
 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Dipl.-Inform. Oliver Pajonk
Institute of Scientific Computing
Technische Universität Braunschweig

VERSION CONTROL USING SUBVERSION

Introduction and Practical Examples

15 April 2010 1

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

What is a Version?

• Definition:
– A version of a unit of information references its state (or a version relevant

part of it) at a specific point in time.

• Possible units of information are:
– File, set of files, piece of software, …

– Book, law, any piece of written text,…

– Build instructions for an industrial product (VW Golf I, II, III,…)

– Many more

• Common way to denote a version:
– We assign a number to the initial state (often simply “1”) and increment it

with each change:

– Different ways are possible, of course.

15 April 2010 2

Version 1 Version 2 …

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

What is Version Control?

• Definition:
– Version control is the process of tracking and managing multiple

versions of a unit of information.

• Purpose:
– Information is of paramount importance in the information age.

• Outdated units of information are still units of information!

• Changes between versions represent the history of a unit of information
 additional information!

– Version control means having access to this history,…

• …which allows us to perform changes more confidently (we cannot loose
anything!).

• …which allows us to perform multiple changes in parallel and later
combine them.

15 April 2010 3

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Reasons for Version Control

• Single person projects:
– File, directory and release version management

– Change history with log messages (answers “Why did I do that?”)

– Consistent, repeatable builds as every version can be “resurrected”

– Synchronization between different development locations

– Provides confidence for aggressive refactoring

– Continuous backup for free

• Team projects:
– Parallel development

– Communication and teamwork

• Not only for projects:
– Some people use version control for their entire home directory

including configuration files etc. (search for “Keeping Your Life in
Subversion”)

15 April 2010 4

http://www.google.de/search?q="Keeping+Your+Life+in+Subversion"
http://www.google.de/search?q="Keeping+Your+Life+in+Subversion"

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Beyond Version Control: Configuration Management

• Configuration Management in SD = Version Control System + Version
Management
– You can do CM without a dedicated VCS, but it is naturally more difficult and error-

prone!

• The first part is presented here in this exercise by the example of
„Subversion“

• The second part describes how the process of versioning is organized:
– How is the versioned data organized?

– Who is allowed to do what with versioned items? Who is responsible?

– When are „production“ versions released? What are the preconditions? (internal
tests, beta-tests,…)

– How are production versions named?

– How are bugs/errors handled within the project?

• This is tightly coupled to project management, roles, development
model…

 Today proper version management in SD relies on version control systems

15 April 2010 5

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Institute of Scientific Computing
Technical University Braunschweig

Introduction to Subversion

15 April 2010 6

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

History and Features of Subversion

• In early 2000 the Subversion project started, in late 2001 it became
self-hosting and version 1.0 was released in early 2004  four years
for first stable version

• Subversion aims to be a compelling replacement for CVS so it has
similar features and syntax

• Important features of subversion (taken from
http://subversion.tigris.org):
– Directories, renames, and file meta-data are versioned

– Commits are truly atomic

– Client/server protocol sends diffs in both directions

– Costs are proportional to change size, not data size

– Efficient handling of binary files (uses binary delta algorithm)

– Versioning of symbolic links

– Local access, standalone server or Apache server

• Subversion is the sole leader in standalone SCM systems according
to Forrester research (2007)

15 April 2010 7

http://subversion.tigris.org/

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Concepts: The Subversion Repository

• The central store of data

• Essentially works like a normal file server
(Samba, NFS)…
– …but remembers every change ever made to

it

– …but stores metadata for files and
directories

• Methods to access the repository:
– Local file system

– Network frontend
• Apache (WebDAV)

• SVNServe (proprietary protocol)

• SSH tunnel (like CVS)

• All access methods are concurrently
possible!

15 April 2010 8

Clients
Clients

Clients

W
ri

te
 R

ead

Subversion
Repository

Network Frontend

W
ri

te
 R

ead

Local Client

Network

Host

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Concepts: The Working Copy

• The working copy is a normal directory and file structure that
you can work with using your normal development tools

• It contains a local copy of the files and directories under
version control

• It contains additional “.svn” directories in each directory with
metadata for Subversion

• Important difference: file system operations like deletion or
moving of files and directories have to be performed with the
Subversion client!

