

Prof. Dr. W. Brenig M.Sc. Boris Celan

Quantentheorie

WS 2014/15

1. Übungsblatt

Abgabe: Di, 28.10.2014 bis 11.30 Uhr, Kasten neben A316

Übungsblätter gibt es unter https://www.tu-bs.de/theophys/edu/wise-1415/quanten.

4. Bohrsche Quantisierung des Wasserstoffatoms (12 Punkte)

Wir betrachten die Bohrsche Quantisierung des Wasserstoffatoms unter Berücksichtigung des Azimuthwinkels θ .

(a) Die Hamilton-Funktion lautet in kartesischen Koordinaten

$$H(\vec{r}, \vec{p}) = \frac{\vec{p}^2}{2\mu} - \frac{e^2}{r}$$
, mit $r = |\vec{r}|$.

Stellen Sie die Hamiltonfunktion in Kugelkoordinaten dar und verwenden Sie dabei p_r , p_θ und p_ϕ als die zu r, θ und ϕ kanonisch konjugierten Impulse.

(b) Geben Sie einen vollständigen Satz von Erhaltungsgrößen an. Welche Interpretation haben diese Erhaltungsgrößen?

Hinweis: Ein eleganter Weg verwendet die Hamilton-Jacobi Gleichung für die charakteristische Funktion W und löst diese durch den Separationsansatz

 $W=W_r(r)+W_{\theta}(\theta)+W_{\phi}(\phi)$. Die Erhaltungsgrößen sind dann $\frac{\partial W}{\partial g}$

- (c) Sei M^2 das Quadrat des Drehimpulses, M_z dessen Projektion auf die z-Achse und E die Gesamtenergie. Eliminieren Sie p_r , p_θ und p_ϕ zu gunsten dieser Größen. Welchen Wertebereich hat M_z relativ zu M? Welchen Bereich in r, θ bzw. ϕ überstreichen die periodischen Bahnen?
- (d) Führen Sie die Bohrsche Quantisierung für $J_i = \oint p_i \mathrm{d}q_i = \oint \frac{\partial W}{\partial q_i} \mathrm{d}q_i$ durch, d.h. setzen Sie

$$J_{\phi} = mh$$
, $J_{\theta} = kh$, $J_{r} = n'h$.

Bestimmen Sie hieraus die Energieniveaus E(n', k, m).

Drücken Sie die etwas üblichere Hauptquantenzahl n und die Nebenquantenzahl l durch n', k und m aus, so dass die Energie E nur von n abhängt und M nur von l. Diskutieren Sie, welche Werte für die Quantenzahlen n, l, m zugelassen sind.

Hinweis: Folgende Integrale dürfen verwendet werden

$$\oint dx \sqrt{A - \frac{B}{x} - \frac{C}{x^2}} = 2 \int_{x_1}^{x_2} dx \sqrt{A - \frac{B}{x} - \frac{C}{x^2}} = -2\pi\sqrt{C} + \frac{\pi B}{\sqrt{-A}}$$

$$\oint dx \sqrt{a^2 - \frac{b^2}{\sin^2 x}} = 2 \int_{x_1}^{x_2} dx \sqrt{a^2 - \frac{b^2}{\sin^2 x}} = 2\pi (a - |b|),$$

wobei $x_{1,2}$ jeweils die Nullstellen des Integranden sind.

(e) Skizzieren Sie die zugelassenen Werte des Drehimpuls-Vektors \vec{M} in der x-z Ebene für die ersten drei erlaubten Werte von M.

Bitte wenden! \rightarrow

5. Dreidimensionale Wellengleichung (8 Punkte)

Die Lösungen der dreidimensionalen Wellengleichung

$$\frac{\partial^2 \Psi}{\partial t^2}(\vec{r},t) = c^2 \Delta \Psi(\vec{r},t)$$

können als Fourier-Integral dargestellt werden:

$$\Psi(\vec{r},t) = \frac{1}{(2\pi)^{3/2}} \int d^3k \hat{\Psi}(\vec{k},t) e^{i\vec{k}\cdot\vec{r}}.$$

- (a) Welche gewöhnliche Differentialgleichung erfüllt $\hat{\Psi}(\vec{k},t)$ für festes \vec{k} ? Geben Sie die allgemeine Lösung dieser Differentialgleichung an.
- (b) Schreiben Sie die Lösung für $\Psi(\vec{r},t)$ aus Teil (a) als Funktion von $\vec{k}\cdot\vec{r}\pm\omega_{\vec{k}}t$. Welche Beziehung besteht zwischen $\omega_{\vec{k}}$ und \vec{k} ?
- (c) Als Anfangsbedingung ist ein Gaußsches Wellenpaket gegeben

$$\Psi(\vec{r} = (x, y, z), t = 0) = \Psi_0 e^{-\alpha x^2/2}, \qquad \frac{\partial \Psi}{\partial t}(\vec{r}, 0) = 0.$$

Geben Sie die zugehörige Lösung $\Psi(\vec{r},t)$ der dreidimensionalen Wellengleichung sowohl als Fourier-Integral sowie als explizite Funktion von \vec{r} und t an.