
Towards an Automatic Generation of
Low-Interaction Web Application Honeypots

Marius Musch
TU Braunschweig
m.musch@tu-bs.de

Martin Härterich
SAP Security Research

martin.haerterich@sap.com

Martin Johns
TU Braunschweig
m.johns@tu-bs.de

ABSTRACT
Low-interaction honeypots (LIHPs) are a well-established tool to
monitor malicious activities by emulating the appearance and be-
havior of a real system. However, existing honeypots share a com-
mon problem: Anyone aware of their existence can easily �nger-
print and subsequently avoid them.

In this paper, we present Chameleon, our work towards an
automatic generation of LIHPs for web applications. Chameleon
creates honeypot versions of existing systems through automatic
network interaction with the real application and builds response
templates from the observed response tra�c. By comparing simi-
lar responses, variable parts are identi�ed and imitated with these
templates. On run-time, the best matching template is chosen to
respond to an incoming network request. This approach allows a
large-scale deployment of Honeypots in a highly scalable fashion:
No manual e�ort is needed in honeypot generation and a single
instance of Chameleon can emulate a large number of hetero-
geneous systems simultaneously. Thus, a LIHP infrastructure for
a company’s full application landscape can be created, deployed
and operated automatically with little e�ort and minimal technical
resource requirements in a timely fashion.

We document our prototypical implementation for HTTP(S)
and our practical experiments with the generated honeypots in
the wild. The results are promising: The generated honeypots are
indistinguishable for popular �ngerprinting tools and the received
tra�c shows no di�erence to tra�c directed at real systems.

1 INTRODUCTION
Our networked world is growing steadily and fast. Nowadays, net-
worked applications are ubiquitous, ranging from small, single
purpose IoT devices, over outsourced cloud services, up to highly
complex business application landscapes. And all these systems
have one thing in common: They o�er public interfaces for po-
tentially untrusted parties to interact with, often in the form of
HTTP(S) servers.

Unfortunately, many of these systems are insecure, either due
to insecure con�guration, such as publicly known and unchanged
default passwords, or because of security vulnerabilities, both dis-
closed and zero-days. This poses a signi�cant challenge for security
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ARES 2018, Hamburg, Germany
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-6448-5/18/08. . . $15.00
DOI: 10.1145/3230833.3230839

professionals: It is often unknown which class of systems are cur-
rently targeted by malicious parties, until it is too late and the
community is surprised with large scale attacks, such as the mass-
compromise of web cams and DVRs in 2016 [4].

1.1 Problem Statement
Honeypots are a well-established tool to monitor malicious activi-
ties and to detect previously unknown attacks. However, operating
a real and intentionally vulnerable system, a so-called high inter-
action honeypot (HIHP), is both risky and time-consuming [7, 14]
and thus low-interaction honeypots (LIHP) are often used instead.
A LIHP is a dedicated networked application that emulates the
appearance and behavior of a real system by providing the same
public interfaces and exposing similar behavior, with the goal to
observe unsolicited malicious tra�c.

Still, even the set-up of a realistic LIHP is a non-trivial task,
especially in respect of concealing the honeypot nature of the tool.
LIHPs are particularly vulnerable to �ngerprinting, as the behavior
of the emulation might di�er from the real implementation. The
majority of web application honeypots, like HIHAT [13], DShield
[12] and GHH [5], only serve static websites, which enables e�cient
honeypot �ngerprinting by the attackers. Even more sophisticated
honeypots like Glastopf [15] can be detected by �ngerprinting
techniques, as shown by Sysman et al. [17].

Similar to a trap without camou�age, attackers can simply avoid
any honeypot they are aware of. Therefore, additional work to
create new, unique honeypot instances for each emulated system
is required [8]. Furthermore, to get a comprehensive insight in the
current attack landscape, it is necessary to emulate a large range
of systems and applications. However, creation and operation of
individual, non-trivial LIHPs is costly both in respect of required
manual e�ort and computational resources.

