

Hand in until Tuesday, May 10, 09:45

Exercise sheet 2

Exercise 1 (10 Points)

Show that for two Hermitian operators $A^{\dagger}_{\mu} = A_{\mu}$ and $A^{\dagger}_{\nu} = A_{\nu}$ the following equality for the Mori product holds

$$\langle A_{\mu}|A_{\nu}\rangle = \langle A_{\nu}|A_{\mu}\rangle \,. \tag{1}$$

Exercise 2 (30 Points)

Consider a system described by the Hamiltonian

$$H = H_0 + H_1$$
, $H_1 = \sum_{\nu} f_{\nu} A_{\nu}$, (2)

where H_0 is the unperturbed Hamiltonian, and H_1 some perturbation.

• Show that the partition function for the perturbed system is given by

$$Z = Z_0 \langle S(\beta, 0) \rangle_0 , \qquad (3)$$

where the index "0" refers to the unperturbed system, and $S(\tau, \tau')$ is the imaginary time evolution operator from τ' to τ in the interaction picture, i.e.

$$S(\tau, \tau') = e^{H_0 \tau} e^{-H(\tau - \tau')} e^{-H_0 \tau'} .$$
(4)

• Show that the evolution of the operator *S* is described by the differential equation

$$\frac{\partial S(\tau,\tau')}{\partial \tau} = -H_1(\tau)S(\tau,\tau'), \quad \text{with} \quad H_1(\tau) = e^{H_0\tau}H_1e^{-H_0\tau}.$$
(5)

• By integrating Eq. (5) from τ' to τ , and using a recursive procedure, show that *S* can be written as

$$S(\beta,0) = \mathcal{T}\left[\exp-\int_0^\beta d\tau H_1(\tau)\right],\tag{6}$$

with ${\mathcal T}$ the time ordering operator.* Note that Eq. (6) is merely a symbolic way to write the expansion

$$S(\tau,\tau') = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{n!} \int_{\tau'}^{\tau} d\tau_1 \cdots \int_{\tau'}^{\tau} d\tau_n \mathcal{T} \left[H_1(\tau_1) \cdots H_1(\tau_n) \right] \,. \tag{8}$$

• Assuming H_1 is some weak perturbation, show that the free energy can be written up to second order in the perturbation couplings f_{ν} terms as

$$F = F_0 + \sum_{\nu} f_{\nu} \langle A_{\nu} \rangle_0 - \frac{1}{2} \sum_{\mu,\nu} f_{\mu}^* f_{\nu} \langle A_{\mu} | A_{\nu} \rangle_0 + \mathcal{O}(f^3) .$$
(9)

• Show that the isothermal susceptibility is given by

$$\chi^T_{\mu\nu} = \langle A_\mu | A_\nu \rangle_0 . \tag{10}$$

*The time ordering operator orders the operators on its right in a descending time order. For example, for two bosonic operators A, B we have

$$\mathcal{T}[A(\tau_1)B(\tau_2)] = \theta(\tau_1 - \tau_2)A(\tau_1)B(\tau_2) + \theta(\tau_2 - \tau_1)B(\tau_2)A(\tau_1).$$
(7)

Exercise 3 (5 Points)

Show that if at least one of the operators A_{μ} , A_{ν} commutes with the Hamiltonian H, the Mori product reduces to the thermal average (assume that $\langle A_{\mu}^{\dagger} \rangle = 0 = \langle A_{\nu} \rangle$)

$$\langle A_{\mu}|A_{\nu}\rangle = \beta \langle A_{\mu}^{\dagger}A_{\nu}\rangle . \tag{11}$$