Veröffentlichung

Diekhake, P.:
Systematische Modellierung und Analyse verteilter Automatisierungssysteme.
Dissertation, Technische Universität Braunschweig, Mai 2016.

Kurzfassung:

Aufgrund der verbesserten Leistungsfähigkeit und der sinkenden Kosten von Kleinrechnern werden Steuerungseinheiten heute überwiegend dezentral in Verbünden organisiert. Zwar bieten solche verteilten Systeme die notwendige Flexibilität, um die steigenden Anforderungen - z. B. einen erhöhten Funktionsumfang - erfüllen zu können, sie bringen aber auch viele Herausforderungen mit sich. Während der Entwicklungsprozess verteilter Automatisierungssysteme mittels einer durchgängigen Werkzeugkette unterstützt wird, erfolgen die Analysetätigkeiten zumeist isoliert und fokussiert auf eine konkrete Problemstellung innerhalb einer Lebenszyklusphase. Schwerpunkt der vorliegenden Arbeit ist daher eine Vorgehensweise zur systematischen und vereinheitlichten Analyse von verteilten Automatisierungssystemen. Die Anwendung der erarbeiteten Methodik erfolgt mittels strukturierter Modellierung und Modellausführung am Beispiel eines verteilten Gebäudeautomatisierungssystems. Ein wesentlicher Bestandteil des Vorgehens ist die Bereitstellung einer verständlichen und gleichzeitig detaillierten Beschreibung des zu analysierenden Systems über ein Systemmodell. Das Modell dient der Wissensrepräsentation und stellt die Basis für nachfolgende Analysen zur Ermittlung (nicht-)funktionaler Eigenschaften dar, indem es das Fundament weiterführender Analysemodelle skizziert. Die Analysemodelle werden im weiteren Verlauf der Arbeit vorgestellt und mathematisch beschrieben. Die nach deren Ausführung der Modelle gewonnenen Analyseergebnisse werden dargestellt und zur Wissensanreicherung in das wissensbeschreibende Systemmodell zurückgeführt. Nichtfunktionale Eigenschaften wurden u. a. mit Hilfe von Simulationsmodellen am Beispiel folgender Problemstellungen aus der Entwurfsphase analysiert:  Eine mögliche Degradation der Signalqualität eines maximal ausgedehnten Bitübertragungssystems wurde untersucht und bewertet.  Die durch physikalisch bedingte Kommunikationsprozesse zwischen verteilten Gerätekomponenten und durch Zyklusübergänge zwischen verteilten Programmkomponenten verursachten Verzögerungszeiten wurden bestimmt. Weiterhin wurden für zwei Beispielsysteme die Eigenschaften der Beobachtbarkeit und der Steuerbarkeit ermittelt, wodurch die Grundlage für eine abschließende OnlineAnalyse geschaffen wurde. Eine Petrinetzumgebung, die eine direkte Anbindung an ein Realsystem erlaubt und damit eine Testausführung während der Inbetriebnahme bzw. eine Laufzeitanalyse im operativen Betrieb des Systems ermöglicht, wird vorgestellt.