1.2 Chameleon
To address the outlined problem, we present Chameleon – an ap-
proach to automatically create LIHPs, emulating the pre-authentica-
tion surface of any given web server. Through comprehensive exam-
ination of the original system’s services and behavior, Chameleon
"learns" how the target systems reacts to various requests, espe-
cially in respect of static and dynamic ranges in the communication.
While the automated imitation of a program by pure observation
without knowledge of its inner workings is probably an impossible
task, we do not have to solve this problem in general. Our main
goal is merely to send plausible responses to requests sent by attack
tools. This simpli�es the problem, as exploit tools usually only use
a limited subset of all possible interactions [3].

Chameleon’s automatic generation allows for the quick creation
of LIHPs of many di�erent web applications, or of many di�erent

ARES 2018, August 27–30, 2018, Hamburg, Germany M. Musch, M. Härterich, and M. Johns

versions of the same application. While one speci�c instance of the
honeypot might still get �ngerprinted, identifying them all without
also labelling real applications as honeypots becomes increasingly
di�cult. Thus, the approach of automatically generating honeypots
solves the problem of manual work and lowers the chances of
successful �ngerprinting while also vastly increasing the scalability
of large web LIHP deployments.

2 CONCEPT
In this section, we provide a comprehensive overview on our ap-
proach towards honeypot generation and operation. Please note,
that Chameleon’s current objective is to create low-interaction
honeypots for the pre-authentication surface of the emulated sys-
tems. We deem this attack surface to be su�cient, as we currently
want to know which systems are targeted and how attackers would
try to gain access – not what they do on a compromised system
afterwards.

2.1 Design Goals
First, we brie�y document the goals that steered the design:

Scalability. Chameleon is targeted to be able to create and
operate large number of individual low-interaction honeypots, each
emulating an individual, speci�c system. Thus, both the creation
and the operation of honeypots have to be possible in a scalable
fashion.

Automation. No manual intervention should be required to
create and deploy a given honeypot. The overall goal of Chameleon
is to be able to convincingly simulate a multitude of applications in
various versions. Manual e�ort in honeypot creation would severely
limit the approach’s overall scalability.

Universality. The honeypot should be able to emulate any ex-
isting web application, regardless of the technology stack used by
the original. This ensures creation of a wide variety of honeypots
without being limited to speci�c technologies (like apps written in
PHP as in [9]).

Deception. The generated honeypot should approximate indis-
tinguishability from the real system. This goal especially applies to
deceiving automated observers, such as �ngerprinting, vulnerabil-
ity testing, or mass-scanning tools.

2.2 High-level Overview
Chameleon creates honeypot versions of given web applications
in a fully automatic fashion. In order to do so, Chameleon �rst
repeatedly accesses the public HTTP interface with a crawling com-
ponent, to create dynamic response templates. In operation mode,
Chameleon uses these templates to convincingly emulate the origi-
nal web application. As no real application logic is implemented and
Chameleon only "parrots" learned responses back, the operation
of a given system requires only very little computational resources.
This allows to host a large number of individual honeypots at the
same time.

2.3 Architecture
Generating a honeypot can be broken down in three major phases,
each of which depends on the results of the previous phase (cf. Fig-
ure 1). Both the probing and the parsing phase is only executed once

Figure 1: The Chameleon. Ovals are applications, rectangles
represent phases and the disks are databases.

during the creation of each individual honeypot, while the publish-
ing on the other hand is a continuous process, always running on
the server hosting the honeypot.

Probing: Starting with one or multiple URLs as input, the �rst step
is to probe the web application by interacting with it and analyzing
the responses. By extracting all hyperlinks in the responses, the
automated crawler can recursively traverse and map the application.
All these request–response pairs are stored for later processing.
Since the responses observed during this phase are the sole base on
which we later build the honeypot, it is important not only to �nd
as many resources on the server as possible, but also to identify the
range of di�erent responses. For example, a login page might return
multiple di�erent error messages depending on the submitted input.
To achieve a thorough, automatic observation, we designed and
integrated a fuzzer into our web crawler, which mutates inputs like
HTTP headers and URL query parameters (more on this in Sec. 3).

