Technische Universität Braunschweig
  • Study & Teaching
    • Beginning your Studies
      • Prospective Students
      • Degree Programmes
      • Application
      • Fit4TU
      • Why Braunschweig?
    • During your Studies
      • Fresher's Hub
      • Term Dates
      • Courses
      • Practical Information
      • Beratungsnavi
      • Additional Qualifications
      • Financing and Costs
      • Special Circumstances
      • Health and Well-being
      • Campus life
    • At the End of your Studies
      • Discontinuation and Credentials Certification
      • After graduation
      • Alumni
    • For Teaching Staff
      • Strategy, Offers and Information
      • Learning Management System Stud.IP
    • Contact
      • Study Service Centre
      • Academic Advice Service
      • Student Office
      • Career Service
  • Research
    • Research Profile
      • Core Research Areas
      • Clusters of Excellence at TU Braunschweig
      • Research Projects
      • Research Centres
      • Professors‘ Research Profiles
    • Early Career Researchers
      • Support in the early stages of an academic career
      • PhD-Students
      • Postdocs
      • Junior research group leaders
      • Junior Professorship and Tenure-Track
      • Habilitation
      • Service Offers for Scientists
    • Research Data & Transparency
      • Transparency in Research
      • Research Data
      • Open Access Strategy
      • Digital Research Announcement
    • Research Funding
      • Research Funding Network
      • Research funding
    • Contact
      • Research Services
      • Academy for Graduates
  • International
    • International Students
      • Why Braunschweig?
      • Degree seeking students
      • Exchange Studies
      • TU Braunschweig Summer School
      • Refugees
      • International Student Support
      • International Career Service
    • Going Abroad
      • Studying abroad
      • Internships abroad
      • Teaching and research abroad
      • Working abroad
    • International Researchers
      • Welcome Support for International Researchers
      • Service for Host Institutes
    • Language and intercultural competence training
      • Learning German
      • Learning Foreign Languages
      • Intercultural Communication
    • International Profile
      • Internationalisation
      • International Cooperations
      • Strategic partnerships
      • International networks
    • International House
      • About us
      • Contact & Office Hours
      • News and Events
      • International Days
      • 5th Student Conference: Internationalisation of Higher Education
      • Newsletter, Podcast & Videos
      • Job Advertisements
  • TU Braunschweig
    • Our Profile
      • Aims & Values
      • Regulations and Guidelines
      • Alliances & Partners
      • The University Development Initiative 2030
      • Facts & Figures
      • Our History
    • Career
      • Working at TU Braunschweig
      • Vacancies
    • Economy & Business
      • Entrepreneurship
      • Friends & Supporters
    • General Public
      • Check-in for Students
      • CampusXperience
      • The Student House
      • Access to the University Library
    • Media Services
      • Communications and Press Service
      • Services for media
      • Film and photo permits
      • Advices for scientists
      • Topics and stories
    • Contact
      • General Contact
      • Getting here
  • Organisation
    • Presidency & Administration
      • Executive Board
      • Designated Offices
      • Administration
      • Committees
    • Faculties
      • Carl-Friedrich-Gauß-Fakultät
      • Faculty of Life Sciences
      • Faculty of Architecture, Civil Engineering and Environmental Sciences
      • Faculty of Mechanical Engineering
      • Faculty of Electrical Engineering, Information Technology, Physics
      • Faculty of Humanities and Education
    • Institutes
      • Institutes from A to Z
    • Facilities
      • University Library
      • Gauß-IT-Zentrum
      • Professional and Personnel Development
      • International House
      • The Project House of the TU Braunschweig
      • Transfer Service
      • University Sports Center
      • Facilities from A to Z
    • Equal Opportunity Office
      • Equal Opportunity Office
      • Family
      • Diversity for Students
  • Search
  • Quicklinks
    • People Search
    • Webmail
    • cloud.TU Braunschweig
    • Messenger
    • Cafeteria
    • Courses
    • Stud.IP
    • Library Catalogue
    • IT Services
    • Information Portal (employees)
    • Link Collection
    • DE
    • EN
    • Instagram
    • YouTube
    • LinkedIn
    • Mastodon
    • Bluesky
Menu
  • Organisation
  • Faculties
  • Faculty of Mechanical Engineering
  • Institutes
  • Institute for Particle Technology
  • Research
Logo des Instituts für Partikeltechnik
Battery Process Engineering
  • Battery Process Engineering
    • Current research projects
    • Completed projects

Battery Process Engineering

BatVt_Beschichtung

Team Leader: Dr. rer. nat. Peter Michalowski

The Working Group Battery Process Engineering at the Institute for Particle Technology (iPAT) deals with procedural aspects of electrochemical storage technologies, from basic research to process and manufacturing technology of the industrial production of electrodes. The thematic focus can therefore be well captured by the term “battery process technology.” „Battery LabFactory Braunschweig (BLB)“

 

Mixing and Dispersing

At the beginning of the classical battery process technology the powdery components are mixed and dispersed to obtain a suspension suitable for coating. The suspension consists of various active materials, inactive components (conductive carbon black, conductive additives, binders) and a solvent. The aim of mixing is to homogeneously mix and pre-structure the powdery components. The dispersion process serves to disperse the powders within the solvent and to specifically disperse the conductive carbon black particles in order to achieve defined power and energy properties inside the cell.

