

Prof. Dr. W. Brenig M.Sc. Boris Celan

Quantentheorie

WS 2014/15

6. Übungsblatt

Abgabe: Di, 02.12.2014 bis 11.30 Uhr, Kasten neben A316

Übungsblätter gibt es unter https://www.tu-bs.de/theophys/edu/wise-1415/quanten.

16. Matrizen I: Stern-Gerlach-Experiment und Messtheorie (13 Punkte)

Die drei Pauli-Matrizen σ_x , σ_y und σ_z spannen zusammen mit der 2×2 Einheitsmatrix $\mathbb{1}_2$ den Raum der komplexen 2×2 Matrizen auf. Sie sind definiert als

$$\sigma_{\mathsf{X}} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \quad \sigma_{\mathsf{Y}} = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right), \quad \sigma_{\mathsf{Z}} = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right).$$

(a) Die Wechselwirkung zwischen einem sogenannten "Spin"-1/2 Teilchen mit Masse m und einem Magnetfeld B in x-Richtung wird beschrieben durch den Hamilton-Operator

$$H_s = -C\sigma_X$$
,

wobei $C = \frac{eB\hbar}{2mc}$ ist. Stellen Sie H_s sowie den Zeitentwicklungsoperator

$$U(t) = e^{\frac{-iH_St}{\hbar}}$$

als 2×2 -Matrizen dar.

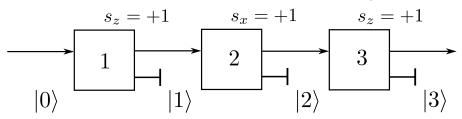
- (b) Geben Sie die Eigenwerte und -vektoren der drei Pauli-Matrizen an.
- (c) Der Spin-Zustand $s_{\alpha} \in \mathbb{R}$ bezüglich der Richtung $\alpha = x$, y, z wird definiert als Eigenwert der Pauli-Matrix σ_{α} , d.h.

$$\sigma_{\alpha} | s_{\alpha} \rangle = s_{\alpha} | s_{\alpha} \rangle$$
.

Ein freies Teilchen (B=0, d.h. Spin-Anteil des Hamilton-Operators $H_s=0$) werde nun im $s_z=+1$ Zustand präpariert

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Nun werden nacheinander drei Stern-Gerlach-Experimente¹ durchgeführt:



Bei einer ersten Messung wird bestimmt, ob das Teilchen im Zustand $s_z=+1$ bzgl. der z-Richtung ist, in der zweiten, ob der Zustand $s_x=+1$ bzgl. der x-Richtung ist und schließlich in der dritten noch einmal, ob der Zustand $s_z=+1$ bzgl. der z-Richtung ist.

Bitte wenden! \rightarrow

¹1943 erhielt Otto Stern für den nach Walther Gerlach und Ihm benannten Versuch den Nobelpreis für Physik.

- i. Geben Sie die Wahrscheinlichkeit an, mit dem gegebenen Anfangszustand $|0\rangle$, das Teilchen bei der ersten Messung im Zustand $s_z = +1$ zu finden. Wie lautet der Zustand $|1\rangle$ nach dieser ersten Messung?
- ii. Wie ist die Wahrscheinlichkeit, das Teilchen bei der zweiten Messung im Zustand $s_x = +1$ zu finden und wie lautet der Zustand $|2\rangle$ nach dieser Messung?
- iii. Wie ist die Wahrscheinlichkeit bei der dritten Messung noch einmal den Zustand $s_z=+1$ zu messen?
- (d) Berechnen Sie simultan die Erwartungswerte $\langle \sigma_x \rangle$ und $\langle \sigma_y \rangle$ sowie deren Schwankungsquadrate $(\Delta \sigma_\alpha)^2 = \langle \sigma_\alpha^2 \rangle \langle \sigma_\alpha \rangle^2$ $(\alpha = x, y)$ im Zustand $|0\rangle$. Berechnen Sie zusätzlich noch die Erwartungswerte des Kommutators $\langle [\sigma_x, \sigma_y] \rangle$, sowie die Erwartungswerte des Antikommutators $\langle \{\sigma_x, \sigma_y\} \rangle$ (wobei $\{\sigma_x, \sigma_y\} = \sigma_x \sigma_y + \sigma_y \sigma_x$) in dem Zustand $|0\rangle$. Diskutieren Sie Ihre Ergebnisse im Blick auf die verallgemeinerte Unschärferelation aus der Vorlesung.

17. Matrizen II: Tensorieren von Matrizen und Symmetrien (7 Punkte)

Wir bilden das Tensorprodukt $\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$ und führen darin mit Hilfe der Paulimatrizen σ_x , σ_y und σ_z die folgenden Operatoren ein

$$H = \sigma_X \otimes \sigma_X + \sigma_V \otimes \sigma_V$$
, $Z = \sigma_Z \otimes \mathbb{1}_2 + \mathbb{1}_2 \otimes \sigma_Z$,

sowie die Vertauschungs-Operation R, so dass für $|a\rangle$, $|b\rangle \in \mathbb{C}^2$ gilt

$$R(|a\rangle \otimes |b\rangle) = |b\rangle \otimes |a\rangle$$
.

(a) Stellen Sie H,Z und R als 4×4 Matrizen dar. Hinweis: Für das Tensorprodukt zweier Vektoren gilt

$$|a\rangle\otimes|b\rangle = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}\otimes \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1b_1 \\ a_1b_2 \\ a_2b_1 \\ a_2b_2 \end{pmatrix}.$$

Für das Tensorprodukt zweier 2 × 2 Matrizen gilt

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \otimes \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{12} \\ a_{11}b_{21} & a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{22} \\ a_{21}b_{11} & a_{21}b_{12} & a_{22}b_{11} & a_{22}b_{12} \\ a_{21}b_{21} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \end{pmatrix}.$$

- (b) Prüfen Sie, dass H, Z und R paarweise kommutieren (d.h. [H, Z] = [H, R] = [Z, R] = 0).
- (c) Geben Sie eine gemeinsame Basis von Eigenvektoren von H, Z und R an. Wie lauten die zugehörigen Eigenwerte von H, Z und R?