ℓ_1 -Houdini: A New Homotopy Method for l_1 -Minimization

Christoph Brauer^{*} Dirk Lorenz^{*} Andreas Tillmann[†]

* TU Braunschweig, Germany ⁺ RWTH Aachen University, Germany

Problem and Optimality Conditions

Given $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $\delta \ge 0$, we consider the problem

 $\min_{\boldsymbol{x}\in\mathbb{R}^n} \|\boldsymbol{x}\|_1 \quad \text{s.t.} \quad \|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{b}\|_{\infty} \leq \delta.$ (\mathbf{P}_{δ})

Partitioned Optimality Conditions

• For a thorough understanding of the conditions (1), we define

(primal support)

 $S \coloneqq \{j : x_i^* \neq 0\}, \qquad \qquad W \coloneqq \{i : |a_i^\top x^* - b_i| = \delta\},$ (primal active set)

It is well-known that x^* is an optimal solution of (P_{δ}) if and only if there exists a y^* such that

$$-A^{ op}y^{\star} \in \partial \|x^{\star}\|_1$$
 and $Ax^{\star} - b \in \delta \partial \|y^{\star}\|_1$. (1)

• Each such y^* is by construction an optimal solution to the dual problem of (P_{δ}) , which is

$$\max_{\boldsymbol{y}\in\mathbb{R}^m} -\boldsymbol{b}^\top \boldsymbol{y} - \delta \|\boldsymbol{y}\|_1 \quad \text{s.t.} \|\boldsymbol{A}^\top \boldsymbol{y}\|_{\infty} \leq 1. \tag{D}_{\delta}$$

- $\Sigma \coloneqq \{j : |A_j^\top y^*| = 1\}, \quad \Omega \coloneqq \{i : y_i^* \neq 0\}.$ (dual active set) (dual support)
- The optimality conditions (1) are then equivalent to

 $-A_S^{\top} y^{\star} = \operatorname{sign}(x_S^{\star}) \qquad A^{\Omega} x^{\star} - b_{\Omega} = \delta \operatorname{sign}(y_{\Omega}^{\star})$ $-\mathbb{1} \leq -A_{S^c}^{ op} y^\star \leq \mathbb{1} \qquad -\delta \mathbb{1} \leq A^{\Omega^c} x^\star - b_{\Omega^c} \leq \delta \mathbb{1}$ $y_{W^c}^{\star} = 0$ $x_{\Sigma^c}^{\star} = 0$ (2)

Basic Idea

• We solve a sequence of problems $(P_{\delta^k})_{k=0,...,K}$ with

 $\|\boldsymbol{b}\|_{\infty} = \delta_0 > \delta_1 > \cdots > \delta_K = \delta.$

• The starting point $(x^0, y^0) = (0, 0)$ is an optimal pair for (P_{δ^0}) . • The transition from an optimal pair (x^k, y^k) for (P_{δ^k}) to an optimal pair (x^{k+1}, y^{k+1}) for $(P_{\delta^{k+1}})$ can be done in two steps:

Dual Update U_D

- S and W now denote the support and active set of x^k .
- We solve the following linear program with |W| bounded variables and 2n - |S| constraints to obtain a new dual solution:

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

 U_D : Fix x^k and δ^k in (2) and search an appropriate $y^{k+1} \neq y^k$ such that the conditions stay valid at (x^k, y^{k+1}) and δ^k . U_P : Fix y^{k+1} in (2) and search $x^{k+1} \neq x^k$ and $\delta^{k+1} < \delta^k$ such that the conditions stay satisfied at (x^{k+1}, y^{k+1}) and δ^{k+1} .

