

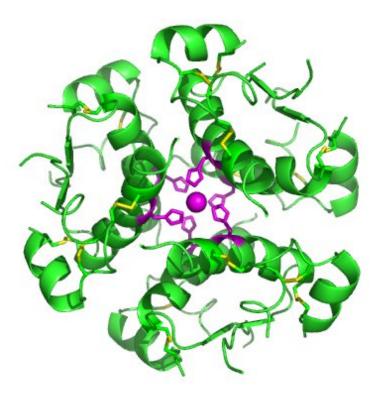
BioEquality

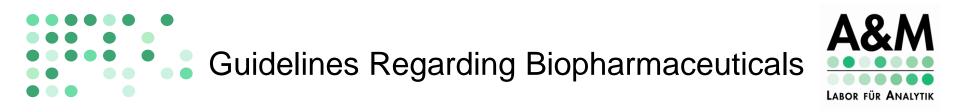
A Platform for the Comprehensive Analysis of Data from Stability Studies and Market Approval of Biosimilars

Dr. Steven Watt

A&M STABTEST GmbH

- In 1982 Eli Lilly introduced Humulin, the first biotechnologically produced drug substance
- In 1992 Epogen (epoetin alfa) made Amgen the first Fortune 500 biotech company
- In 2005 the per capita spending for biopharmaceuticals was 119 USD (12.9%)
- It is estimated that by 2016 eight of the top ten drugs marketed world wide will be a biopharmaceutical


The Efficacy of a Biopharmaceutical is Structure-Dependent


- 3D structure (protein folding, oligomerisation)
- Amino acid sequence
- Post translational modifications
- Binding to co-factors
- Artificial drug-conjugates

Insulin hexamer (inactive storage form)

- Guideline on the Development, Production, Characterisation and Specifications for Monoclonal Antibodies and Related Products. (EMEA/CHMP/BWP/157653/2007)
- Guideline on Requirements for the Quality Documentation Concerning Biological Investigational Medicinal Products in Clinical Trial (Draft EMA/CHMP/BWP/534898/2008)
- Comparability of Biotechnological/Biological Products ICH Topic Q 5 E (CPMP/ICH/5721/03)
- Quality of Biotechnological Products: Stability Testing of Biotechnological/Biological Products -ICH Topic Q 5 C (CPMP/ICH/138/95)
- Specifications: Test Procedure and Acceptance Criteria for Biotechnological/Biological Products - ICH Topic Q 6 B (CPMP/ICH/365/96)

What Techniques are the Quality of Biopharmaceuticals?

Structural Testing:

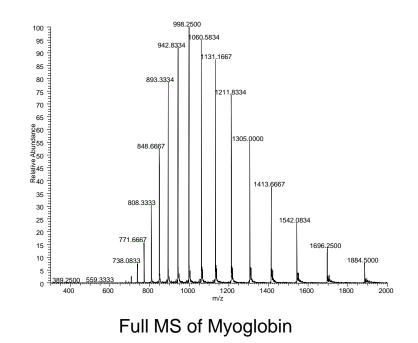
- Oligomerisation: SEC-HPLC, native gel electrophoresis
- Protein folding: SEC- and CEX-HPLC, IEF-CE, IEF-GE
- Protein sequence & modifications: RP-HPLC and peptide maps
- ➡ BUT what information can be obtained from mass spectrometry?

Structural & Efficacy Testing:

• Protein binding: Bioassays (ELISA)

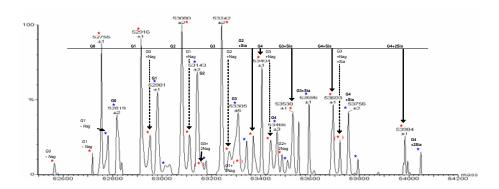
Mass spectrometry has become a widely used tool in analytical sciences. Modern mass spectrometers are robust and sensitive instruments that can be used in routine analysis.

