: 9.791
  36. Modulation of microtubule acetylation by the interplay of TPPP/p25, SIRT2 and new anticancer agents with anti-SIRT2 potency. A. Szabó, J. Oláh, S. Szunyogh, A. Lehotzky, T. Szénási, M. Csaplár, M. Schiedel, P. Lőw, M. Jung, J. Ovádi. Sci. Rep. 7 (2017), 17070. https://doi.org/10.1038/s41598-017-17381-3. Impact factor: 4.122
  37. Synthesis and biological evaluation of 8-hydroxy-2,7-naphthyridin-2-ium salts as novel inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). M. Schiedel, A. Fallarero, C. Luise, W. Sippl, P. Vuorela, M. Jung. MedChemComm 8 (2017), 465-470. https://doi.org/10.1039/C6MD00647G. Impact factor: 2.342
  38. Aminothiazoles as potent and selective Sirt2 inhibitors: A structure-activity relationship study. M. Schiedel, T. Rumpf, B. Karaman, A. Lehotzky, J. Oláh, S. Gerhardt, J. Ovádi, W. Sippl, O. Einsle, M. Jung. J. Med. Chem. 59 (2016), 1599-1612. https://doi.org/10.1021/acs.jmedchem.5b01517. Impact factor: 6.259
  39. A continuous, fluorogenic sirtuin 2 deacylase assay: substrate screening and inhibitor evaluation. I. Galleano, M. Schiedel, M. Jung, A.S. Madsen, C.A. Olsen. J. Med. Chem. 59 (2016), 1021-1031. https://doi.org/10.1021/acs.jmedchem.5b01532. Impact factor: 6.259
  40. Structure-based development of an affinity probe for sirtuin 2. M. Schiedel, T. Rumpf, B. Karaman, A. Lehotzky, S. Gerhardt, J. Ovádi, W. Sippl, O. Einsle, M. Jung. Angew. Chem. Int. Ed. 55 (2016), 2252-2256. https://doi.org/10.1002/anie.201509843. Strukturbasierte Entwicklung einer Affinitätssonde für Sirtuin 2. Angew. Chem. 128 (2016), 2293-2297. https://doi.org/10.1002/ange.201509843. Impact factor: 11.994
  41. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. T. Rumpf, M. Schiedel, B. Karaman, C. Roessler, B.J. North, A. Lehotzky, J. Oláh, K.I. Ladwein, K. Schmidtkunz, M. Gajer, M. Pannek, C. Steegborn, D.A. Sinclair, S. Gerhardt, J. Ovádi, M. Schutkowski, W. Sippl, O. Einsle, M Jung. Nat. Commun. 6 (2015), 6263. https://doi.org/10.1038/ncomms7263. Impact factor: 11.329
  42. Fluorescence-based screening assays for the NAD⁺-dependent histone deacetylase smSirt2 from Schistosoma mansoni. M. Schiedel, M. Marek, J. Lancelot, B. Karaman, I. Almlöf, J. Schultz, W. Sippl, R.J. Pierce, C. Romier, M. Jung. J. Biomol. Screen. 20 (2015), 112-121. https://doi.org/10.1177/1087057114555307. Impact factor: 2.218
  43. Chromo-pharmacophores: photochromic diarylmaleimide inhibitors for sirtuins. Falenczyk, M. Schiedel, B. Karaman, T. Rumpf, N. Kuzmanovic, M. Grøtli, W. Sippl, M. Jung, B. König. Chem. Sci. 5 (2014), 4794-4799. https://doi.org/10.1039/C4SC01346H. Impact factor: 9.211

Other publications

  1. Patent: Pharmaceutical agent against Amoeba infections. S. Reichl, M. Schiedel, T. Rimkus. (2025), EP25187565.4.
  2. Front Cover: Development of a NanoBRET Assay Platform to Detect Intracellular Ligands for the Chemokine Receptors CCR6 and CXCR1. ChemMedChem 20 (2024), 19, e202482001. https://doi.org/10.1002/cmdc.202482001.

  3. Introducing Matthias Schiedel, Angew. Chem. Int. Ed., 61 (2021), e202200131. https://doi.org/10.1002/anie.202200131.
  4. Front Cover: Validation of the Slow Off-Kinetics of Sirtuin-Rearranging Ligands (SirReals) by Means of Label-Free Electrically Switchable Nanolever Technology. ChemBioChem 21 (2020), 8. https://doi.org/10.1002/cbic.202000190.
  5. Epigenetiker treffen sich in Freiburg. [Epigeneticists meet up in Freiburg.] M. Schiedel, M. Jung, Nachr. Chem. 64 (2016), 904. https://doi.org/10.1002/nadc.20164054947.
  6. Epigenetische Wirkstoffforschung. [Epigenetic drug discovery.] M. Schiedel, M. Jung, Nachr. Chem. 62 (2014), 302-306. https://doi.org/10.1002/nadc.201490087.
  7. Resveratrol ist zurück! [Resveratrol is back!] M. Schiedel, M. Jung, Pharmakon. 1 (2013), 446‑448.
  8. Fehlregulation der Histon‐Acetylierung als molekulare Grundlage der Demenzentwicklung. [Dysregulation of histone acetylation as a molecular basis for the development of dementia.] M. Schiedel, M. Jung, Pharm. Unserer Zeit 40 (2011), 297-299. https://doi.org/10.1002/pauz.201190039.
  9. HIV‐1‐Eradikation durch “shock & kill”‐ [HIV-1 eradication with the “shock and kill” strategy.] M. Schiedel, Pharm. Unserer Zeit 39 (2010), 171-173. https://doi.org/10.1002/pauz.201090026.