Parsing: The next step is to process all these stored request–
response pairs from the previous phase. Here the most valuable
information for the parser is not the actual content of the collected
responses, but the variances in the responses caused by identical
or similar requests. If the server always sends the same response
for a particular resource, even when fuzzing slightly mutates the
request, then it is safe to assume that this resource is static. For
all non-static resources, Chameleon utilizes comparative analysis
on multiple responses to similar requests, in order to identify the
dynamic components of the resource and their respective value
range. The result of this phase are templates containing the static
code of the page like HTML, JavaScript, etc. but with the dynamic
parts replaced using placeholders in Chameleon’s custom syntax.
If similar enough, several responses will be consolidated into one
single template.

Publishing: After honeypot deployment, Chameleon utilizes the
generated templates to respond to HTTP requests from attackers.
The main challenge here is to �nd the best response given an ar-
bitrary, new request that might not have been observed before.
Therefore, a metric to compare HTTP requests and score their
similarity was designed. Furthermore, a �exible underlying HTTP

Automatic Generation of Low-Interaction Web Honeypots ARES 2018, August 27–30, 2018, Hamburg, Germany

server is required so that many di�erent other servers can be imi-
tated. All interactions with the honeypot are logged to serve as a
basis for evaluations on attack trends.

2.4 Details on Parsing
Di� Creation. As the prober requested each resource on the

server multiple times and with di�erent inputs, the parser can now
use this gathered information to �nd dynamic parts in the responses.
Therefore, a meaningful representation of the di�erences between
multiple similiar responses is required. Such a di� consists of a se-
quence of insertions and deletions that are applied to the �rst string
to transform it into the second [6]. To address for mini�ed �les, a
byte-wise di� is used instead of the usual line-based approach.

Variables. Based on the list of di�erences, the parser can start
interpreting them. From here on, a deletion directly followed by an
insertion of roughly equal length will be refered to as a substitu-
tion. Each substitution is analzyed and categorized into one of the
following types:

RandomTokens are arbitrary strings or numbers with no easily
observable pattern to them, e.g. cryptographic nonces. They can be
found anywhere in the headers, body or even URL.

Session Tokens are a special case of random tokens, bound to
a session and with a longer lifetime than random tokens. Session
tokens are most often found in cookies and or a URL.

Timestamps are some representation of the time, be it the time
of the day, the date or both together. There are many di�erent pos-
sible ways to display the same timestamp, for example 09.01.2018

and Mon, 9 Jan 2018 09:39:48.
Re�ections occur when input is copied into the output, which

is often the case in HTML forms. For example, if a search form is
submitted, many websites will show the search term again on the
results page.

Unknown is used to describe any variable that �ts into none of
the above categories. These are usually changes in natural text on
the rendered page or in the code behind that page. Inferring the
semantics of such changes would infeasibly complex and thus they
are ignored.

Variable Detection. Timestamps cannot be detected purely on the
basis of the di�, as they might only rarely change. For example, if the
page prints out the current date, but not the current time. Therefore,
timestamps are detected via various regular expressions, as neither
the current local time of the server is known, nor the format to
used to represent that time. All the remaining types of variables are
solely detected based on the di�. To �nd re�ections, the parser looks
at each of the substitutions in the request and searches the response
for occurrences of exactly the same substitution. The remaining
substitutions are either of type random token, session token or
unknown. To make sure that changes in natural text or code are not
erroneously identi�ed as tokens, there is an additional requirement
to the length of the change. To di�erentiate between random and
session tokens requires that the prober initially made multiple
requests with di�erent cookies. Substitions occurring only when
the cookie changed have to be session tokens, while substitutions
changing regardless of the cookies are random tokens. Should the

variable be neither of all these types, is considered of type unknown
and ignored.

Template Generation. The last step of the parsing is to create
templates of the request-response pairs collected during the probing.
In these templates the dynamic parts are described by placeholders
based on the variable detection from the previous step.