→ LTQ-Orbitrap is an ideal instrument for protein characterisation:


- Low resolution spectra for molecular weight determination
- High resolution and accurate mass spectra for
 - Peptide mass maps
 - Identification and localisation of modifications

Both approaches are needed to get a full picture of the protein

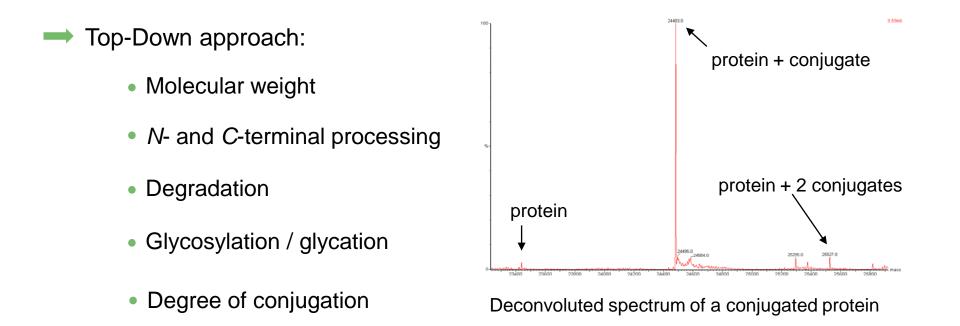
- Top-Down approach:
 - Molecular weight
 - N- and C-terminal processing
 - Degradation
 - Glycosylation / glycation
 - Degree of conjugation



Top-Down vs. Bottom-Up

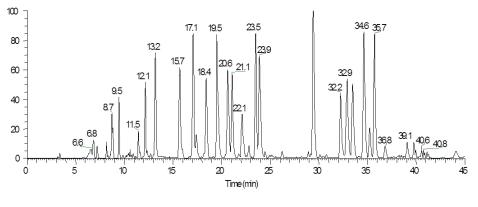
Top-Down approach:

- Molecular weight
- N- and C-terminal processing
- Degradation
- Glycosylation / glycation
- Degree of conjugation

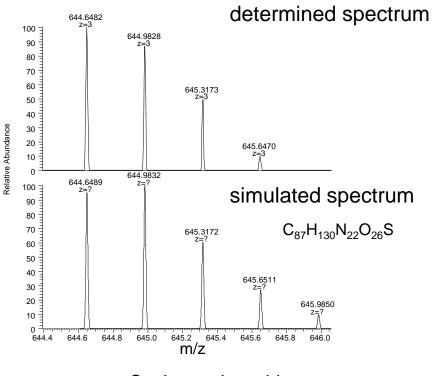


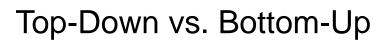
Deconvoluted spectrum of FAB fragment

Top-Down vs. Bottom-Up


No need for accurate mass and high resolution!

Both approaches are needed to get a full picture of the protein

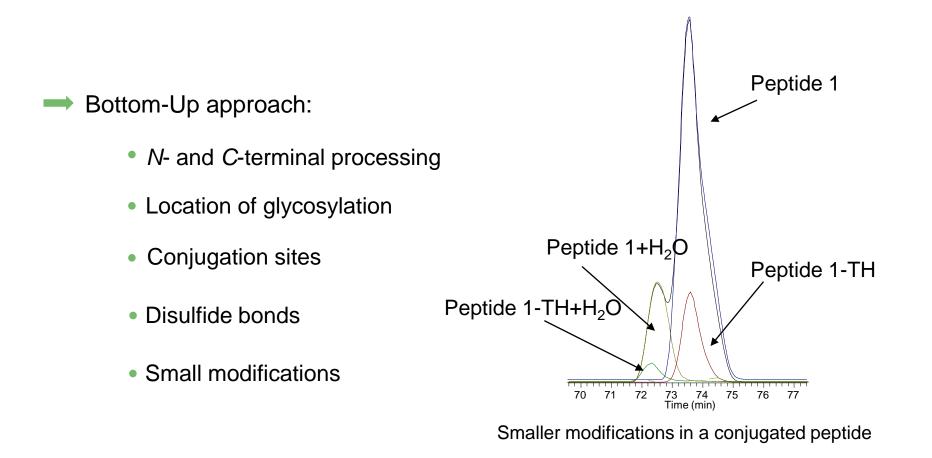

- Bottom-Up approach:
 - N- and C-terminal processing
 - Location of glycosylation
 - Conjugation sites
 - Disulfide bonds
 - Small modifications

