INSTITUT FÜR THEORETISCHE PHYSIK

Prof. Dr. Wolfram Brenig Niklas Casper Erik Wagner

Elektrodynamik

SS 2018

9. Übungsblatt

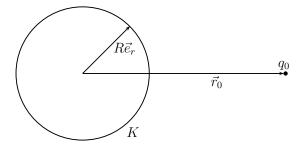
Abgabe: Do, 14.06.2018 bis 09:45 Uhr, Kasten neben A316

Übungsblätter gibt es unter https://www.tu-bs.de/theophys/edu/sose18/edyn.

38. Bildladung (12 Punkte)

Gegeben sei eine geerdete, metallische Kugel K mit Radius R um den Ursprung herum.

Bringt man eine Punktladung q_0 an den Ort \vec{r}_0 (siehe Skizze) außerhalb der Kugel, so entsteht auf der Kugeloberfläche eine Influenzladung.



- (a) Bestimmen Sie das Potential $\Phi(\vec{r})$ im Außenraum der Kugel mit Hilfe der Methode der Bildladung unter der Randbedingung $\Phi(\vec{r})|_{\vec{r} \in \partial K} = 0$.
- (b) Beantworten Sie die folgenden Fragen und geben Sie jeweils eine kurze Begründung an:
 - i. Wie groß ist das elektrische Feld im Innenraum der Kugel?
 - ii. Unter welchem Winkel trifft das elektrische Feld auf die Kugeloberfläche?
 - iii. Auf welchen Linien auf der Kugeloberfläche gilt $\sigma(\vec{r}) = \text{const.}$?
- (c) Berechnen Sie die Influenzladung $\sigma(\vec{r})$, indem Sie den Gaußschen Satz an der Oberfläche der Kugel ausnutzen.
- (d) Bestimmen Sie die influenzierte Gesamtladung durch Integration über die Kugeloberfläche und vergleichen Sie mit der Stärke der Bildladung.
- (e) Berechnen Sie die von der influenzierten Ladung ausgeübte Kraft auf die Punktladung q_0 als Funktion des Abstands $r_0 = |\vec{r_0}|$, indem Sie die Beiträge von Flächenelementen dA auf der Kugeloberfläche aufintegrieren. Diskutieren Sie den Grenzfall $r_0 \gg R$.
- (f) Nehmen Sie nun an, die Kugel sei nicht mehr geerdet, sondern auf konstantem Potential $\Phi_0 > 0$ gehalten.

Wie müssen jetzt Bildladungen gewählt werden, um dieses Randwertporblem zu lösen?

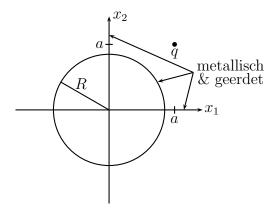
Hinweis: Nutzen Sie bei der Berechnung der Integrale Kugelkoordinaten und die Symmetrie des Problems. Geeignete Substitutionen und eine Partialbruchzerlegung (in Teil (e)) können die Berechnung vereinfachen.

39. Mehr Bildladungen (4 Punkte)

Bestimmen Sie das Potential Φ im Bereich $\{\vec{r}|x_1, x_2 > 0; \sqrt{x_1^2 + x_2^2 + x_3^2} > R\}$ für die in der Skizze dargestellte Geometrie:

Eine Punktladung q befindet sich bei (a, a, 0). Die Metallplatten entlang der Koordinatenachsen x_1 und x_2 sowie die Kugel um den Ursprung mit Radius R seien metallisch und geerdet.

Zeigen Sie insbesondere auch, dass $\Phi = 0$ für $x_1 = 0$ bzw. $x_2 = 0$ und auf der Oberfläche der Kugel erfüllt ist.



40. Nicht-ganz-so-paralleler Plattenkondensator (4 Punkte)

★ Vorlesung von Dienstag notwendig ★

Wir betrachten den *nicht-ganz-so-parallelen* Plattenkondensator (siehe Skizze). Zwischen den Platten liege die Spannung U an.

Berechnen Sie die Kapazität und vernachlässigen Sie dabei Randeffekte. Gehen Sie wie folgt vor:

- (a) Führen Sie Zylinderkoordinaten (r, ϕ, z) ein, wobei die z-Achse in der Schnittgeraden der beiden Plattenebenen liege. Begründen Sie, dass das Potenzial nur von ϕ abhängt.
- (b) Lösen Sie die Laplace-Gleichung im Volumen zwischen den Platten. Verwenden Sie als Randbedingungen $\Phi(x_1, x_2 = 0, x_3) = 0$ und geben Sie das elektrische Feld \vec{E} an.
- (c) Berechnen Sie die Ladung Q auf der Kondensatorplatte bei $x_2 = 0$.