As the prober requested each page multiple times and also with
fuzzed inputs, the parser now has to decide for each of these re-
sponses if it can be merged into an existing template. For example,
the same login page might return di�erent error messages, depend-
ing on the input. If the template contains a substitution of type
unknown or if there is one long isolated deletion or insertion, that
template is considered to be not mergeable with other templates
and saved separately.

2.5 Details on Publishing
During operation mode, Chameleon uses the previously created
templates to respond to new requests. Given an arbitrary HTTP
request, the �rst step is to �nd the best template to use for the re-
sponse. Ideally the honeypot would always return exactly what the
attacker expects, however in practice there will be cases where re-
quests are ambiguous and multiple templates could be used, or cases
where there might be no template at all matching the requested
resource.

As a basis for a similarity metric for HTTP requests, the di�er-
ent parts of a request were ordered by their signi�cance for the
response. Starting with the most important, the following rank-
ing was created: HTTP method, path of the URL, HTTP body (if
PUT/POST) or query of the URL (otherwise), HTTP headers. The
�rst two, the method and path, are deemed so important that they
have to match exactly. If there is exactly one template where these
both match, we use that template. On the other hand, if there is
no template satisfying this requirement, the publisher searches all
templates for responses with error code 404 and selects one of these.
This indicates that the requested resource is not available in the
same manner the real application would present such an error.

If there is more than one template with matching method and
path, the publisher has to decide which of these to take. For that,
it is assumed the best response is the one obtained with the most
similar observed request. Therefore, we compare the body, query
part and headers of each stored request with the the newly recieved
one, calculate the similarity of those key-value pairs and choose
the template corresponding to the most similar request obtained
during the probing.

After selecting the most �tting template, a HTTP response is
generated from that template, which requires iterating over all
variables in the template and replacing them with actual content:

Random Tokens are newly generated, with constraints to pre-
serve the characteristics of the observed values. Uppercase and
lowercase letters, as well as numbers are randomly changed within
their respective sets, while all other characters are preserved. This
has the e�ect of generating new tokens with similar statistical
distributions as the observed tokens.

Session Tokens are generated in the same manner as the ran-
dom tokens described above. If the same cookies are received again
some time later, instead of generating new values for the session

ARES 2018, August 27–30, 2018, Hamburg, Germany M. Musch, M. Härterich, and M. Johns

tokens, the stored values are used and only new values for the
random tokens are generated.

Timestamps are just replaced by the current time, formatted
in the same manner as observed during the probing. However,
timestamps with speci�c semantics, such as the Expires or the
Last-Modified headers, are not replaced, as such unusual behavior
could reveal the honeypot.

Re�ections are not possible to determine by only looking at the
template, as they are dependent on the current request. Thus the
publisher has to �nd the position of the re�ected part of the input
in the newly received request and extract the value from there.

3 IMPLEMENTATION
The prober uses HTMLUnit1v2.22, a GUI-less browser written in Java
that simulates Chrome v51. During the recursive crawl of the web
application all resources referenced in href and src attributes of
HTML pages are extracted. The prober follows redirects, executes
JavaScript, records all XMLHttpRequests and submits HTML forms
to discover as many resources as possible on the remote server.
Common �les like robots.txt and sitemap.xml are also requested to
discover new URLs, which are possibly not linked in other locations.
Furthermore, requests are fuzzed by changing the HTTP method
and mutating the headers (esp. the cookies) and the URL query to
learn more about the behavior of the application with respect to
changes in the requests. The fuzzer uses a mutation based approach
and replaces the values with similar character sequences of the
same length.

The parser �rst preprocesses all responses with a variety of reg-
ular expressions, to �nd dynamic values like date �elds that rarely
change. Then the di� is applied to the responses of similar requests,
using Myers’ di� algorithm [10] followed by a semantic cleanup to
remove short, coincidental equalities within longer changes. This
cleanup removes short equalities within longer changes as can be
found even inside completely random hexadecimal SIDs [2].