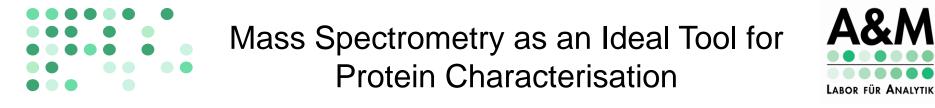

Peptide mass map

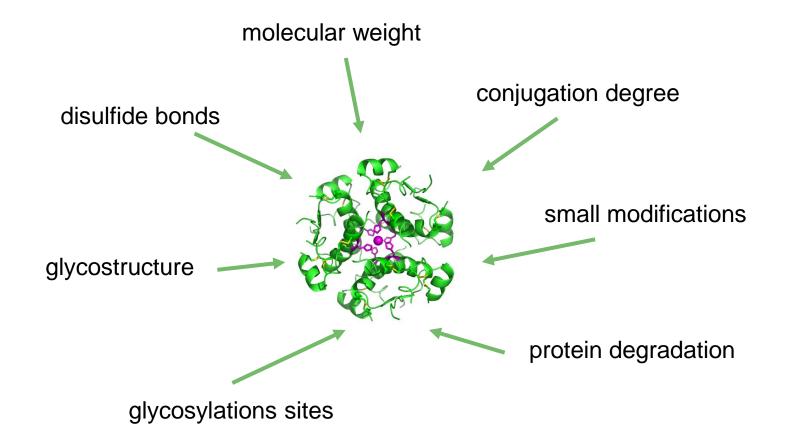
Both approaches are needed to get a full picture of the protein

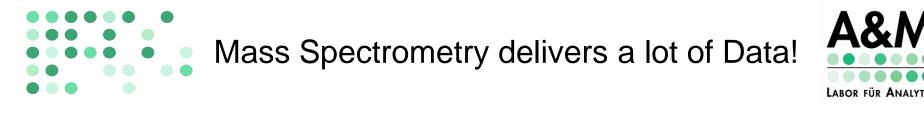
- Bottom-Up approach:
 - N- and C-terminal processing
 - Location of glycosylation
 - Conjugation sites
 - Disulfide bonds
 - Small modifications

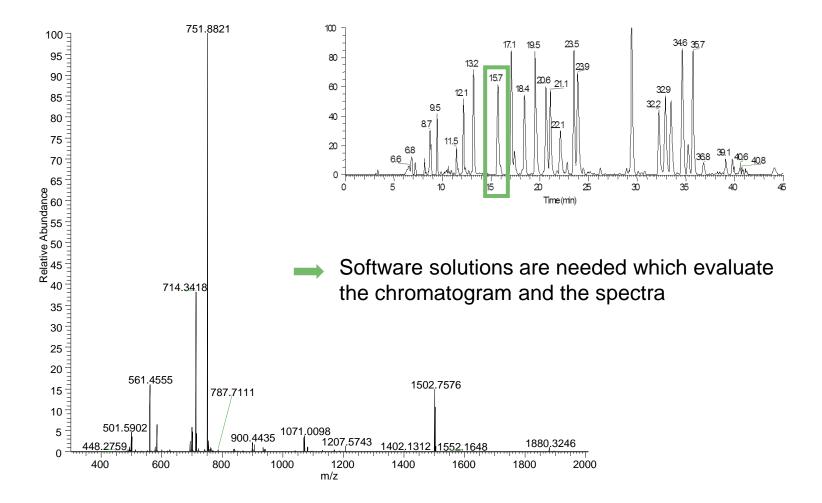
Conjugated peptide






Top-Down vs. Bottom-Up



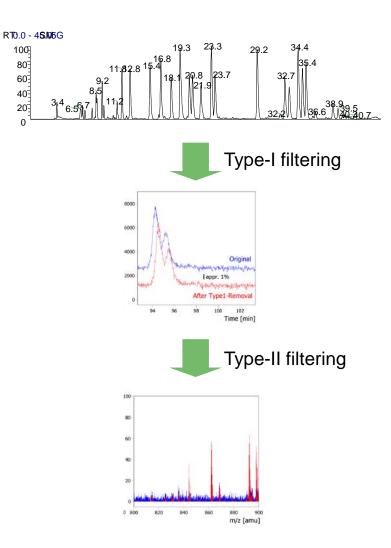

Accurate mass and high resolution are helpful!