Properties

- After $K \leq (3^{m+n}+1)/2$ consecutive dual and primal updates, the method terminates yielding an optimal pair $(\mathbf{x}^{K}, \mathbf{y}^{K})$ for $(\mathsf{P}_{\delta^{K}})$.
- The solution path of (P_{δ}) is continuous piecewise linear. Our method implicitly generates an optimal solution for each problem (P_{$\hat{\delta}$}) with $\delta \leq \hat{\delta} \leq \|b\|_{\infty}$.
- The linear programs in U_D and U_P can be tackled by an arbitrary LP solver. We propose an active set approach that covers two essential aspects:
 - 1. The iterates y^k and x^k are feasible starting points for U_D and U_P , respectively.
 - 2. Lagrange multipliers certifying optimality of y^{k+1}

Primal Update U_P

In the following, Ω and Σ denote the support and active set of y^{k+1} . • For the primal update, we solve the following linear program with $|\Sigma| + 1$ bounded variables an $2m - |\Omega|$ constraints:

$$\begin{aligned} (\boldsymbol{x}_{\Sigma}^{k+1}, t^{k+1}) \in & \operatorname*{arg\,max}_{(\boldsymbol{x}_{\Sigma}, t) \in \mathbb{R}^{|\Sigma|} \times \mathbb{R}} & t \\ & \mathrm{s.t.} & \boldsymbol{A}_{\Sigma}^{\Omega} \boldsymbol{x}_{\Sigma} - \boldsymbol{b}_{\Omega} = (\delta^{k} - t) \operatorname{sign}(\boldsymbol{y}_{\Omega}^{k+1}) \\ & -(\delta^{k} - t)\mathbb{1} \leq \boldsymbol{A}_{\Sigma}^{\Omega^{c}} \boldsymbol{x}_{\Sigma} - \boldsymbol{b}_{\Omega^{c}} \leq (\delta^{k} - t)\mathbb{1} \\ & (\boldsymbol{A}_{\Sigma}^{\top} \boldsymbol{y}^{k+1}) \odot \boldsymbol{x}_{\Sigma} & \leq 0 \\ & t & \leq \delta^{k} - \delta \\ & \boldsymbol{x}_{\Sigma^{c}}^{k+1} \coloneqq \boldsymbol{0} \\ & \delta^{k+1} \coloneqq \delta^{k} - t^{k+1} \end{aligned}$$

in U_D qualify as an initial search direction at x^k in U_P , and vice versa.

• The choice of the objective functions in U_D and U_P is motivated by a theorem of the alternative and plays a key role in view of finite termination.

SPARS 2017 Lisbon, Portugal June 5-8, 2017

Exemplary Solution Path

Exemplary run of ℓ_1 -Houdini (using active set) with $A \in \mathbb{R}^{6 \times 12}$ and $b \in \mathbb{R}^6$ randomly generated and $\delta = 0$. The algorithm needed 9 iterations to solve the problem. Horizontal labels display the value of the homotopy parameter δ^k after each iteration. The plots represent the solution paths of x_i^k for $j = 1, \ldots, 12$. The optimal solution has 6 nonzero entries.

Runtime and Accuracy Comparison for the Dantzig Selector [4]

