TU BRAUNSCHWEIG

Henning Urbat

Institut für Theoretische Informatik

Technische Universität Braunschweig

Mühlenpfordtstr. 22-23

38106 Braunschweig

Office: IZ 272

Phone: +49-531-391-3251

Mail: h.urbat@tu-bs.de


I am a researcher (Wissenschaftlicher Mitarbeiter) in the Institute of Theoretical Computer Science at TU Braunschweig. My current research focuses on categorical and coalgebraic approaches to automata theory, including minimization of nondeterministic automata and duality theory for formal languages.

Publications

  1. Henning Urbat, Jirí Adámek, Liang-Ting Chen, Stefan Milius:
    Eilenberg Theorems for Free. [EATCS Best paper award]
    Proc. 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs). [ArXiv]
  2. Henning Urbat:
    Finite Behaviours and Finitary Corecursion.
    Proc. 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017), Leibniz International Proceedings in Informatics (LIPIcs)
  3. Liang-Ting Chen, Henning Urbat:
    Schützenberger Products in a Category.
    Proc. Developments in Language Theory (DLT 2016), 89-101
  4. Jirí Adámek, Liang-Ting Chen, Stefan Milius, Henning Urbat:
    Profinite monads, profinite equations, and Reiterman's theorem.
    Proc. Ninteenth International Conference on Foundations of Software Science and Computation Structures (FOSSACS 2016), 531-547
  5. Jirí Adámek, Stefan Milius, Robert Myers, Henning Urbat:
    Varieties of languages in a category.
    Proc. 30th Annual Symposium on Logic in Computer Science (LICS 2015), pp. 414-425, IEEE 2015
  6. Jirí Adámek, Stefan Milius, Henning Urbat:
    Syntactic monoids in a category. [Best paper award]
    Proc. 6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015)Leibniz International Proceedings in Informatics (LIPIcs)
  7. Liang-Ting Chen, Henning Urbat:
    A fibrational approach to automata theory.
    Proc. 6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015), Leibniz International Proceedings in Informatics (LIPIcs)
  8. Jirí Adámek, Stefan Milius, Robert Myers, Henning Urbat:
    Coalgebraic constructions of canonical nondeterministic automata.
    Journal version of CMCS 2014 conference paper below. To appear in Theor. Comp. Sci., 2015
  9. Jirí Adámek, Stefan Milius, Lawrence S. Moss, Henning Urbat:
    On finitary functors and their presentation.
    J. Comput. System Sci., vol. 81 (5), pp. 813-833, 2015
  10. Jirí Adámek, Stefan Milius, Robert Myers, Henning Urbat:
    On continuous nondeterminism and state minimality.
    Proc. 30th Conference on Mathematical Foundations of Programming Semantics (MFPS 2014)Electron. Notes Theor. Comput. Sci., vol. 308, pp. 3-23.
  11. Jirí Adámek, Stefan Milius, Robert Myers, Henning Urbat:
    Canonical nondeterministic automata.
    Proc. Twelfth International Workshop on Coalgebraic Methods in Computer Science (CMCS 2014), Lecture Notes Comput. Sci., vol. 8446, pp. 189-210.
  12. Jirí Adámek, Stefan Milius, Robert Myers, Henning Urbat:
    Generalized Eilenberg Theorem I: Local varieties of languages.
    Proc. Seventeenth International Conference on Foundations of Software Science and Computation Structures (FOSSACS 2014), Lecture Notes Comput. Sci. (ARCoSS), vol. 8412, pp. 366-380.
  13. Robert Myers, Henning Urbat:
    A characterisation of NL/poly via nondeterministic finite automata.
    Proc. Descriptional Complexity of Formal Systems (DCFS 2013), Lecture Notes Comput. Sci., vol. 8031, pp. 194-204


Scientific talks

  1. Finite Behaviours and Finitary Corecursion.
    Algebra and Coalgebra in Computer Science (CALCO) 2017, Ljubljana, Slovenia, June 2017
  2. Eilenberg-Reiterman theory for a Monad.
    Logic Colloquium 2017, Leeds, England, August 2016
  3. Schützenberger Products in a Category. 
    Developments in Language Theory (DLT) 2016, Montreal, Canada, July 2016
  4. Algebraic Language Theory = Monads + Duality. 
    Coalgebraic Methods in Computer Science (CMCS) 2016, Eindhoven, Netherlands, April 2016
  5. Algebraic Language Theory = Monads + Duality.
    PSSL 99, Braunschweig, Germany, March 2016
  6. Varieties of languages in a category.
    Logic in Computer Science (LICS) 2015, Kyoto, Japan, July 2015
  7. Syntactic monoids in a category.
    Algebra and Coalgebra in Computer Science (CALCO) 2015, Nijmegen, Netherlands, June 2015
  8. On continuous nondeterminism and state minimality.
    Mathematical Foundations of Programming Semantics (MFPS) 2014, Ithaca, United States, June 2014
  9. Canonical nondeterministic automata.
    Coalgebraic Methods in Computer Science (CMCS) 2014, Grenoble, France, April 2014
  10. A characterisation of NL/poly via nondeterministic finite automata.
    Descriptional Complexity of Formal Systems (DCFS) 2013, London, Canada, July 2013
  11. Two finitary functors.
    Dagstuhl seminar "Coalgebraic Logics", Schloss Dagstuhl, Germany, October 2012

  

Teaching (in German)

Winter term 2015/2016 Theoretical Computer Science 1 (Automata and languages)
Summer term 2015 Introduction to Logic
Winter term 2014/2015 Theoretical Computer Science 1 (Automata and languages)
Foundations of Formal Verification
Summer term 2014 Theoretical Computer Science 2 (Computability and Complexity)
Winter term 2013/2014 Theoretical Computer Science 1 (Automata and languages)
Summer term 2013 Theoretical Computer Science 2 (Computability and Complexity)
Winter term 2012/2013 Theoretical Computer Science 1 (Automata and languages)

  aktualisiert am 05.09.2017
TU_Icon_E_Mail_1_17x17_RGB Zum Seitenanfang