

Technische Universität Braunschweig

Vortrag im Gästeprogramm des GRK 2075 Modelle für die Beschreibung der Zustandsänderung bei Alterung von Baustoffen MUSEN Kolloquium im Sommersemester 2019

Prof. Dr. Stefan Luding

Multiscale Mechanics - Faculty of Engineering Technology -University of Twente

From Discrete Particle Simulations Towards Continuum Theory and Application

Donnerstag, 09.05.2019, 16.45 Uhr Okerhochhaus, Seminarraum EG Pockelsstraße 3, 38106 Braunschweig

The dynamic behavior of particulate and granular matter – like sand, powder, suspended particles or molecules, often with a wide distribution of particle sizes – is of considerable interest in a wide range of industries and research disciplines since they can behave both solid-like and fluid-like. The related mechanisms/ processes in particle systems are active at multiple scales (from nano-meters to meters), and finding the reasons for, e.g., the reasons for natural disasters like avalanches or plant problems like silo-failure, is an essential challenge for both academia and industry.

In order to understand the fundamental micro-mechanics one can use particle simulation methods, where often the fluid between the particles is important too. However, large-scale applications (due to their enormous particle numbers) have to be addressed by coarse-grained models or by continuum theory. In order to bridge the gap between the scales, so-called micro-macro transition methods are necessary, which translate particle positions, velocities and forces into density-, stress-, and strain-fields. These macroscopic quantities must be compatible with the conservation equations for mass and momentum of continuum theory. Furthermore, nonclassical fields are needed to describe the micro-structure (fabric, force-chains) or the statistical fluctuations, e.g. of the kinetic energy, before one can reach the ultimate goal of solving application problems. Examples of multi-scale simulations, involving particle- and continuum-methods, are flows of particles/fluids in narrow channels/pores, dosing of cohesive fine powders in vending machines, avalanche flows on inclined slopes, segregation, rheology testing in

ring-shear cells, as well as the study of non-linear elastoplastic material mechanics related to the failure of cohesive, frictional solids [1-4].

Kontakt Graduiertenkolleg 2075

Technische Universität Braunschweig Beethovenstraße 51 38106 Braunschweig 0531 - 391-3668 grk-2075@tu-bs.de www.tu-braunschweig.de/grk-2075 MUSEN - Center for Mechanics, Uncertainty and Simulation in Engineering Technische Universität Braunschweig Pockelsstraße 3 38106 Braunschweig 0531 - 391-94351 MUSEN@tu-bs.de www.tu-braunschweig.de/musen