Mechanik SoSe 2010

6. Übungsblatt Abgabe: Montag, den 31.05.2010 um 15:00h, Hausaufgabenkiste bei A316

1. Morse-Potential

Ein einfaches Modell für den eindimensionalen Potentialverlauf bei Molekülen ist das sogenannte Morse Potential:

$$V(x) = A[(e^{-\alpha x} - 1)^2 - 1]; \quad A > 0; \quad \alpha > 0.$$

Hier soll der Fall Gesamtenergie E < 0 betrachtet werden, d.h., gebundene Bewegungen eines Massenpunktes der Masse m in diesem Potential.

- (a) Geben Sie die Kraft \vec{K} an.
- (b) Skizzieren Sie V(x).
- (c) Bestimmen Sie die Umkehrpunkte.
- (d) Zeigen Sie, dass sich für kleine Auslenkungen aus der Gleichgewichtslage harmonische Oszillationen ergeben. Berechnen Sie für diesen Grenzfall die Periode T der Schwingung durch Lösen der BWGL.

2. Lenz'scher Vektor

Für die Bahn eines Teilchens der Masse m im Potential $U(r) = -\alpha/r^n$ definieren wir mit dem Drehimpuls \vec{L} und dem Impuls \vec{p} den Lenz'schen Vektor $\vec{\Lambda}$

$$\vec{\Lambda} = \frac{m}{\alpha} \dot{\vec{r}} \times (\vec{r} \times \dot{\vec{r}}) - \frac{\vec{r}}{r^n} = \frac{\vec{p} \times \vec{L}}{\alpha m} - \frac{\vec{r}}{r^n}.$$

Zeigen Sie für welche n:

- (a) $\vec{\Lambda}$ ist eine Erhaltungsgröße.
- (b) $|\vec{\Lambda}|$ ist gleich der Exzentrizität $\varepsilon = \sqrt{\frac{2EL^2}{\alpha^2 m} + 1}$ der Bahnkurve.
- (c) Die Auswertung von $\vec{\Lambda} \cdot \vec{r}$ ergibt die Bahnkurve des Teilchens in Polarkoordinaten.
- (d) zeigt zum zentrumsnächsten Punkt (Perihel), also $\vec{\Lambda}$ zeigt in Richtung \vec{r}_{\min} .