The publisher is based on NanoHTTPD2v2.3.1, a �exible, light-
weight HTTP server implementation written in Java. The pub-
lisher not only imitates the HTTP body, but also all other parts
of the response, especially including the HTTP headers. This way,
Chameleon fully imitates the original HTTP server as closely as
possible. Depending on the copied, original system, Chameleon
can appear to be, e.g., an Apache HTTPd or a Microsoft Inter-
net Information server, without any con�guration e�ort for the
honeypot operator. The current proof-of-concept implementation
of Chameleon’s publishing unit does not yet support all HTTP
request headers that potentially alter the server response. For in-
stance, fully supporting the Content-Encoding header would require
an implementation of all possible compression algorithms to fully
emulate the original web server. We leave this implementation task
to a future, productive iteration of Chameleon.

4 PRACTICAL EVALUATION
While the process of generating new honeypots from existing ap-
plications is highly automated, their evaluation is not. Furthermore,

1http://htmlunit.sourceforge.net/
2https://github.com/NanoHttpd/nanohttpd

running real applications to compare them to the honeypots re-
quires a lot of resources and thus limits the number of applications
that can be evaluated. This means only a handful of applications
are used in this evaluation, despite the fact that the generation
approach would easily allow for a far greater number of honeypots.

For the evaluation we selected the �ve most popular Content
Management Systems (CMS) as they are widely used on the Internet.
As time of writing and according to w3techs.com3, these were Word-
Press, Joomla, Drupal, Magento and TYPO3. Blogger was excluded,
as it cannot be self-hosted – a requirement for our evaluation to
obtain the tra�c logs, but not a limition of Chameleon in gen-
eral. Using a fresh installation in its default state for each CMS,
Chameleon automatically generated a honeypot for each of the
�ve web applications.

4.1 Honeypot Creation
For the creation of the honeypots, we used one laptop with a 2.9
GHz dual-core CPU and 16GB of RAM. We started four probers
simultaneously and crawled up to a link depth of four. On average,
it took about 18 minutes to automatically prepare each honeypot
using the probing and parsing. Roughly 256 unique templates per
application were created, each on average containing 1.9 variables.
Table 1 shows the absolute numbers per application.

Table 1: Generated response templates for the target CMSs

CMS Version Duration Templates Avg. Vars
Drupal 8.2.1 9 min 190 1.9
Joomla 3.6.3 12 min 139 2.7
Magento 2.1.2 38 min 451 1.3
TYPO3 7.6.14 22 min 414 2.2
WordPress 4.6.1 8 min 85 2.1

Further analysis of the generated templates showed that vari-
ables of type timestamp are the most common, as they are present
in every Date response header. Random tokens and re�ections are
concentrated on a small number of templates, as a lot of the re-
sources are static content like images and stylesheets. Only a few
session tokens were found, but this is to be expected, as only pages
accessible before authentication were crawled. For more details for
each type of variable, see table 2.

Table 2: Minimum, maximum and average number of vari-
ables per template for each type of variable

Type of Variable Minimum Maximum Average
Random Tokens 0 45 0.65
Session Tokens 0 3 0.01
Reflections 0 18 0.19
Timestamps 1 4 1.05

3https://w3techs.com/technologies/overview/content_management/all

Automatic Generation of Low-Interaction Web Honeypots ARES 2018, August 27–30, 2018, Hamburg, Germany

4.2 Practical Results
Fingerprinting. To evaluate the deception of our �ve generated

honeypots, we used three open-source �ngerprinting tools: Nmap4,
WhatWeb5 and lbmap6. While nmap is mainly used for port scan-
ning, its -V option tries to detect the version of known services with
open ports. The other two tools are speci�cally designed for HTTP
�ngerprinting. While even the real application was sometimes not
correctly identi�ed, the tools always produced the same output
for both the real CMS and the generated honeypot mimicking it.
Therefore, deception was achieved as attackers cannot use currently
available �ngerprinting tools to identify our honeypots.

Empirical Study I. Next, we gathered empirical data by deploy-
ing both the real applications and the honeypots on the Internet
for a period of four weeks. The Chameleon was running in Ama-
zon’s EC2 on a single T2.micro instance with one shared vCPU and
1GB of RAM. While our analysis of the requested URLs showed no
signi�cant di�erence between the two systems, we only received
1.504 requests from 206 di�erent IP addresses, not counting dupli-
cate requests from the same IP within one minute. The cause for
this might be that our systems were deployed on newly registered
domains not indexed by popular search machines.

