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Primal Problem
We consider the general class

min
x∈Rn

‖x‖1 s.t. ‖Ax− b‖ ≤ δ (P1)

of `1-minimization problems. This class includes some of the most
popular approaches for sparse reconstruction from incomplete linear
measurements. Therein, A ∈ Rm×n has full rank m, δ ≥ 0 is an
estimate of measurement noise, ‖·‖ is an arbitrary norm and b ∈ Rm

satisfies ‖b‖ > δ.

Dual Problem
With the dual norm ‖·‖∗ of ‖·‖, the dual problem of (P1) is

max
y∈Rm

−b>y− δ‖y‖∗ s.t. ‖A>y‖∞ ≤ 1. (D1)

Optimality Conditions
A solution x̂ is optimal for (P1) if and only if there exists ŷ ∈ Rm with

−A>ŷ ∈ Sign(x̂) and Ax̂ ∈ b + δ∂‖ŷ‖∗.

The tuple (x̂, ŷ) is called a primal-dual optimal pair. A primal-dual
optimal pair can also be characterized by the conditions

‖x̂‖1 + b>ŷ + δ‖ŷ‖∗ = 0 , ‖Ax̂− b‖ = δ and ‖A>ŷ‖∞ = 1.

Motivation
A typical feature of iterative solvers for (P1) is that convergence be-
comes slow towards the end.
We propose a heuristic optimality check (HOC) that often allows to
“jump” from an iterate to an approximately optimal solution.
Given a point x ∈ Rn with approximate support S, the idea of HOC
is to construct an optimal point x̂ with support Ŝ ⊆ S exploiting
optimality conditions and duality.
The HOC scheme can be integrated into any solver for (P1).

Algorithm: HOC for (P1)
input: A ∈ Rm×n, b ∈ Rm, δ ≥ 0, x ∈ Rn

1 S← approximate support deduced from x
2 ŷ← approximate solution to −A>S w = sign(xS)

3 if ‖A>ŷ‖∞ ≈ 1 then
4 x̂S ← approximate solution to ASz ∈ b + δ∂‖ŷ‖∗
5 x̂SC ← 0
6 if ‖Ax̂− b‖ ≈ δ then
7 if (‖x̂‖1 + δ‖ŷ‖∗+ b>ŷ)/‖x̂‖1 ≈ 0 then
8 return approximate primal-dual optimal pair (x̂, ŷ)

The choice of ‖·‖ affects Step 4 crucially. We display two examples:
‖·‖ = ‖·‖∞ =⇒ ∂‖ŷ‖∗ = ∂‖ŷ‖1 = Sign(ŷ) (multivalued)
‖·‖ = ‖·‖2 =⇒ ∂‖ŷ‖∗ = ∂‖ŷ‖2 = ŷ/‖ŷ‖2 (singlevalued)

Numerical Results
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Example for HOC efficiency in the in-
cremental subgradient method, ap-
plied to (P1) with `∞-constraints.

0.01 0.03 0.1 1 10 30 60

10
−6

10
−3

10
0

10
3

10
5

Running Times [sec]

‖x̄
−

x
∗
‖ 2

HOC impact within SPGL1 applied to
(P1) with `2-constraints. Average δ ≈
0.1.

HOC impact within SolveBP/PDCO
applied to min λ‖x‖1+

1
2‖Ax− b‖2

2.
Average λ = 10.

Middle and right: 444
test instances with
varying solution spar-
sities and dimensions.
Crossmarks repre-
sent results without
HOC, dots those with
HOC. Results for
the same instance
are connected by
lines (green/red:
faster/slower with
HOC).

Conclusion
The HOC scheme is empirically demonstrated to allow for early ter-
mination and to improve solution speed and / or accuracy for different
methods and a large number of instances of (P1).

Extensions and Future Work
HOC schemes for the problems min λ‖x‖1 +

1
2‖Ax− b‖2

2 and
min ‖D>x‖1 s.t. ‖Ax− b‖ ≤ δ exist as well.
Our results can be used to generate test instances for (P1).
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