TU BRAUNSCHWEIG

Nanopartikel Characterization (NP2)

 

 

About

 

Welcome to the website of the Junior Research Group “Nanoparticle Characterization”!

Our team is currently comprised of members from the Institute for Electrical Measurements and Fundamental Electrical Engineering (EMG), Institute of Semiconductor Technology (IHT) and the Institute of Theoretical Physics, Solid-State Theory Division (FKT).

We are involved with the metrological characterization of nanoparticles. The research aim of the NP2 group is the development of traceable measurement techniques for the characterization of nanoscale particles. We are especially interested in magnetic and nano-mechanic detection methods.

 

 

Research

 

The research topics of the Junior Research Group “Nanoparticle Characterization” are:

 

Institute for Electrical Measurements and Fundamental Electrical Engineering (EMG)

The EMG is focused on the characterization of magnetic nanoparticles (MNP) with dynamic magnetic characterization methods, the application of MNPs for bio analytics and as a tracer for tomographic imaging. The work aims at a traceable characterization of nanoparticles, a reduction of measurement uncertainties (measurement techniques and modelling) and detection/quantification limits, as well as the correlation of geometric and magnetic properties of the nanoparticles.

 

Institute of Semiconductor Technology (IHT)

sinanosaeule

The IHT develops nano-scales based on MEMS/NEMS technology. A frequency shift (piezo-electric effect) of in-plane resonant cantilevers is used for the sensitive detection of various nanoparticles. The goal is the development of a mass-sensitive, direct read-out, miniaturized and integrated detection system for individual nanoparticles.

 

Institute of Theoretical Physics, Solid-State Theory Division (FKT)

heisenbergkette

The FKT works at the crossover of quantum-mechanical and classical behavior of magnetic nanoobjects (< 5 nm, very low anisotropy) in order to better understand low-dimensional quantum magnets. We chose quantum Monte Carlo simulations as the tool for investigating the ground state, thermodynamics and dynamic magnetism of nanoscale magnets.

 

 

Members

 

Institute of/for ...
Kontakt

Head

Dr.-Ing. Thilo Viereck

Electrical Measurements t.viereck@tu-bs.de
 

PhD Students

Maik Bertke, M. Sc. Semiconductor Technology m.bertke@tu-bs.de
Niklas Casper, M. Sc. Theoretical Physics n.casper@tu-bs.de

 

 

 

 

Publications

 

» Journals  


Erwin Peiner, Maik Bertke (IHT)

Phase optimization of thermally-actuated piezoresistive resonant MEMS cantilever sensors
A. Setiono, M. Fahrbach, J. Xu, M. Bertke, W. O. Nyang’au, G. Hamdana, H. S. Wasisto, and E. Peiner
Journal of Sensors and Sensor Systems (JSSS) (submitted, under review)

Fabrication of ZnO nanorods and Chitosan ZnO nanorods on MEMS piezoresistive self-actuating silicon microcantilever for humidity sensing
J Xu, M Bertke, X Li, H Mu, H Zhou, F Yu, G Hamdana, A Schmidt, H. Bremers, and E. Peiner
Sensors and Actuators B: Chemical 273, 276-287 - 2018
https://doi.org/10.1016/j.snb.2018.06.017

Large area conrtact resonance spectroscopy mapping system for on-the-machine measurements
M. Bertke, M. Fahrbach, G.Hamdana, H. S. Wasisto, and E. Peiner
2018 IEEE MEMS, pp. 897-900 - 2018
https://doi.org/10.1109/MEMSYS.2018.8346701

Contact resonance spectroscopy for on-the-machine manufactory monitoring
M. Bertke, M. Fahrbach, G. Hamdana, J. Xu, H. S. Wasisto, and E. Peiner
Sensors and Actuators A 279, 501-508 - 2018
https://doi.org/10.1016/j.sna.2018.06.012

Analysis of asymmetric resonance response of thermally excited silicon micro-cantilevers for mass-sensitive nanoparticle detection
M. Bertke, G. Hamdana, W. Wu, H. S. Wasisto, E. Uhde, and E. Peiner
J. Micromech. Microeng. 27, 064001 (10pp) - 2017
https://doi.org/10.1088/1361-6439/aa6b0d

