Prof. Dr. U. Motschmann P. Meier, M. Sc.

THEORETISCHE MECHANIK

SS 2015

3. Übungsblatt

Abgabe: 30. April 2015 bis 16 Uhr im Kasten vor A317

Fragen zu den Aufgaben: P. Meier, Raum A223, Tel.: 391-5189, patrick.meier@tu-bs.de

6. Ebene Polarkoordinaten als Beispiel krummliniger Koordinaten

In dieser Aufgabe soll das Rechnen mit krummlinigen Koordinaten am Beispiel ebener Polarkoordinaten wiederholt und geübt werden.

- (a) Erklären Sie anschaulich, was man unter den kovarianten und kontravarianten Basen in Polarkoordinaten versteht.
- (b) Formulieren Sie die Umrechnung der kovarianten Basen $\{\underline{b}_{\rho}, \underline{b}_{\varphi}\}$ und kontravarianten Basen $\{\underline{b}^{\rho}, \underline{b}^{\varphi}\}$ in ebenen Polarkoordinaten (ρ, φ) aus den kartesischen Koordinaten (x^1, x^2) .
- (c) Berechnen Sie alle Elemente des metrischen Fundamentaltensors $g_{ab} = \underline{b}_a \cdot \underline{b}_b$ und das Linienelement $ds^2 = g_{ab} d\xi^a d\xi^b$ in Polarkoordinaten.
- (d) Berechnen Sie die kovarianten und kontravarianten Komponenten des Gradienten eines Skalarfeldes $\partial_x f$. Füllen Sie die folgende Tabelle aus.

	kartesische Koordinaten	Polarkoordinaten
kovariante Komponenten $(\partial_{\underline{x}}f)_a$	$\left(\frac{\partial f}{\partial x^1}, \frac{\partial f}{\partial x^2}\right)$	(,)
kontravariante Komponenten $(\partial_{\underline{x}} f)^a$	(,)	(,)

7. Krummlinige, nicht-orthogonale Koordinaten

Als Beispiel für krummlinige und nicht-orthogonale Koordinaten ξ^1, ξ^2, ξ^3 betrachten wir $(x^1, x^2, x^3 \text{ sind kartesische Koordinaten})$

$$x^{1} = a \xi^{1} \cos(\xi^{2})$$
 ; $x^{2} = b \xi^{1} \sin(\xi^{2})$; $x^{3} = c \xi^{3}$ (1)

mit $a, b, c \neq 0$.

- (a) Stellen Sie die ko- und kontravariante Basis ($\{\underline{b}_1,\underline{b}_2,\underline{b}_3\}$ bzw. $\{\underline{b}^1,\underline{b}^2,\underline{b}^3\}$) sowie den metrischen Tensor auf. Wie lassen sich die einzelnen Einträge des metrischen Tensors interpretieren?
- (b) Berechen Sie $ds^2 = d\underline{x} \cdot d\underline{x}$ in den kartesischen Koordinaten x^a und den krummlinigen Koordinaten ξ^a .
- (c) Skizzieren Sie die Koordinatenlinien in der (x^1, x^2) -Ebene für a = 1, b = 2 und zeichnen Sie die kound kontravarianten Basisvektoren in den Punkten $(\xi^1, \xi^2) = (1, \pi/4)$ bzw. $(\xi^1, \xi^2) = (1, \pi/2)$ ein. Welche Gleichungen beschreiben die Linien $\xi^1 = \text{const}$ bzw. $\xi^2 = \text{const}$ in kartesischen Koordinaten? Was ergibt sich für den metrischen Tensor und die Basisvektoren im Fall a = b = c = 1?