Each peak in the peptide map can contain several signals of different peptides and their modified versions

The MassMap® software was designed by Prof. Dr. Wozny to analyse peptide mass maps in the pharmaceutical environment

• Reduces electronical and chemical noise (reduces file size)

• Analyses signals down to the 1% level (compared to base peak)


• Is fully 21 CFR Part 11 compliant

Data Reduction

The first step is to reduce the data by removing unspecific signals:

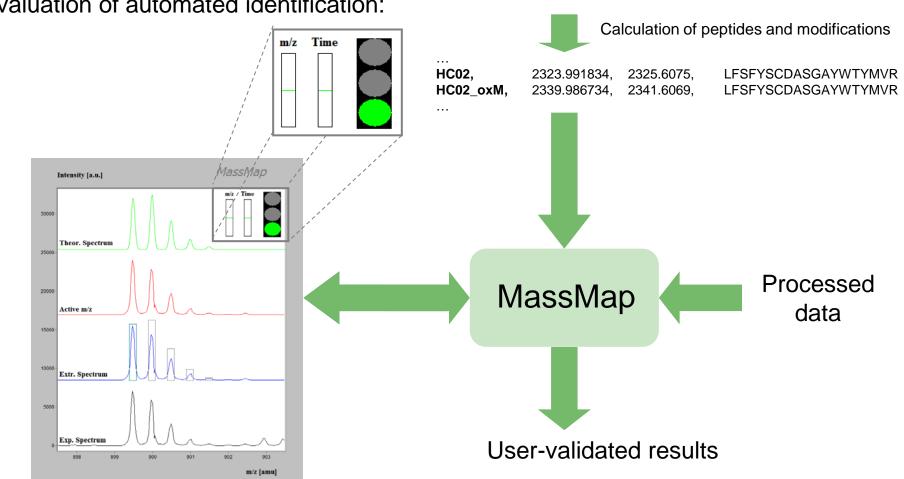
Original PepMap Data:

- Enormous file size (e.g. 2 GB)
- Difficult to handle

Removal of type-I signals:

- Chemical noise
- lons that appear statistically over the whole run
- No chromatographic peaks
- Improvement of s/n ratio

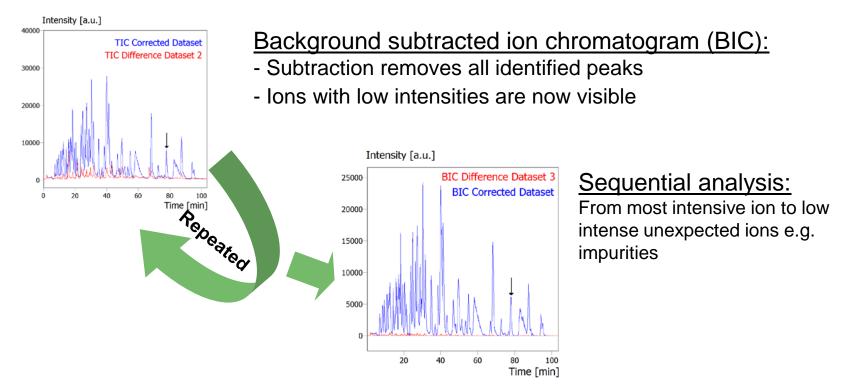
Removal of type-II signals:


- lons that do not have isotopic peak patterns
- Improvement of s/n ratio
- → Three-fold reduction of data size (~ 700 MB)

Identification of Known Signals

Amino acid sequence:

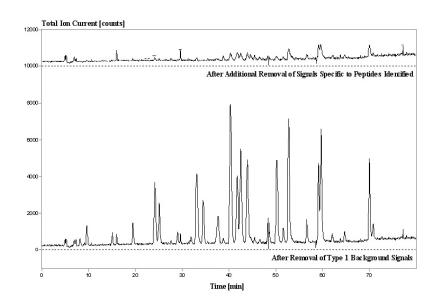
Evaluation of automated identification:



Problem: Unexpected signals often have low intensities

User-validated results

Identified peptides and their modifications are removed


Result: A list of Identified Peptides with Modifications and Unknowns

List of identified peptides

Signal	Lage [min]	Intens. [a.u.]	
HC22_A2FG0	18,22	635333577	47,68
HC22_A2FG0-G1CNAC	18,43	33841885	2,54
HC22_A2FG1	18,05	396289612	29,74
HC22_A2FG1-G1CNAC	18,32	13836232	1,04
HC22_A2FG1S1	n.b.	n.b.	n.b.
HC22_A2FG2	17,94	47228329	3,54
HC22_A2G0	18,54	50348887	3,78
HC22_A2G0-G1CNAC	18,66	40000810	3,00
HC22_A2G1	18,43	21931273	1,65
HC22_A2G1-G1CNAC	18,60	18168890	1,36
HC22_A2G1S1	n.b.	n.b.	n.b.
HC22_A2G2	n.b.	n.b.	n.b.
HC22_A2G2S1	18,91	36990166	2,78
HC22_A2G2S2	n.b.	n.b.	n.b.
HC22_Man5	18,43	38047543	2,86
HC22_Man6	18,43	470342	0,04
HC22_deglyc	n.b.	n.b.	n.b.
•••	•••	•••	•••

Chromatogram with remaining signals

- Peptides with unknown modifications
- Impurities (not protein related)
- Impurities (HCP)
- Degradation products
- Digestion artifacts

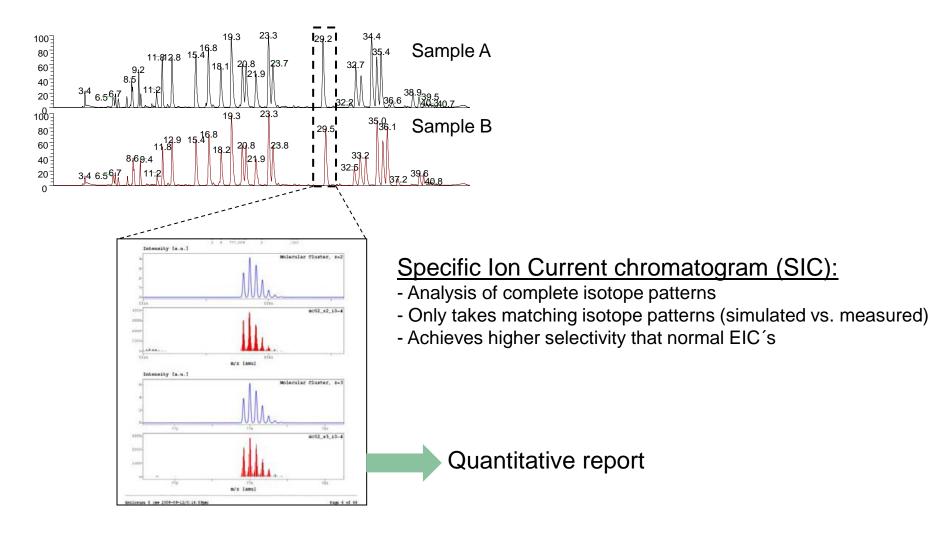
Comparative Analysis of Peptide Mass Maps

- Guideline on Requirements for the Quality Documentation Concerning Biological Investigational Medicinal Products in Clinical Trial (Draft EMA/CHMP/BWP/534898/2008)
 - Comparability of batches used in clinical trials
- Comparability of Biotechnological/Biological Products ICH Topic Q 5 E (CPMP/ICH/5721/03)
 - Comparability after changes in the manufacturing process

Biosimilars (generic versions of biopharmaceuticals)

