Prof. Dr. W. Brenig Dr. R. Darradi

Elektrodynamik SoSe 2009

4. Übungsblatt Abgabe: Dienstag, den 28.04.2009 um 11:25h, Hausaufgabenkiste bei A316

1. Greensfunktion für Wellengleichung (6 Punkte)

Bestimmen Sie die beiden Lösungen der inhomogenen Wellengleichung im Vakuum

$$(\Delta - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}) G(r, t) = -4\pi \delta(r) \delta(t) .$$

Zur Überprüfung: Lösung: $G_{\pm}(r,t)=\frac{1}{r}\delta(t\mp\frac{r}{c})$ (**Hinweis**: benutzen Sie Fourier-Transformation)

2. Geladenes Teilchen im konstanten elektrischen Feld (6 Punkte)

Die relativistischen Bewegungsgleichungen eines Teilchens der Ruhemasse m_0 und der Ladung q, dass sich in einem konstanten elektrischen Feld $\vec{E} = E_0 \vec{e}_1$ in der $x_1 x_2$ Ebene bewegt, sind:

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{m_0 \dot{x_1}}{\sqrt{1-\beta^2}} = q \, E_0; \quad \frac{\mathrm{d}}{\mathrm{d}t} \frac{m_0 \dot{x_2}}{\sqrt{1-\beta^2}} = 0 \quad \mathrm{mit} \quad \beta^2 = \frac{\dot{x_1}^2 + \dot{x_2}^2}{c^2} \; .$$

Integrieren Sie die Bewegungsgleichungen und geben Sie $\dot{x_1}(t)$, $\dot{x_2}(t)$ sowie die Bahnkurve $(\dot{x_1}(t),\ \dot{x_2}(t))$ an. Vergleichen Sie mit dem nicht-relativistischen Fall. Die Anfangsbedingungen seien

$$\dot{x_1}(0) = 0$$
; $\dot{x_2}(0) = v_0$; $x(0) = 0$; $y(0) = 0$.

3. Der Feldstärketensor(8 Punkte)

Aus der Vorlesung ist Ihnen der elektromagnetische Feldtensor $F^{\mu\nu}=\partial^{\mu}A^{\nu}-\partial^{\nu}A^{\mu}$, sowie das elektrische Feld $E^i=F^{4i}$ und die magnetische Induktion $F^{ij}=B^k$, mit ijk zyklische Vertauschung von 123, bekannt. Dabei ist A^{μ} der 4er-Vektor des elektromagnetischen Potentials.

- (a) Wie transformiert sich $F^{\mu\nu}$ unter der Lorentztransformation
- (b) Wie transformieren sich E^i und B^i unter einer orthogonalen Transformation D^{ij} der drei räumlichen Koordinaten. (Die Determinante||D|| von D^{ij} erfüllt $||D|| = \pm 1$.) Vergleichen und diskutieren Sie das Verhalten von \vec{E} und \vec{B} unter einer Spiegelung.