Exercise sheet 1

Exercise 1 (10 Points)

Show that the Heaviside step function defined as

$$
\theta\left(t-t^{\prime}\right)=\left\{\begin{array}{ll}
1 & \text { for } t>t^{\prime} \tag{1}\\
0 & \text { for } t<t^{\prime}
\end{array},\right.
$$

acquires the integral representation

$$
\begin{equation*}
\theta\left(t-t^{\prime}\right)=-\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi i} \frac{e^{-i \omega\left(t-t^{\prime}\right)}}{\omega+i \eta}, \quad \eta \rightarrow 0^{+} . \tag{2}
\end{equation*}
$$

Exercise 2 (10 Points)

The imaginary part of a function is given by

$$
\begin{equation*}
f^{\prime \prime}(\omega)=2 \sqrt{1-\omega^{2}} \theta\left(1-\omega^{2}\right) \tag{3}
\end{equation*}
$$

with θ the Heaviside step function.

- Calculate $f(z)$.
- Make a graphical representation of $f(z)$.

Exercise 3 (10 Points)

- What is the behavior under inversion of:
a) the density $n(\mathbf{r})=\sum_{l} \delta\left(\mathbf{r}-\mathbf{R}_{l}\right)$,
b) the momentum density $\mathbf{p}(\mathbf{r})=\sum_{l} \delta\left(\mathbf{r}-\mathbf{R}_{l}\right) \frac{\partial}{i \mathbf{R}_{l}}$,
c) the spin density $\mathbf{s}(\mathbf{r})=\sum_{l} \delta\left(\mathbf{r}-\mathbf{R}_{l}\right) \mathbf{S}_{l}$?
- What are the consequences for $\chi_{n p}^{\text {iso }}$ and $\chi_{s p}^{\text {iso }}$ in a system with inversion symmetric statistical operator ρ ?

自 Exercise 4 (5 Points)

- Show the identity

$$
\begin{equation*}
\lim _{\eta \rightarrow 0^{+}} \frac{1}{\omega \pm i \eta}=\mathcal{P}\left(\frac{1}{\omega}\right) \mp i \pi \delta(\omega) \tag{4}
\end{equation*}
$$

where \mathcal{P} denotes the principal value, and δ is the Dirac δ-function.*

- What is the representation of the principal value, and the δ-function for a finite η ?

[^0]
[^0]: ${ }^{*}$ Hint: Show that it holds for the integral $\int d \omega \frac{f(\omega)}{\omega \pm i \eta}$, with $f(\omega)$ a smooth function in the vicinity of $\omega=0$.

