Introduction to Scientific Computing:
 Test
 (Time 90 min, Total points 90)

Your Name and Id (Matr.-Number):

Exercise 1:

Consider the following spring-mass system with unit mass:

$$
\begin{equation*}
-\ddot{x}-d \dot{x}-k x=0 \tag{1}
\end{equation*}
$$

(a) Write as system of order 1 ODEs.
(b) Make Eigen decomposition of the system. Write down the general solution of the ODE system.
(c) Write down particular solution that matches the initial condition $x_{0}=1, \dot{x}_{0}=0$ at $t_{0}=0$. (3 points)
(d) What does the parameter d specify?

For which values of d is the system stable, for which asymtotically stable?

Exercise 2:

(a) Write down Euler-Forward scheme in general, its Butcher scheme and applied to the system from Task 1.a, using $d=0$ there for brevity.
(3 points)
(b) Which kind of numerical integration lies behind this method?
(2 points)
(c) Check the zero-stability of the general scheme.
(d) Is the numerical solution of the Euler-Forward scheme applied to the system from 1.a, $d=0$, stable for any h ?
(e) Check the absolute stability of the given numerical scheme - you may use result from 2.d. (3 points)

Exercise 3:

Consider the real function

$$
\begin{equation*}
x \longrightarrow f(x)=\tanh (x):=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}:=\frac{\sinh x}{\cosh x}, \tag{2}
\end{equation*}
$$

which is a sigmoid (s-shaped) function. Hint: Making sketches protects you from getting lost. The following is given as help: Using

$$
\begin{align*}
\sinh ^{\prime} x & =\cosh x \tag{3}\\
\cosh ^{\prime} x & =\sinh x \tag{4}
\end{align*}
$$

by quotient rule

$$
\tanh ^{\prime} x=\frac{\cosh ^{2} x-\sinh ^{2} x}{\cosh ^{2} x}=1-\tanh ^{2} x
$$

Both identities may be useful.
(a) Write down the Newton Solver to find the solution x^{*} of $f(x)=0$.
(b) Where may the starting value x_{0} lay such that the Newton iteration will converge? Precisely: Find the interval such that $f\left(x_{n}\right) \longrightarrow 0$ for $n \longrightarrow \infty$ for all x_{0} from that interval. Hint: Newtons method induces a difference equation $x_{n+1}=G\left(x_{n}\right)$ and x^{*} is a fixed point of it. Use Banachs Fixed-Point theorem on it.

Exercise 4:

Given two step Adams-Bashforth method

$$
y_{n+2}=y_{n+1}+h\left(\frac{3}{2} f\left(t_{n+1}, y_{n+1}\right)-\frac{1}{2} f\left(t_{n}, y_{n}\right)\right)
$$

(a) Prove that it is consistent.
(b) Determine its consistency order.
(c) Elaborate shortly what is the difference between global and local errors of a numerical scheme.

