TU BRAUNSCHWEIG

Machine Learning for Computer Security

Overview

Semester: Summer 2017
Course type: Lecture & Exercises,
Lecturer: Prof. Dr. Konrad Rieck
Assistants: Alwin Maier
Audience: Informatik Master, Wirtschaftsinformatik Master
Credits: 5 ECTS
Hours: 2+2
Time: Lecture: Tuesday, 9:45 - 11:15 (Start: 04.04.17)
Exercises: Wednesday, 9:45 - 11:15 (Start: 12.04.17)
Place: Lecture: BRICS 45
Exercises: BRICS 45

Schedule

 Date   Topic   Slides   Sheets 
 04.04.   Introduction        
 11.04.   Machine Learning in a Nutshell         
 18.04.   Tutorial: Numpy and Scipy         
 25.04.   Features and Feature Spaces         
 02.05.   Besuch der Nds. Staatskanzlei       
 09.05.   Learning-based Intrusion Detection 1         
 16.05.   Learning-based Intrusion Detection 2         
 23.05.   Deep Learning for Malware Analysis         
 30.05.   Automatic Signature Generation         
 06.06.   No lecture – Excursion week       
 13.06.   Intelligent Vulnerability Discovery         
 20.06.   Clustering Methods for Malware Analysis         
 27.06.   Privacy Attacks using Machine Learning        
 04.07.   Adversarial Machine Learning        
 11.07.   Wrap-Up and Outlook (Theses Topics)        
 28.07.   Written exam 12:00-14:30 in PK 2.1       

Description

The lecture is concerned with the combination of machine learning and computer security. Many tasks in computer security, such as the analysis of malicious software or the discovery of vulnerabilities, largely rest on manual work. A tedious and time-consuming process. Methods from machine learning and data mining can help to accelerate this process and make security systems more 'intelligent'. The lecture explores different approaches for constructing such learning-based security systems.

Mailing List

There is a mailing list for the lecture. News and updates regarding the schedule are posted to this list. Furthermore, the list allows students to discuss topics of the lecture. You can subscribe here.

Contact

The lecture is organized by the Institute of System Security. For questions and further details please contact

Written exam

The written exam takes place on 28.07. from 12:00-14:30 in rooms PK 2.1. Please do not bring any additional material to the exam.

Results

 #   PIN Code   Points   Percentage   Grade 
 1.   1529   40.00    76.9%   2.3 
 2.   1857   51.00    98.1%   1.0 
 3.   3726   42.00    80.8%   2.0 
 4.   5338   44.50    85.6%   1.7 
 5.   6594   42.00    80.8%   2.0 
 6.   7363   37.00    71.2%   2.7 
 7.   7450   41.50    79.8%   2.3 


References

  • Duda, Hart and Stork. Pattern Classification. Wiley & Sons 2001
  • Shawe-Taylor & Cristianini. Kernel Methods for Pattern Analysis. Cambridge 2004
  • Gollmann. Computer Security. Wiley & Sons, 2011
  • Szor. The Art of Computer Virus Research and Defense. Addison-Wesley, 2005
  • Rieck. Machine Learning for Application-Layer Intrusion Detection, Lulu 2009
  • More references will be announced in each lecture

  aktualisiert am 04.10.2017
TU_Icon_E_Mail_1_17x17_RGB Zum Seitenanfang