Heuristic Optimality Checks for Noise-Aware Sparse Recovery by ℓ_1 -Minimization

Christoph Brauer Dirk A. Lorenz Andreas M. Tillmann

Primal Problem

We consider the general class

$$\min_{x \in \mathbb{R}^n} \|x\|_1 \quad \text{s.t.} \quad \|Ax - b\| \le \delta \tag{P1}$$

of ℓ_1 -minimization problems. This class includes some of the most popular approaches for sparse reconstruction from incomplete linear

Motivation

- A typical feature of iterative solvers for (P1) is that convergence becomes slow towards the end.
- We propose a heuristic optimality check (HOC) that often allows to "jump" from an iterate to an approximately optimal solution.
- Given a point $x \in \mathbb{R}^n$ with approximate support S, the idea of HOC is to construct an optimal point \hat{x} with support $\hat{S} \subseteq S$ exploiting

measurements. Therein, $A \in \mathbb{R}^{m \times n}$ has full rank $m, \delta > 0$ is an estimate of measurement noise, $\|\cdot\|$ is an arbitrary norm and $b \in \mathbb{R}^m$ satisfies $||b|| > \delta$.

Dual Problem

With the dual norm $\|\cdot\|_*$ of $\|\cdot\|$, the dual problem of (P1) is

$$\max_{y \in \mathbb{R}^m} \quad -b^\top y - \delta \|y\|_* \quad \text{s.t.} \quad \|A^\top y\|_{\infty} \le 1.$$
 (D1)

10

10³

0.1.

Optimality Conditions

A solution \hat{x} is optimal for (P1) if and only if there exists $\hat{y} \in \mathbb{R}^m$ with

 $-A^{\top}\hat{y} \in \operatorname{Sign}(\hat{x}) \text{ and } A\hat{x} \in b + \delta \partial \|\hat{y}\|_{*}.$

The tuple (\hat{x}, \hat{y}) is called a primal-dual optimal pair. A primal-dual optimal pair can also be characterized by the conditions

$$\|\hat{x}\|_1 + b^\top \hat{y} + \delta \|\hat{y}\|_* = 0$$
 , $\|A\hat{x} - b\| = \delta$ and $\|A^\top \hat{y}\|_{\infty} = 1$.

optimality conditions and duality.

■ The HOC scheme can be integrated into any solver for (P1).

Algorithm: HOC for (P1)

- **input**: $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $\delta \ge 0$, $x \in \mathbb{R}^n$
- 1 $S \leftarrow \text{approximate support deduced from } x$
- ² $\hat{y} \leftarrow \text{approximate solution to } -A_S^\top w = \operatorname{sign}(x_S)$ 3 if $||A^{\top}\hat{y}||_{\infty} \approx 1$ then
- $\hat{x}_{S} \leftarrow \text{approximate solution to } A_{S}z \in b + \delta \partial \|\hat{y}\|_{*}$
- $\hat{x}_{SC} \leftarrow 0$
- if $||A\hat{x} b|| \approx \delta$ then 6
- if $(\|\hat{x}\|_1 + \delta \|\hat{y}\|_* + b^\top \hat{y}) / \|\hat{x}\|_1 \approx 0$ then 7
 - **return** approximate primal-dual optimal pair (\hat{x}, \hat{y})

The choice of $\|\cdot\|$ affects Step 4 crucially. We display two examples: $||\cdot|| = ||\cdot||_{\infty} \Longrightarrow \partial ||\hat{y}||_{*} = \partial ||\hat{y}||_{1} = \operatorname{Sign}(\hat{y}) \text{ (multivalued)}$ $||\cdot|| = ||\cdot||_2 \Longrightarrow \partial ||\hat{y}||_* = \partial ||\hat{y}||_2 = \hat{y} / ||\hat{y}||_2 \text{ (singlevalued)}$

Numerical Results

Example for HOC efficiency in the incremental subgradient method, applied to (P1) with ℓ_{∞} -constraints.

 x^* \underline{x} 10 10^{-1} 0.01 0.03 30 60 10 0.1 Running Times [sec] HOC impact within SPGL1 applied to (P1) with ℓ_2 -constraints. Average $\delta \approx$

Middle and right: 444 test instances with varying solution sparsities and dimensions. Crossmarks represent results without HOC, dots those with Results HOC. for same instance the connected by are lines (green/red: faster/slower with HOC).

Conclusion

The HOC scheme is empirically demonstrated to allow for early termination and to improve solution speed and / or accuracy for different methods and a large number of instances of (P1).

Extensions and Future Work

Average $\lambda = 10$.

- HOC schemes for the problems min $\lambda \|x\|_1 + \frac{1}{2} \|Ax b\|_2^2$ and min $||D^{\top}x||_1$ s.t. $||Ax - b|| \leq \delta$ exist as well.
- Our results can be used to generate test instances for (P1).

Cambridge (UK) 05/07 - 09/07/2015 **SPARS 2015**

\star 🐱

Technische Universität Braunschweig