15 April 2010 9

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Teamwork: The Problem to Avoid

15 April 2010 11

Repository

Harry Sally

1. Harry and Sally get their working copy from the repository
2. Both edit the same part of the same file
3. Sally finishes first and writes her changes to the repository
4. Harry accidentally overwrites Sally's changes

Question: How can we avoid this problem
while still allowing parallel changes?

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Subversions Solution: The Copy-Modify-Merge Model

15 April 2010 12

Repository

Harry Sally

1. Harry and Sally get their working copy from the repository
2. Both edit the same part of the same file
3. Sally finishes first and writes her changes to the repository
4. Harry tries to write his changes to the repository but gets an “out of date” error
5. Harry updates his working copy and gets a conflict for the changes that overlap

with the ones from Sally (non-conflicting changes are merged automatically)
6. Harry manually merges the conflicting changes (probably with the help of Sally)

and marks the conflict as resolved
7. Harry stores the merged file in the repository
8. Both changes are in the most recent version in repository

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Institute of Scientific Computing
Technical University Braunschweig

Using Subversion
Practical Example

15 April 2010 13

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

The Basic Work Cycle

15 April 2010 14

Update

Modify

Examine
Changes

Merge

Commit

Checkout

1. Create & Import: optionally create a
repository and import your project

2. Checkout: create a working copy of the
repository (or a part of it) in your
development environment

3. Update: fetch the latest changes from
the repository

4. Modify: make your own modifications
to the working copy

5. Examine changes: show differences to
previous versions, revert changes, …

6. Merge: update your working copy again
and merge changes from other persons
(automatically or, in case of a conflicting
change, manually)

7. Commit: send your changes and results
of merges back to the repository

Best practice: one cycle for one logical
change but at least once a day

Import Project
Create

Repository

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

The Basic Work Cycle: Overview

15 April 2010 15

Update

Modify

Examine
Changes

Merge

Commit

Checkout

Import Project
Create

Repository

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Creating a Subversion Repository

• The tool you need for this is called „svnadmin“

• To create a new repository simply type:

15 April 2010 16

$~ svnadmin˽create˽$HOME/svn 

$~ svn˽mkdir˽file://$HOME/svn/trunk˽-m˽“mkdir” 

$~ svn˽mkdir˽file://$HOME/svn/branches˽-m˽“mkdir” 

$~ svn˽mkdir˽file://$HOME/svn/tags˽-m˽“mkdir” 

• Then it makes sense to create the recommended repository
layout (now you need “svn”):

• To see what you’ve just done use:

$~ svn˽list˽file://$HOME/svn 

• This will show you the list of files and directories in your
repository root just like “ls” or “dir” does with normal
directories

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

CM Best Practice: Repository Layout

• Trunk: main line of development – the most
current codebase

• Branches:
– release branches like “1.x.x”, “1.2.x” etc. – for

fixing bugs etc.
– development branches for large changes that

should be inserted into the trunk later (feature
branches)

• Tags:
– give a name to a single revision
– are never changed (never commit to a tag!)
– names like “1.1.2”

• One project per repository: put “branches”,
“tags” and “trunk” directly in the repository
root (as we’ve just done)

• Several projects per repository: put them in
each project directory

• These are no laws, only suggestions: tailor
them to your project!

15 April 2010 17

Tr
u

n
k

Branches

= Tags

Ti
m

e

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

The Basic Work Cycle: Overview

15 April 2010 18

Update

Modify

Examine
Changes

Merge

Commit

Checkout

Import Project
Create

Repository

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Preparation: Creating a Sample Project

• We first need an example project for the next steps

• I have created a small project that we will use for this purpose

• Use the following commands to download and extract the
data:

15 April 2010 19

$~ cd 

$~ wget˽http://www.wire.tu-bs.de/

 mitarbeiter/opajonk/files/sample-project.tgz 

$~ tar˽xvfz˽$HOME/sample-project.tgz 

• The directory “sample-project” now contains one file named
“main.cpp”, which is a typical “Hello World” program written
in C++

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Importing Data Into Your Subversion Repository

• Important: Always make sure that you have a clean copy of the
project you want to import
– No temporary files

– No configuration files: store templates for them!