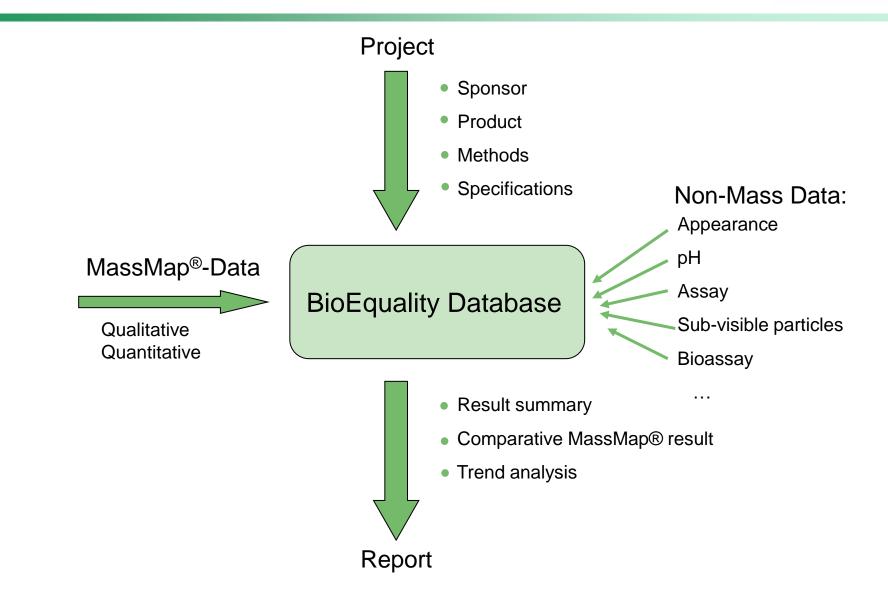
By the year 2015 biopharmaceuticals with a market share of <u>64 billion USD</u> will lose their patent protection!

 Guideline on Similar Biological Medicinal Products Containing Biotechnology-Derived Proteins as Active Substance: Quality Issues (EMEA/CHMP/BWP/49348/2005)



Comparability to the market product (originator)

MassMap® also has the capability to give relative-quantitative pep map results:


What if one wants to ...

- ...compare different batches of an originator to the biosimilar?
- ...compare not only the drug substance but the whole product?
- ...see a trend in comparative data over the complete product history or during stability studies?

The BioEquality Data Base

Generating a new Project

 G Projects
 →

 Home Masterdata Sponsordat
 Projects

You are logged in as Jana Spura in study director mode. Logout

BioEquality

Projects

Import Project from Stabdat Rev Project

Status	Study Number	Project Type	Drug Product	Sponsor	Study Director	Last Updated
Draft	ST11-000	Stability	A&M Pille	A&M STABTEST	Diane Kleinjohann	2011-09-13 14:17
Draft	ST08-131	Stability			Jana Spura	2011-09-13 14:01
Draft	ST10-065	Stability			Diane Kleinjohann	2011-09-13 13:59
Draft	ST10-091	Stability			Diane Kleinjohann	2011-09-08 11:49

Project Overview

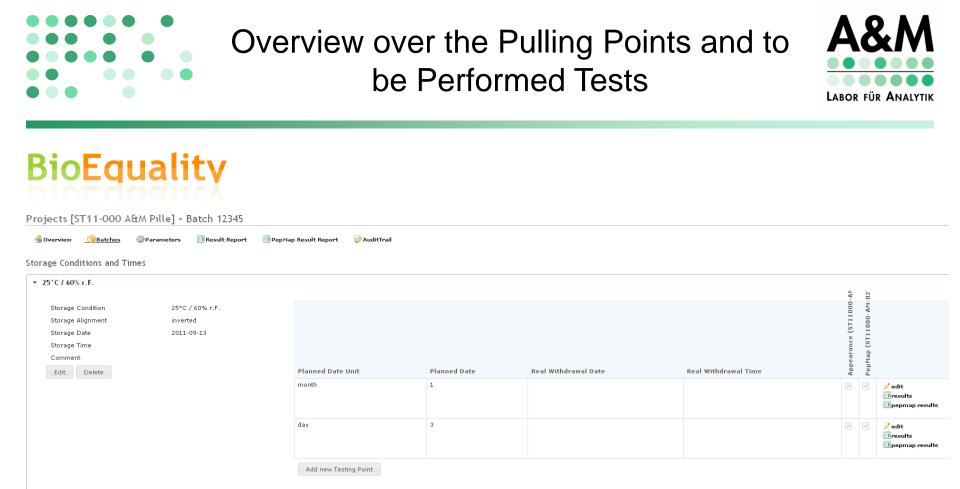
Project	-1-	
Home Masterdata Sponso	data Projects	

Projects [ST11-000 A&M Pille]