Asymmetric resonance response analysis of a thermally excited silicon microcantilever for mass-sensitive nanoparticle detection
M. Bertke, G. Hamdana, W. Wu, M. Marks, H. S. Wasisto, and E. Peiner
Proc. SPIE 10246, Smart Sensors, Actuators, and MEMS VIII, 102460K - 2017
https://doi.org/10.1117/12.2266084

Size-Selective Electrostatic Sampling and Removal of Nanoparticles on Silicon Cantilever Sensors for Air-Quality Monitoring
M. Bertke, W. Wu, H. S. Wasisto, E. Uhde, and E. Peiner
19th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2017) pp. 1493-1496 - 2017
https://doi.org/10.1109/TRANSDUCERS.2017.7994342

Piezo Resistive Read-Out Contact Resonance Spectroscopy for Material and Layer Analysis at High-Aspect-Ratio Geometries
M. Bertke, U. Wobeto Reinheimer, M. Fahrbach, G. Hamdana, H. S. Wasisto, and E. Peiner
Eurosensors Proceedings 2017. 1. 371, pp 5 - 2017
https://doi.org/10.3390/proceedings1040371

Gravimetric humidity sensor based on ZnO-nanorods covered piezoresistive Si microcanitlever
J. Xu, M. Bertke, X. Li, A. Gad, H. Zhou, H. S. Wasisto, and E. Peiner
Proc. SPIE 10246, Smart Sensors, Actuators, and MEMS VIII, 102460C - 2017
https://doi.org/10.1117/12.2264897

Fabrication of ZnO nanorods on MEMS piezoresistive silicon microcantilevers for environmental monitoring
J. Xu, M. Bertke, A. Gad, F. Yu, G. Hamdana, A. Bakin, and E. Peiner
Proceedings 2017, 1, 290 - 2017
https://doi.org/10.3390/proceedings1040290



Wolfram Brenig, Niklas Casper (IThP - FKT)

Angelo Pidatella, Alexandros Metavitsiadis and Wolfram Brenig
Heat transport in the anisotropic Kitaev spin liquid
Preprint cond-mat arXiv:1810.04674

Alexandros Metavitsiadis, Christina Psaroudaki, and Wolfram Brenig
Spin liquid fingerprints in the thermal transport of a Kitaev-Heisenberg ladder
Preprint cond-mat arXiv:1806.02344

Richard Hentrich, Maria Roslova, Anna Isaeva, Thomas Doert, Wolfram Brenig, Bernd Büchner, and Christian Hess
Large Thermal Hall Effect in α-RuCl3: Evidence for Heat Transport by Kitaev-Heisenberg Paramagnons
Preprint cond-mat arXiv:1803.08162

Urban F. P. Seifert, Julian Gritsch, Erik Wagner, Darshan G. Joshi, Wolfram Brenig, Matthias Vojta, and Kai P. Schmidt
Bilayer Kitaev models: Phase diagrams and novel phases
Phys. Rev. B 98, 155101 (2018)
http://dx.doi.org/10.1103/PhysRevB.98.155101

Richard Hentrich, Anja U. B. Wolter, Xenophon Zotos, Wolfram Brenig, Domenic Nowak, Anna Isaeva, Thomas Doert, Arnab Banerjee, Paula Lampen-Kelley, David G. Mandrus, Stephen E. Nagler, Jennifer Sears, Young-June Kim, Bernd Büchner, Christian Hess
Large field-induced gap of Kitaev-Heisenberg paramagnons in α-RuCl3,
Phys. Rev. Lett. 120, 117204 (2018).
http://dx.doi.org/10.1103/PhysRevLett.120.117204



Thilo Viereck (EMG)

Magnetic Relaxation Study of Agglomerated and Immobilized Magnetic IronOxide Nanoparticles for Hyperthermia and Imaging Applications
Ulrich M. Engelmann, Eva Miriam Buhl, Sebastian Draack, Thilo Viereck, Frank Ludwig, Thomas Schmitz-Rode, and Ioana Slabu
IEEE Magn. Lett. (revised)