– No generated files like “*.o” or “*.so”

• Then use the following command to import it into the trunk of your
repository:

15 April 2010 20

$~ svn˽import˽sample-project˽file://$HOME/svn/trunk˽–m˽

 “initial˽import”

• Your local copy “sample-project” now is not altered at all by
the import

• Important: Do not mess with the files in $HOME/svn unless
you know exactly what you’re doing! The repository itself
cannot be modified without using Subversion!

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

The Basic Work Cycle: Overview

15 April 2010 21

Update

Modify

Examine
Changes

Merge

Commit

Checkout

Import Project
Create

Repository

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Creating the Working Copy and Updating It

• The process of creating a working copy is called “checkout”

• You have to do this on each computer where you want to
work on your project

• We create two working copies now because we need both of
them later. Use the following commands:

15 April 2010 22

$~ svn˽checkout˽file://$HOME/svn/trunk˽wc1 

$~ svn˽checkout˽file://$HOME/svn/trunk˽wc2 

• The directories “wc1” and “wc2” now contain your working
copies of the “trunk” of your project

• To update the first working copy use:

$~ cd˽wc1 

$~/wc1 svn˽update 

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

The Basic Work Cycle: Overview

15 April 2010 23

Update

Modify

Examine
Changes

Merge

Commit

Checkout

Import Project
Create

Repository

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Making Modifications and Examining Them

• Remember: file system operations have to be performed
using the Subversion client!

• Use “svn add”, “svn move”, “svn delete” or “svn copy” and
your development tools to make changes to the working copy.
Example:

15 April 2010 24

$~/wc1 svn˽copy˽main.cpp˽hello.cpp 

$~/wc1 kwrite˽main.cpp 

• Change “Hello Moon” to “Hello Sun” and save your work

• You can examine your changes with the commands “svn
status”, “svn diff” and “svn revert”. Example:

$~/wc1 svn˽status 

$~/wc1 svn˽revert˽hello.cpp 

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Advanced Topic: Ignoring Unversioned Items

• Often you do not want certain files and directories to be
under version control:
– Temporary files

– Backup files automatically created by some editors

– Build artifacts like object files and shared libraries

– System dependent configuration files

• Subversion supports this: you can set the property
“svn:ignore” on a directory for example to “*.so” to ignore all
shared object files

• Multiple patterns are separated by newlines

• Now “svn status” and others does not show the garbage
output which you do not want to see anyway

• Some will know this concept from CVS

15 April 2010 25

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Preparation: Creating Conflicting External Changes

• We will now simulate the creation of some external changes

• Use the following commands:

15 April 2010 26

$~/wc1 cd˽.. 

$~ cd wc2 

$~/wc2 kwrite˽main.cpp 

• Change “Hello Moon” to “Hello Mars” and save your changes

• Create another file called “README” and add some content

• Then send your changes to the repository using:

$~/wc2 svn˽add˽README 

$~/wc2 svn˽commit –m “I live on Mars, added readme” 

• Now you can go back to the first working copy using:

$~wc2 cd˽.. 

$~ cd wc1 

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

The Basic Work Cycle: Overview

15 April 2010 27

Update

Modify

Examine
Changes

Merge

Commit

Checkout

Import Project
Create

Repository

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Merging Changes from Others (1/3)

• During your own work others may have sent their changes to
the repository (and we know they have!)

• You first have to merge these changes into your working copy
using “svn update”

• Most of the time this can be done by the Subversion client
automatically (for non-conflicting changes)

• Sometimes you and some other person have changed the
same position in the same file

• Then you have a conflict that you have to resolve manually.