Empirical Study II. To quickly increase the amount of gathered
data, we replaced a production system, in this case a WordPress
blog of one of the authors, with a generated honeypot. With the
honeypot running the site, human visitors could no longer post
comments, but otherwise the site was still functional and served all
existing blog posts. We then compared two weeks of logs from the
real system with two weeks of logs from the Chameleon. Overall,
we received a total of 13,595 unique requests from 1,712 di�erent IP
addresses. With this amount of tra�c for a single system, it makes
more sense to compare the interactions on the real systems and the
honeypot.

Table 3: Ten most common requested paths on the real site
comparedwith number of requests on the honeypot. Nine of
these were also the most requested paths on the honeypot.
Filenames in italics were replaced to describe their function

Path Real system Honeypot
wp-login.php 932 887
/ 613 707
xml-rpc.php 448 398
Blog post 1 183 828
robots.txt 182 151
Blog post 2 85 53
Blog post 3 73 51
Category 1 66 64
style.css 66 64
wp-emoji-release.min.js 58 50

Table 3 shows that the number of requests is roughly equal on
both systems for most �les. Only one of the blog posts attracted far
4https://nmap.org/
5https://github.com/urbanadventurer/WhatWeb
6https://github.com/wireghoul/lbmap

more tra�c on the honeypot than the real system. Investigating
the template of this post revealed a bug in the parser, which caused
some crawlers to run into loops on that particular page as the query
in one self-referencing link constantly changed. Other than that,
the similar behavior on both systems shows that the honeypot
successfully deceives attackers.

Further investigation of the POST requests received by the hon-
eypot revealed various attempts to take over the alleged WordPress.
Many attackers tried to log in with common passwords like skater,
test1234 or adminpass. Previously, the correct username seems to
have been obtained by extracting the author’s name from one of
the blog posts, which equals the username by default. About half
of these attempts used the regular login at wp-login.php, while the
other half tried to exploit a login ampli�cation attack at xmlrpc.php.
Most of the remaining attacks focused on exploiting vulnerable
plugins or themes, which might have been installed by the ad-
ministrator. Additionally, there were various attempts to upload
malicious �les to the server via wp-admin/admin-ajax.php. Table 4
lists the exact number of unique POST requests to security related
paths.

Table 4: Attempted attacks on the honeypot

A�ack type Occurrences
Login via xml-rpc.php 401
Login via wp-login.php 389
Test for vulnerable plugin 128
Test for vulnerable theme 21
File upload 16

Note that the number of POST requests to wp-login.php shown
in table 4 is only roughly half of the amount of requests listed in
table 3 to that path. This is due to the fact, that the login site was
usually �rst requested with a GET request and then submitted with
a POST request, thus each login attempt is counted twice in table 3.

5 RELATEDWORK
Existing web honeypots: Among the �rst honeypots to focus on
web servers were HoneyWeb [11] from 2002 and the Google Hack
Honeypot [5] from 2005. Since then the sophistication of honey-
pots increased a lot and, as time of writing, Glastopf [15] is con-
sidered the state-of-the-art in web application honeypots. It can
emulate thousands of vulnerabilities and replies to an attack by
using a response the attacker is probably expecting. However, the
vulnerable web pages themselves are still static and susceptible
to �ngerprinting. Therefore, manual work would be required to
modify the appearance of each individual Glastopf instance.

In general, all these existing web server honeypots try to entice
as many attackers as possible by appearing to be vulnerable to
a wide range of attacks. This increases the amount of collected
data at the cost of realism and deception. Each instance of the
Chameleon on the other hand simulates one speci�c version of
a real server and thus achieves far better deception. Furthermore,
these existing honeypots only serve static �les and thus can eas-
ily be �ngerprinted, while the Chameleon emulates the dynamic
behavior of real applications.