A Novel Characterization Technique for Superparamagnetic Iron Oxide Nanoparticles:
the Superparamagnetic Quantifier, Compared with Magnetic Particle Spectroscopy
Melissa van de Loosdrecht, Sebastian Draack, Sebastiaan Waanders, Jeroen Schlief, Erik Krooshoop, Thilo Viereck, Frank Ludwig, and Bennie ten Haken
Rev. Sci. Instrum. (revised)

Determination of dominating relaxation mechanisms from temperatur-dedependent Magnetic Particle Spectroscopy measurements
Sebastian Draack, Thilo Viereck, Felix Nording, Klaas-Julian Janssen, Meinhard Schilling, and Frank Ludwig
J. Magn. Magn. Mater., MAGMA - 2018 (in revision)

Multi-spectral Magnetic Particle Spectroscopy for the investigation of particle mixtures
Thilo Viereck, Sebastian Draack, Meinhard Schilling, Frank Ludwig
J. Magn. Magn. Mater., MAGMA - 2018 (in revision)

MDF: Magnetic Particle Imaging Data Format
T. Knopp, T. Viereck, G. Bringout, M. Ahlborg, A. von Gladiss, C. Kaethner, A. Neumann, P. Vogel, J. Rahmer, and M. Möddel
ArXiv 1602.06072v6 1-15 - 2018
http://arxiv.org/abs/1602.06072v6

Dual-frequency magnetic particle imaging of the Brownian particle contribution
Thilo Viereck, Christian Kuhlmann, Sebastian Draack, Meinhard Schilling, Frank Ludwig
J. Magn. Magn. Mater., Volume 427, page 156--161 - 2017
http://dx.doi.org/10.1016/j.jmmm.2016.11.003

Effect of alignment of easy axes on dynamic magnetization of immobilized magnetic nanoparticles
Takashi Yoshida, Yuki Matsugi, Naotaka Tsujimara, Teruyoshi Sasayama, Keiji Enpuku, Thilo Viereck, Meinhard Schilling, and Frank Ludwig
J. Magn. Magn. Mater., Volume 427, page 162--167 - 2017
http://dx.doi.org/10.1016/j.jmmm.2016.10.040

Size analysis of single-core magnetic nanoparticles
Frank Ludwig, Christoph Balceris, Thilo Viereck, Oliver Posth, Uwe Steinhoff, Helena Gavilan, Rocio Costo, Maria del Puerto Morales Lunjie Zeng, Eva Olsson, Christian Jonasson, and Christer Johansson
J. Magn. Magn. Mater., Volume 427, page 19--24 - 2017
http://dx.doi.org/10.1016/j.jmmm.2016.11.113

Temperature-dependent MPS measurements
Sebastian Draack, Thilo Viereck, Christian Kuhlmann, Meinhard Schilling, and Frank Ludwig
Internat. Journal on Magnetic Particle Imaging, Volume 3, Number 1 - 2017
http://dx.doi.org/10.18416/ijmpi.2017.1703018

Magnetic Particle Imaging - Applications of magnetic nanoparticles for analytics and imaging
Thilo Viereck
Dissertation TU Braunschweig, ISBN: 978 3 86387 739 2
http://www.digibib.tu-bs.de/?docid=00064032

 

 

 

Contact

 

Thilo Viereck

Dr.-Ing. Thilo Viereck

Technische Universität Braunschweig,
Laboratory for Emerging Nanometrology (LENA),
Institute for Electrical Measurements and Fundamental Electrical Engineering,
QUANOMET Nachwuchsforscher-Gruppe NP2 „Nanopartikel-Charakterisierung”

Hans-Sommer-Str. 66, D-38106 Braunschweig,
Phone: +49 (0) 531 391-3860
Email: t.viereck@tu-bs.de

 

 

 

 

 


  last changed 14.01.2019
TU_Icon_E_Mail_1_17x17_RGB pagetop