INSTITUT FÜR THEORETISCHE PHYSIK

Prof. Dr. Wolfram Brenig Erik Wagner

Thermodynamik und Quantenstatistik

WS 2019/20

3. Übungsblatt

Abgabe: Di, 12.11.2019 bis 11:30 Uhr, Kasten neben A316

Übungsblätter gibt es unter https://www.tu-bs.de/theophys/edu/wise-1920/thermo1920.

10. Wissensfragen (5 Punkte)

Bitte benennen Sie alle verwendeten Symbole und Größen.

- (a) Betrachten Sie $\rho(x_1, x_2, p_1, p_2) = \frac{1}{2a}\Theta(a |x_1|)\,\delta(x_2)\,\delta(p_1)\,\frac{1}{2b}\Theta(b |p_1|)$ mit $x_{1,2}, p_{1,2} \in \mathbb{R}$, a, b > 0, $\Theta(x)$ der Heaviside-Funktion und $\delta(x)$ der Delta-Funktion. Ist ρ eine klassische Verteilungsfunktion?
- (b) Betrachten Sie ein quantenmechanisches System mit drei Zuständen $|1\rangle$, $|2\rangle$ und $|3\rangle$. Ist ρ mit $\langle 1|\rho|1\rangle=1/2$, $\langle 2|\rho|2\rangle=1/3$, $\langle 3|\rho|3\rangle=1/4$ und $\langle a|\rho|b\rangle=0 \,\forall a\neq b$ ein statistischer Operator?
- (c) Was ist eine Zustandssumme?

11. Eigenschaften der Spur (5 Punkte)

(a) Zeigen Sie, dass für die Spur von zwei Matrizen A, B gilt:

$$Sp(AB) = Sp(BA)$$

(b) Zeigen Sie nun, dass für die Spur von drei Matrizen A, B, C gilt:

$$Sp(ABC) = Sp(CAB) = Sp(BCA)$$

- d. h. die Spur ist invariant unter zyklischer Vertauschung.
- (c) Zeigen Sie, dass die Spur basisunabhängig ist.

12. Zustandssumme und Zustandsdichte des idealen Gases (20 Punkte)

Wir betrachten die thermodynamischen Eigenschaften des idealen Gases. Dazu werden N wechselwirkungsfreie, ununterscheidbare Teilchen in einen Würfel der Kantenlänge L gesperrt. Zur Beschreibung des Würfels kann man sich ein Potential vorstellen, welches innerhalb des Würfels 0 und ausserhalb unendlich ist.

Berechnen Sie die **Zustandssumme** Z, **Zustandsdichte** $\Omega(E)$ und die **Zahl der Zustände** g(E) bis zur Energie E. Gehen Sie dabei wie folgt vor:

(a) Die N Teilchen und die dazugehörigen Phasenraumkoordinaten sind voneinander unabhängig (vgl. Annahmen) – es kann deshalb zunächst der Hamiltonoperator für ein Teilchen in einer Dimension betrachtet werden.

Geben Sie die Lösung der Wellenfunktion und der Energie an.

Bitte wenden! \rightarrow

(b) Berechnen Sie nun die Zustandssumme für N Teilchen in drei Dimensionen. Geben Sie das Ergbnis in Abhängigkeit der Teilchenzahl N, des Volumens $V=L^3$ und der thermischen Wellenlönge $\lambda=\sqrt{\frac{2\pi\hbar}{mk_BT}}$ an.

Hinweis: Es treten in der Aufgabe Gauß-Integrale $\int_{-\infty}^{\infty} e^{-x^2} dx$ auf. Diese können Sie nachschlagen oder für 2 Bonuspunkte selbst berechnen.

(c) Um die Anzahl der Zustände bis zur Energie E zu bestimmen, braucht man das Volumen einer 3N-dimensionalen Kugel.

Berechnen Sie dieses mit Hilfe folgendener Schritte:

- i. Schreiben Sie ein Volumenintegral in kartesischen Koordinaten über den Integranden 1 für eine Kugel mit Radius R in N Dimensionen auf. Dies ist das Volumen V_N einer N-dimensionalen Kugel.
- ii. Bringen Sie mithilfe einer Substitution das Volumenintegral aus (i) in die Form $V_N = R^N \cdot f(N)$.

Hinweis: Bringen Sie mit Hilfe der Substitutionen die Integrationsgrenzen der Integrale sukzessiv auf die Grenzen -1 bis +1.

iii. Berechnen Sie anschließend folgenden Ausdruck:

$$\int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{\infty} dx_2 ... \int_{-\infty}^{\infty} dx_N e^{-(x_1^2 + x_2^2 + ... + x_N^2)}$$

Wovon hängt der Integrand ab?

Sie können demnach die Integration über Kugelschalen ausführen, d.h.:

$$dV = dx_1...dx_N \rightarrow d(Kugelschale) dR$$

Überlegen Sie sich dazu, wie sich das Integral über die Kugelschale aus ihrem Ergebnis aus (ii) ableiten lässt.

Sie können die Überlegung mit dem Ihnen bekannten Fall aus dem \mathbb{R}^3 überprüfen.

iv. Eine Vereinfachung der auftretenden Integrale kann mit Hilfe der Γ -Funktion erreicht werden:

$$\Gamma(n) = \int_0^\infty \mathrm{d}x \, x^{n-1} e^{-x}$$

Nutzen Sie dies, um einen Ausdruck für f(N) aus (ii) zu erhalten.

v. Überprüfen Sie das Ergebnis für das Volumen V_3 einer Kugel im \mathbb{R}^3 mithilfe der Rekursionsformel für $\Gamma(n)$:

$$\Gamma(n+1) = n\Gamma(n); \qquad \Gamma(1/2) = \sqrt{\pi}$$

(d) Mithilfe des in Aufgabenteil (c) bestimmten Volumens einer *N*-dimensionalen Kugel können Sie das Phasenraumvolumen von 3*N* Variablen zu einer Energie *E* bestimmen. Es fehlt nur noch die obere Integrationsgrenze, also der Radius der 3*N*-dimensionalen Kugel dem die Energie *E* entsprechen muss.

Berechnen Sie damit die Zahl der Zustände g(E).

(e) Um letztlich die Zustandsdichte $\Omega(E)$ zu bestimmen, überlegen Sie sich, was die Zustandsdichte ist und wie sie mit g(E) in Beziehung steht.