ARES 2018, August 27–30, 2018, Hamburg, Germany M. Musch, M. Härterich, and M. Johns

Academic approaches: The �rst academic publication that pro-
posed a generic way to automatically generate new honeypots
based on existing services was published in 2005 by Leita et al.
[3]. The underlying goal of the approach is to "learn" unknown
network protocols through the creation of the state machines. Thus,
they collected all tra�c from a high-interaction honeypot and de-
rived a �nite state machine to represent those exchanges. While
the approach seems to be well suited for attacks over stateful pro-
tocols, the usefulness for stateless protocols like HTTP remains
unclear. With a similar goal but di�erent approach, Cui et al. [1]
created RolePlayer in 2006, a generic system able to mimic many
application protocols. Amongst other protocols, they tested their
approach with HTTP but only with a static resource on the server.
A restriction of their work is that new communication attempts
with RolePlayer must be consistent with the learned "script", while
Chameleon can handle requests in arbitrary order.

In 2008, Small et al. [16] published a generation approach which
focusses on generic web honeypots. The goal of their approach
is to emulate vulnerabilities. For this, they use natural language
processing and string alignment techniques to automatically gen-
erate dynamic responses. In contrast, Chameleon is built from the
ground up to emulate applications, rendering both approaches to be
fundamentally di�erent. Finally, in general, these existing academic
approaches su�er from insu�cient deception capabilities and did
not solve the problem of honeypots getting �ngerprinted. Thus,
none of these techniques have similar capabilities as Chameleon
when it comes to seamlessly blending into existing application
landscapes.

6 FUTUREWORK
In the context of this paper, we have shown Chameleon’s capabili-
ties to easily create decoy web applications. This is an exciting �rst
steps towards several compelling future research directions:

Foremost, we will leverage Chameleon-honeypots for long-term
studies. Low-tra�c low-pro�le web applications, as such honeypots
instances are by nature, require signi�cant time before they are
recognized as potential attack targets. Thus, to collect meaningful
information, the time frame of an experiment has to be expected
to last months if not years. We are currently in the preparation
phase for such a set-up. This will allow us to monitor the evolution
of the automized landscape, via cross-referencing attack tra�c on
unrelated Chameleon instances, as well as the potential discovery
of new targeted attacks on speci�c web application types.

Furthermore, the task of automatic web LIHP creation still of-
fers avenues of further exploration: At this point Chameleon is
only able to create exact carbon copies of existing systems. While
a single Chameleon evades �ngerprinting attacks due to its pre-
cise imitation of the original application, the existence of several
instances of the same application might cause suspicions on the
adversary side. Thus, we will experiment in decoy morphing. i.e.,
the merging of data-content from related Chameleon instances to
create unique honeypots.

Finally, we are interested in exploring to which extent Chameleon’s
underlying concept of automatic honeypot generation can be ap-
plied to other, non-HTTP protocols.

7 CONCLUSION
In this paper, we presented Chameleon – an approach for a fully
automatic creation of web LIHPs. We used Chameleon to create
honeypot versions of several popular CMSs. The results of the prac-
tical experiments provide evidence, that our system functions as
planned: For automated tools, the created honeypots are indistin-
guishable from the real versions of the emulated systems. Further-
more, thanks to Chameleon’s templating system, the generated
honeypots provide interactivity with potential human visitors that
closely mirrors the behavior of the regular system under legiti-
mate usage, adding further to the honeypot’s deception capabilities.
And �nally, comparing the web tra�c received by the honeypots
with the tra�c to the real systems, no apparent di�erences could
be observed. The actual generation of the honeypot instances is
fully automatic and requires no human e�ort. A single instance of
Chameleon was capable to run all our honeypots simultaneously.

Thus, Chameleon is a viable concept to create, deploy and oper-
ate large numbers of heterogeneous LIHPs on a large scale, which
enables several exiting future research streams.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valuable
feedback. This work was supported by the German Federal Ministry
of Education and Research (BMBF) through the project "BDSec –
Big Data Security" (grant 01IS14009E).