<u> Verview</u>	シ Batches 🛛 🌼 Paramet	ters 🔲 Result Report	🔲 PepMap Result Report	🖗 AuditTrail	
Study Number		ST11-000			
Project Type		Stability			
Status		Draft			
Study Director		Diane Kleinjohann			
Sponsor		A&M STABTEST			
Drug Product		A&M Pille			
Drug Substance					
Packaging		Fertigspritze		The n	ew project has not been reviewed
Dosage Form		Injektionslösung			cw project has not been reviewed
Comment					
Author		Jana Spura			
Created at		2011-09-13 14:10 by Ja	na Spura		
Last Updated		2011-09-13 14:17 by Ja	na Spura		
Batches		• 12345	×		
		Add New Batch			
Edit Delete	е				

Data-Review

BioEquality


You are logged in as Jana Spura in reviewer mode. Logout

Projects [ST11-000 A&M Pille] » Review Project

<u>40verview</u>	🖗 Batches 🔅 Parameters	🔲 Result Report	🔲 PepMap Result Report	🧼 AuditTrail	
Study Number	S	F11-000	V		
Project Type	st	ability	V		
Status	Di	raft	\checkmark		
Study Director	D	ane Kleinjohann	\checkmark		
Sponsor	A	&M STABTEST			
Drug Product	A	&M Pille	\checkmark		
Drug Substance				ergänzen	
Packaging	F	ertigspritze	\checkmark		
Dosage Form	Ir	ijektionslösung	\checkmark		
Comment					

Update

- One cannot review their own data
- Incorrect submissions are not checked and commented
- The initial author will see the incorrect data and the reviewer's comment

Add Storage Condition

- An overview of the storage condition 25°C/60% r.h.
- Display of pulling points
- Summary of the tests to be performed per pulling point

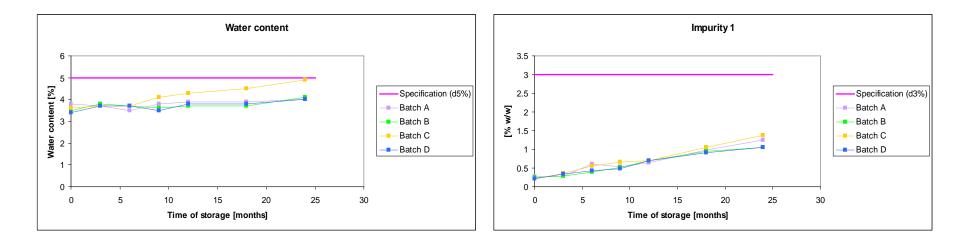
Pepmap Results

The report contains a summary of the most important results:

BioEquality

Projects [ST10-065 Creon 3000] » PepMap Result Report

ዿ Overview 🌖 Batches 🌼 Parameters 📃 Result Report <u>III Pep Map Result Report</u> 📝 Audit Trail


Batch	Testing Point	Run #	Molecule	Specification	Theoretical Monoisotop. Mass [amu]	Delta Corr Abs [u]	Delta Corr Rel [ppm]	Intensity	Relative Intensity [%]	Ret. Area [min]
Storage Con	prage Condition: 40°C / 75% rel. F.									
810484	month 1	1	BE_1	area < 6.0 %	372.1974	-0.0131		16657695	99.1463	24.9
			BE_1							
			BE_2_1	area < 3.0 %	342.2734	-0.02		73300	0.4362	25.0
			BE_2_1							
			BE_2_2							
			BE_2_2	area < 6.0 %	342.2734	-0.0393		70122	0.4173	25.0
	month 1	2	BE_1	area < 6.0 %						
			BE_1		372.1974	-0.0131		16657695	99.1463	24.9
			BE_2_1	area < 3.0 %						
			BE_2_1		342.2734	-0.02		73300	0.4362	25.0
			BE_2_2		342.2734	-0.0393		70122	0.4173	25.0
			BE_2_2	area < 6.0 %						

A trend analysis for all parameters with specifications will be available for all tests conducted in the project.

For Pepmap-data this will include a trend for all identified peptides

The People Involved in the BioEquality Project

Mass Spectrometry & Stability Studies

- Dr. Lejon Martens
- Dr. Jana Spura
- Diane Kleinjohann

Programming of the BioEquality Software

- Christian Ebeling
- Angela Rumpl
- Stephan Springstubbe

Support with MassMap® Data Import

Prof. Dr. Manfred Wozny

