

Prof. Dr. W. Brenig M.Sc. Boris Celan Dipl.-Phys. Björn Willenberg

Thermodynamik und Quantenstatistik

WiSe 2013/14

9. Übungsblatt

Abgabe: Di, 17.12.2013 bis 11.30 Uhr, Kasten neben A316

Übungsblätter gibt es unter https://www.tu-bs.de/theophys/edu/wise-1314/thermo1314.

24. Osmose (8 Punkte)

Die Entropie $S(E, V, n_1, n_2)$ (innere Energie E, Volumen V, Molzahl $n_{1,2}$) eines Gemisches zweier idealer Gase mit $n = n_1 + n_2$ und Konstanten C_i ist gegeben durch:

$$S = R \sum_{i=1}^{2} n_{i} \ln \left(C_{i} \frac{V}{n_{i}} \left(\frac{E}{n} \right)^{\frac{3}{2}} \right)$$

(a) Berechnen Sie die Zustandsgleichungen E(T, n) und P(T, V, n). Zeigen Sie, dass für die chemischen Potentiale der Komponenten

$$\mu_j = RT \left(\frac{5}{2} - \ln \left(C_j' T^{3/2} \frac{V}{n_j} \right) \right)$$

gilt, wobei
$$C'_{i} = (3R/2)^{3/2}C_{j}$$
 ist.

Dieses Gasgemisch befinde sich nun in einem Zweikammersystem, welches an ein Wärmebad der Temeratur T angeschlossen ist. In der Kammer I mit Volumen V_I befinden sich n_1^I mol des ersten Gases und n_2^I mol des zweiten Gases, in Kammer II mit Volumen V_{II} sind n_1^{II} mol des ersten bzw. n_2^{II} mol des zweiten Gases. Nun werde die Wand zwischen den beiden Kammern semipermeabel, d. h. sie lasse die Gaskomponente 1 durch, für Gas 2 sei sie jedoch undurchlässig.

- (b) Berechnen Sie die Teilchenzahl in beiden Kammern, nachdem sich das Gleichgewicht eingestellt hat.
- (c) Berechnen Sie die Drücke in beiden Kammern. Kann der Druckunterschied Null werden? Wie würden sich die Drücke einstellen, wenn die Wand für beide Gase durchlässig wäre?

25. Massenwirkungsgesetz für Säuren (7 Punkte)

0,1 mol einer Säure HA werde in 1ℓ Wasser gelöst und dissoziiert nach $HA \to H^+ + A^-$. Die Gleichgewichtskonstante für diese Reaktion ist $K_A = 2 \times 10^{-5} \, \frac{\text{mol}}{1}$.

- (a) Berechnen Sie die Konzentration an H^+ -lonen, A^- -lonen und undissoziierter Säure HA. Geben Sie den pH-Wert, d. h. den negativen \log_{10} der Konzentration an H^+ -lonen an.
- (b) Nun werden 0,1 mol einer zweiten Säure HB zugesetzt, die wie HA dissoziiert ($K_B = 10^{-5} \frac{\text{mol}}{\text{I}}$). Berechnen Sie auch hier alle Konzentrationen, d. h. von A^- , B^- , H^+ , HA und HB. Beachten Sie, wie sich die Konzentration von A^- mit dem Beimischen der zweiten Säure ändert!

Hinweis: Zum Lösen der Gleichung sind technische Hilfsmittel erlaubt.

26. Clausius-Clapeyron und der Tripelpunkt von Wasser (5 Punkte)

Bestimmen Sie approximativ den Tripelpunkt von Wasser mit Hilfe der unten angegebenen Messdaten. Verwenden Sie dazu p(T) in linearer Näherung, d. h. $p(T) \approx p_0(T_0) + \frac{\mathrm{d}p}{\mathrm{d}T}(T-T_0)$. Was gilt für die intensiven Variablen am Tripelpunkt? Geben Sie zum Vergleich den Literaturwert für Temperatur und Druck am Tripelpunkt an. Messdaten für Wasser:

- Der Dampfdruck von Wasserdampf bei zwei verschiedenen Temperaturen beträgt $p_1 = 6,105 \times 10^2$ Pa bei $T_1 = 0$ °C und $p_2 = 6,567 \times 10^2$ Pa bei $T_2 = 1$ °C.
- Die spezifischen Volumina von Eis und Wasser sind bei $T_0=0$ °C und $p_0=1{,}013\times 10^5$ Pa gegeben durch $v_{\rm Eis}=1{,}091\times 10^{-3}~{\rm m}^3/{\rm kg}$, sowie $v_{\rm Wasser}=1{,}000\times 10^{-3}~{\rm m}^3/{\rm kg}$.
- Die latente Wärme von Eis ist $q=334,94~\frac{\mathrm{kJ}}{\mathrm{kg}}$.