• Use the following command and note the small “C” next to
“main.cpp”:

15 April 2010 28

$~/wc1 svn˽update 

C main.cpp

A README

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Merging Changes from Others (2/3)

• For each conflict Subversion creates three extra files:
– filename.mine – your local version

– filename.rOLD – the version before you changed it

– filename.rNEW – the version from the repository

• If line-based merging is possible Subversion places conflict
markers in the original file:

15 April 2010 29

$~/wc2 kwrite˽main.cpp 

#include <iostream>

int main(){

<<<<<<< .mine

 std::cout << "Hello Sun!" << std::endl;

=======

 std::cout << "Hello Mars!" << std::endl;

>>>>>>> .r5

 return 0;

}

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Merging Changes from Others (3/3)

• Now you can handle the conflict by
– using the revision from the repository

– using your local version

– manually merge the changes

• Resolve the conflict using “Hello World”! Then tell Subversion
that the conflict has been resolved:

15 April 2010 30

$~/wc2 svn˽resolved˽main.cpp 

• This will delete the temporary files and enable the commit

• Now you are ready to send your changes to the repository:

$~/wc2 svn˽commit˽–m˽“I live on earth”

Sending main.cpp

Transmitting file data .

Committed revision 6.

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

The Basic Work Cycle: Overview

15 April 2010 31

Update

Modify

Examine
Changes

Merge

Commit

Checkout

Import Project
Create

Repository

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Update: Closing the Loop

• Now the process continues with another update before you
start making the next changes.

• A short summary of the basic work cycle:
– Create a repository (if you don’t have one)

– Import your data (if it’s not already imported)

– Create your working copy

– First update, then modify, then merge and commit

• If you stick to these short guidelines you will get the
maximum out of version control using Subversion with a
minimal effort

15 April 2010 32

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Further Information

• There is a freely available, very good book from the authors of
Subversion (the O’Reilly book):

http://svnbook.red-bean.com/

• Of course there are graphical Subversion clients for a wide
variety of operating systems. A small sample:
– Tortoise SVN: Windows Explorer integrated client, probably the best

GUI available, open source

– Subversive: Eclipse Team Provider Plugin, open source

– SmartSVN: Java GUI, commercial

– RapidSVN: Cross-platform GUI written in C++, open source

– KDESVN: KDE integrated Subversion client, open source

– AnkhSVN: Visual Studio team provider addin, open source

– Versions: MacOS GUI, currently pre-beta, commercial

– SyncroSVN: Java GUI, commercial

– And many, many others…

15 April 2010 33

End

http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://tortoisesvn.tigris.org/
http://www.polarion.org/index.php?page=overview&project=subversive
http://www.syntevo.com/smartsvn/
http://rapidsvn.tigris.org/
http://www.kde-apps.org/content/show.php?content=26589
http://ankhsvn.tigris.org/
http://www.versionsapp.com/
http://www.syncrosvnclient.com/

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Institute of Scientific Computing
Technical University Braunschweig

Advanced Subversion Topics
- Client Side -

15 April 2010 34

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Advanced Topic: Versioned Metadata

• You can add metadata to files and directories
• It follows the concept of property maps: they map from a human

readable name to any binary data
• Metadata is versioned just like files and directories
• Example:

15 April 2010 35

$~/wc1 svn˽propedit˽copyright˽main.cpp

• This command launches your favorite editor and allows you to
directly edit the property called “copyright”

• There are special properties which start with “svn:”. The most
important ones are:
• “svn:log” contains the commit log message
• “svn:ignore” stores which patterns are ignored by the client
• “svn:keywords” makes the client replace certain keywords

within a file with version information (similar to CVS)
• “svn:externals” allows you to create “soft links” between

repositories

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Advanced Topic: Keyword Substitution

• Sometimes it is helpful to have certain information on the
version of a file directly available inside it

• Subversion supports the “svn:keywords” property which
enables keyword substitution similar to CVS:
– The keywords are called: Date, Revision, Author, HeadURL and Id

– Place them into your text like “Id” and set the property of the file to
“Id”

– Subversion will expand the keyword in your working copy then, for
example to

$Id: main.cpp 1234 2007-08-03 22:31:41Z opajonk $

– The unexpanded keyword is versioned and thus stored in the
repository, NOT the expanded one

15 April 2010 36

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Advanced Topic: Externals Definitions

• A problem you may know: you want to use some versioned files
across several projects, but only want to version them once
– BibTeX databases
– Common LaTeX files
– Libraries you have written

• Subversion supports this with so-called externals:

– Set the property “svn:externals” on a parent directory in the following
way:

dir-name
https://www.example.com/svn/project

– At the next update a directory called dir-name will appear which is a

working copy of the project
– New working copies of your project automatically contain the external

working copy
– All operations on the parent working copy are also performed on the child

working copies (if you have the right to do so!)