REFERENCES
[1] Weidong Cui, Vern Paxson, Nicholas Weaver, and Randy H Katz. Protocol-

independent adaptive replay of application dialog. In NDSS, 2006.
[2] Neil Fraser. Di� strategies. [online], https://neil.fraser.name/writing/di�/, 2006.
[3] Corrado Leita, Ken Mermoud, and Marc Dacier. Scriptgen: an automated script

generation tool for honeyd. In ACM ACSAC, pages 12–pp. IEEE, 2005.
[4] Eric Limer. How hackers wrecked the internet using dvrs and webcams.

[online], http://www.popularmechanics.com/technology/infrastructure/a23504/
mirai-botnet-internet-of-things-ddos-attack/, October 2016.

[5] Ryan McGeehan and Greg Smith. Google hack honeypot. [online], http://ghh.
sourceforge.net, 2005.

[6] Webb Miller and Eugene W Myers. A �le comparison program. Software: Practice
and Experience, 15(11):1025–1040, 1985.

[7] Iyatiti Mokube and Michele Adams. Honeypots: concepts, approaches, and
challenges. In Proceedings of the 45th annual southeast regional conference, pages
321–326. ACM, 2007.

[8] B Mphago, O Bagwasi, B Phofuetsile, and H Hlomani. Deception in dynamic
web application honeypots: Case of glastopf. In Proceedings of the International
Conference on Security and Management (SAM), page 104, 2015.

[9] Michael Mueter, Felix Freiling, Thorsten Holz, and Jeanna Matthews. A generic
toolkit for converting web applications into high-interaction honeypots. Univer-
sity of Mannheim, 280, 2008.

[10] Eugene W Myers. Ano (nd) di�erence algorithm and its variations. Algorithmica,
1(1-4):251–266, 1986.

[11] Fabien Pouget and Marc Dacier. White paper: Honeypot, honeynet: A compara-
tive survey. Technical report, RR-03-082, Institut Eurecom, 2003.

[12] DShield Project. Dshield web honeypot project. [online], https://sites.google.
com/site/webhoneypotsite, 2011.

[13] HiHAT Project. High-interaction honeypot analysis tool. [online], http://hihat.
sourceforge.net, 2007.

[14] Niels Provos and Thorsten Holz. Virtual honeypots: from botnet tracking to
intrusion detection. Pearson Education, 2007.

[15] Lukas Rist, Sven Vetsch, Marcel Kossin, and Michael Mauer. Know your tools:
Glastopf-a dynamic, low-interaction web application honeypot. The Honeynet
Project, 4, 2010.

[16] Sam Small, Joshua Mason, Fabian Monrose, Niels Provos, and Adam Stubble�eld.
To catch a predator: A natural language approach for eliciting malicious payloads.
In USENIX Security Symposium, pages 171–184, 2008.

[17] Dean Sysman, Gadi Evron, and Itamar Sher. Breaking honeypots for fun and
pro�t. [online], https://media.ccc.de/v/32c3-7277-breaking_honeypots_for_fun_
and_pro�t, 2015.

https://neil.fraser.name/writing/diff/
http://www.popularmechanics.com/technology/infrastructure/a23504/mirai-botnet-internet-of-things-ddos-attack/
http://www.popularmechanics.com/technology/infrastructure/a23504/mirai-botnet-internet-of-things-ddos-attack/
http://ghh.sourceforge.net
http://ghh.sourceforge.net
https://sites.google.com/site/webhoneypotsite
https://sites.google.com/site/webhoneypotsite
http://hihat.sourceforge.net
http://hihat.sourceforge.net
https://media.ccc.de/v/32c3-7277-breaking_honeypots_for_fun_and_profit
https://media.ccc.de/v/32c3-7277-breaking_honeypots_for_fun_and_profit

	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Chameleon

	2 Concept
	2.1 Design Goals
	2.2 High-level Overview
	2.3 Architecture
	2.4 Details on Parsing
	2.5 Details on Publishing

	3 Implementation
	4 Practical Evaluation
	4.1 Honeypot Creation
	4.2 Practical Results

	5 Related Work
	6 Future Work
	7 Conclusion
	Acknowledgments
	References

