Elektrodynamik SoSe 2009

8. Ubungsblatt Abgabe: Dienstag, den 26.05.2009 um 11:25h, Hausaufgabenkiste bei A316

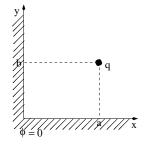
1. Dipolstrahlung (6 Punkte)

- (a) Betrachen Sie eine zeitabhängige, oszillierende Ladungsverteilung $\rho(t)$ in einem begrenzten Volumen V. Was versteht man unter Dipolstrahlung? Fassen Sie die wesentlichen Eigenschaften der Dipolstrahlung in knappen, aber präzisen Worten zusammen. Diskutieren Sie die Strahlungscharakteristik.
- (b) Bestimmen Sie die mittlere Strahlungsleistung $\langle \vec{S} \rangle$ zweier Dipole, die senkrecht zueinander in der x_2x_3 -Ebene angeordnet seien $(\vec{p_1}=p_0e^{i\omega t}\vec{e_3};\ \vec{p_2}=p_0e^{i\omega t}\vec{e_2})$. Drücken Sie Ihre Ergebnis für $\langle \vec{S} \rangle$ in kartesische Koordinaten aus und skizzieren Sie die Strahlungscharakteristik in der x_2x_3 -Ebene und in der x_2x_3 -Ebene. Hinweis: Geben Sie analog zur Berechnung der Strahlungsleistung eines Dipols in der Vorlesung vor und nehmen Sie an, dass $(\vec{p_1}=p_1^*;\ \vec{p_2}=p_2^*)$ gilt.

2. Lebensdauer eines klassischen Atoms (4 Punkte)

Betrachten Sie ein Elektron mit Ladung -e und Masse m auf einer kreisförmigen Bahn um ein stationäres Proton der Ladung e und der Masse $M \longrightarrow \infty$.

- (a) Bestimmen Sie die Gesamtenergie *e* des Elektrons aus dem Gleichgewicht von Zentrifugal und Coulomkraft.
- (b) Bestimmen Sie den Energieverlust des Elektrons pro Zeiteinheit aus der abgegebenen Strahlungsleistung
- (c) Berechnen Sie dr/dt aus dem Energieverlust $d\epsilon/dt$ und bestimmen Sie durch Lösung der zugehörigen Differentialgleichung r(t). Berechnen Sie die Zeit τ , bei der $r(\tau) = 0$.
- (d) Bestimmen Sie einen Zahlenwert für τ unter der Annahme, dass $r(0) = a_0$ der Bohr'sche Radius ist.


3. Greensche Reziprozitätssatz (4 Punkte)

(a) ϕ sei das Potential, das von einer Raumladungsdichte ρ innerhalb eines Volumens V und von einer Flächenladungsdichte σ auf der das Volumen begrenzenden Fläche S herrührt. ϕ' bezeichne ein anderes, aus der Ladungsverteilung ρ' und σ' resultieren des Potential. Beweisen Sie

$$\int_{V} \rho \phi' \, dV + \int_{S} \sigma \phi' \, df = \int_{V} \rho' \phi \, dV + \int_{S} \sigma' \phi \, df$$

Hinweis: Berechnen Sie das Integral $\int \vec{E} \cdot \vec{E'} \, dV$ auf zwei unterschiedliche Weisen, indem Sie erst $\vec{E} = \nabla \phi$ und danach $\vec{E'} = \nabla \phi'$ einsetzen.

4. Ladung in der Ecke (6 Punkte)

Zwei halbunendliche Ebenen seien so aufgestellt, dass sie einen rechten Winkel bilden. Zwischen den beiden befinde sich die Ladung q am Punkt (a, b). Die beiden Ebene seien geerdet.

- (a) Berechnen Sie mit Hilfe der Methode der Spiegelladung das Potential für den Bereich zwischen den Platten. Welche Spiegelladungen brauchen Sie dafür und wo müssen sich diese befinden?
- (b) Welche Kraft wirkt auf *q*? Wie viel Energie benötigt man, um die Ladung aus dem Unendlichen an diese Stelle zu bringen?

Hinweis: Die Übungen, die regulär an Christi Himmelfahrt und dem darauffolgenden Freitag stattfinden würden, werden verlegt. Brendans Übung findet am Montag, den 25. Mai um 16:30h im MS 3.3 statt. Petricks Übung findet schon am Mittwoch den 20. Mai um 13:00h im A318 statt. Stephan vereinbart mit seiner Gruppe per E-Mail eines Ausweichtermin. Wer zu seinem Ausweichtermin nicht kann, kann auch die Übung einer anderen Gruppe besuchen.