15 April 2010 37

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Advanced Topic: Lock-Modify-Unlock Model Support in
Subversion (1/2)

• The file is now locked in the repository and
can only be modified using the present
working copy

• After the next commit the lock is gone and
anyone can modify the file again

• Locks are useful for
– Binary files which cannot be automatically

merged

– Files that will undergo heavy modifications

15 April 2010 38

$~/wc1 svn˽lock˽main.cpp˽–m˽“refactoring”

• Subversion also supports the “lock-modify-unlock”-
model of version control (or “reserved checkout”)

Update

Lock

Modify
Examine
Changes

Commit
(Unlock)

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Advanced Topic: Lock-Modify-Unlock Model Support in
Subversion (2/2)

• You can encourage that a file can only be modified if one
holds a lock:
– Set the “svn:needs-lock” property on a file (its value is irrelevant)

– Subversion clients will make the file read-only in any working-copy
unless you hold a lock for it

• To help team communication use lock comments describing
things like
– Why did you take a lock

– How long you are planning to hold it

15 April 2010 39

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Institute of Scientific Computing
Technical University Braunschweig

Advanced Subversion Topics: Server
Side

15 April 2010 40

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Advanced Topic: Hook Scripts

• Subversion repositories allow the administrator to place
scripts that are executed on several occasions:
– Before a commit takes

– When a commit starts

– After a commit has taken place

– Before / after taking a lock

– Before / after releasing a lock

– Before / after doing a revision property change

• These are normal shell scripts or batch files

• Example usage:
– Sending e-mails after a commit

– Enforcing log messages with a special format

15 April 2010 41

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Advanced Topic: CVS to SVN

• The huge amount of advantages that Subversion has over CVS
imply that one should completely move to Subversion

• Fortunately: there is a tool to convert existing CVS repositories
to Subversion ones: CVS2SVN

• It is a Python script for one-time conversions, not for repeated
synchronizations!

• It is able to convert braches and tags

• See http://cvs2svn.tigris.org/ for further information

15 April 2010 42

End

http://cvs2svn.tigris.org/

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

Institute of Scientific Computing
Technical University Braunschweig

Subversion Setup at the Institute of
Scientific Computing

15 April 2010 43

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

The Subversion Setup at the Institute of Scientific
Computing (1/2)

• A fully featured Subversion server is available at
https://valkyrie.sc.cs.tu-bs.de/svn/{repository}

– Replace {repository} with the repository name, for example ctl

– As it uses the WebDAV protocol it works across almost any firewall and
any proxy server

• We have an administration frontend at
https://valkyrie.sc.cs.tu-bs.de/svnmanager

– You can create, modify and delete repositories yourself (once you have
an account!)

– You can add and remove access rights to the repositories owned by
you

15 April 2010 44

https://valkyrie.sc.cs.tu-bs.de/svn/{repository}
https://valkyrie.sc.cs.tu-bs.de/svn/{repository}
https://valkyrie.sc.cs.tu-bs.de/svn/{repository}
https://valkyrie.sc.cs.tu-bs.de/svnmanager
https://valkyrie.sc.cs.tu-bs.de/svnmanager
https://valkyrie.sc.cs.tu-bs.de/svnmanager

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

The Subversion Setup at the Institute of Scientific
Computing (2/2)

• If you or any student wants to have access to the Subversion
setup contact me, Dominik Jürgens, Martin Krosche or Elmar
Zander. They can add new users.

• To save resources I encourage you to create dumps of
repositories that are no longer needed and delete them from
the server (Webfrontend)

• If they are needed online again the dump can be reloaded at
any time (Webfrontend)

15 April 2010 45

 
 

 dxvudvudxvu 

   

b

a

b

a

b

a

dxxgxfxgxfdxxgxf)()(')()()(')(

dA
y

L

x

M
dyMdxL

DC

 


















 3

!3

)('''2

!2

)(''

!1

)('
)()()()()(axaxaxafxf

afafaf

The End

15 April 2010 46