 

Coating and Drying

After the production of the suspensions for anodes and cathodes, these are applied to conductive films with layer thicknesses of 10-20 µm using a wet coating process via an application tool. These composite films already represent an electrode which is further processed in following process steps. In the industrial series production of electrodes, a continuous slot die process is used, which is usually followed by a convection drying step. The wet film thickness ranges from 150 to 300 µm and results in a dry film thickness of more than 100 µm. Compared to coating, drying represents the speed-determining production process. Typically, the drying time is approx. 1-2 minutes. The duration depends in particular on the thickness of the coating, the solids content of the suspension and the solvent used. At the end of these processes, several hundred meters of so-called electrode coils are wound onto a coil core and are ready for calendering.

 

Calendering

Continuous roller compaction is referred to as calendaring. This involves calendering the previously produced electrodes to a specific target density. Structural properties such as the porosity, adhesive strength or conductivity of the electrode and thus the electrochemical performance are significantly influenced. In addition, a homogenization of the layer thickness is achieved, which is of great importance for the subsequent stacking process.

 

Cell Construction and Electrochemical Charaterization

Within the production of lithium-ion batteries, cell construction with the previously manufactured electrodes and electrochemical characterization are at the end of the process chain. This shows that the total of all individual, previous process steps has an influence on the electrochemical performance of an electrode in a battery cell. The electrochemical characterization mainly includes stress tests during charging and discharging of the cells. These test cycles show how good and how much electrical charge can be stored and extracted again in the battery depending on the level of the flowing electrical current. The slow diffusion of lithium at high current densities limits the inter- and decalcification processes of lithium into the active materials. At the same time, high electrical conductivity must be ensured. These limiting factors have to be identified and minimized by suitable methods within the process chain.

 

Recycling and Battery Safety

The increasing demand for lithium-ion batteries (LIB), caused by the growth of the e-mobility industry, has created the need for a sustainable recycling process for used batteries Production committees. Ideally, the battery materials should be recovered in the highest quality with minimum effort in order to realize their direct re-use as battery materials. Especially in the field of valuable battery active materials, such a procedure is economically and ecologically beneficial. For this reason, an intelligent recycling process for all valuable battery ingredients is being developed in the battery process engineering working group.
During the use of a battery, various abusive external stresses, or even production errors can cause unwanted reactions within the cell, which can abruptly convert the stored electrical energy into thermal energy and result in a thermal runaway. Therefore, safety investigations are carried out in order to better understanding the processes of the thermal runaway as well as to increase the significance and reproducibility of the current test procedures and to streamline them through standardization, so that the conditions for testing and approval in the lead markets (China, EU, USA) can be harmonized.

 

Simulation

The performance of a lithium-ion battery depends very much on the mechanical properties of the individual electrodes. Not only the properties of the entire electrode must be considered, but also the behavior of individual particles. The Discrete Element Method (DEM) offers the possibility to simulate the mechanical behaviour at particle level to understand processes within the electrode which are not or only partially accessible by experiments. The simulation represents the mechanical stress within an electrode, which is caused by volume expansions during lithium intercalation, as well as the behaviour during manufacturing processes such as calendering or winding of a round cell. Individual areas within the electrode can be studied separately and predictions about the adhesion of the particles to each other and to the substrate are possible.

 

Photo credits on this page

For All Visitors

Vacancies of TU Braunschweig
Career Service' Job Exchange 
Merchandising

For Students

Term Dates
Courses
Degree Programmes
Information for Freshman
TUCard

Internal Tools

Glossary (GER-EN)
Change your Personal Data

Contact

Technische Universität Braunschweig
Universitätsplatz 2
38106 Braunschweig

P. O. Box: 38092 Braunschweig
GERMANY

Phone: +49 (0) 531 391-0

Getting here

© Technische Universität Braunschweig
Legal Notice Privacy Accessibility

TU Braunschweig uses the software Matomo for anonymised web analysis. The data serve to optimise the web offer.
You can find more information in our data protection declaration.