inst.	runtime in seconds			$\ \boldsymbol{x}^{\star}\ _{1}$			constraint violation		
	ℓ_1 -Hou.	PDP	Gur.	ℓ_1 -Hou.	PDP	Gur.	ℓ_1 -Hou.	PDP	Gur.
1	0.19	0.14	2.22	97.09	97.09	97.09	$3 \cdot 10^{-15}$	$4\cdot10^{-15}$	$3 \cdot 10^{-15}$
2	1.02	0.64	2.36	154.93	154.93	154.93	$3 \cdot 10^{-15}$	$7 \cdot 10^{-15}$	$4 \cdot 10^{-15}$
3	0.34	0.27	8.93	96.41	96.41	96.41	$3 \cdot 10^{-15}$	$3 \cdot 10^{-15}$	$4 \cdot 10^{-15}$
4	2.74	1.48	9.19	188.03	188.03	188.03	$4\cdot 10^{-15}$	$1\cdot 10^{-14}$	$6 \cdot 10^{-15}$
5	0.21	0.26	2.26	98.68	98.68	98.68	$3 \cdot 10^{-15}$	$5\cdot10^{-15}$	$2 \cdot 10^{-15}$
6	0.47	0.52	2.35	152.03	152.03	152.03	$5 \cdot 10^{-15}$	$1\cdot 10^{-14}$	$5 \cdot 10^{-15}$
7	0.44	0.41	9.11	95.73	95.73	95.73	$5 \cdot 10^{-15}$	$6 \cdot 10^{-15}$	$5 \cdot 10^{-15}$
8	0.84	0.86	9.22	186.19	186.19	186.19	$5 \cdot 10^{-15}$	$1\cdot 10^{-14}$	$5 \cdot 10^{-15}$
9	0.03	0.02	< 0.01	44.64	44.64	9.36	$3 \cdot 10^{-10}$	$3\cdot 10^{-4}$	$2 \cdot 10^{-2}$
10	0.03	0.02	< 0.01	304.27	304.27	6.03	$1 \cdot 10^{-8}$	$4 \cdot 10^{-3}$	$2\cdot 10^{-1}$
11	0.02	0.01	< 0.01	316.35	316.35	316.35	$7 \cdot 10^{-8}$	$1\cdot 10^{-4}$	$1 \cdot 10^{-7}$
12	0.04	0.02	< 0.01	64.18	64.18	64.18	$3 \cdot 10^{-9}$	$6 \cdot 10^{-7}$	$7\cdot10^{-10}$
13	0.02		0.03	0.79		$2\cdot 10^5$	$7 \cdot 10^{-7}$	—	$4 \cdot 10^{-9}$
14	0.21	3.47	0.52	0.67	1.88	634.89	$7 \cdot 10^{-7}$	$1 \cdot 10^{-7}$	$1 \cdot 10^{-11}$
15	176.76	5.52	1.11	998.72	157.41	998.72	$8 \cdot 10^{-7}$	$4\cdot 10^4$	$4 \cdot 10^{-7}$

The first part of the comparison shows that the runtimes of ℓ_1 -HOUDINI [3] and PDP [1] often lie in the same magnitude while the respective runtimes of GUROBI are significantly larger. We can further observe that ℓ_1 -HOUDINI is fastest in case m > n which is of interest in many machine learning applications, where the number of training examples is much larger than the number of features. Applied to the empirical data from [5], GUROBI is the fastest algorithm in the majority of cases, while PDP fails to find an optimal solution in three out of seven cases. The table finally shows that ℓ_1 -HOUDINI is the only algorithm that works with high accuracy on the whole test set.

inst.	description	т	п	δ	S
1	random [4]	1024	1024	0.39	66
2	random [4]	1024	1024	0.51	152
3	random [4]	1024	2048	0.27	69
4	random [4]	1024	2048	0.39	166
5	random [4]	2048	1024	0.35	65
6	random [4]	2048	1024	0.55	128
7	random [4]	2048	2048	0.29	64
8	random [4]	2048	2048	0.39	130
9	Wine (red) [5]	1599	12	0.00	12
10	Wine (white) [5]	4898	12	0.00	12
11	Airfoil Self-Noise [5]	1503	6	0.00	6
12	Housing [5]	506	14	0.00	14
13	Online News Popularity [5]	39644	59	0.00	6
14	Blog Feedback [5]	52396	280	0.00	11
15	Relative location of CT sclices on axial axis [5]	53500	385	0.00	385

References

- [1] M. S. Asif and J. Romberg, "Dantzig selector homotopy with dynamic measurements", Proc. SPIE, vol. 7246, pp. 72460E–72460E–11, Feb. 2009.
- [2] C. Brauer, T. Gerkmann and D. A. Lorenz, "Sparse Reconstruction of Quantized Speech Signals", 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5940-5944, 2016.
- C. Brauer, D. A. Lorenz and A. M. Tillmann, "A Primal-Dual Homotopy [3] Algorithm for ℓ_1 -Minimization with ℓ_{∞} -Constraints", submitted, Oct. 2016.
 - arXiv:1610.10022 [math.OC].
- [4] E. J. Candès and T. Tao, "The Dantzig Selector: Statistical Estimation When p Is Much Larger than *n*", The Annals of Statistics, vol. 35, no. 6, pp. 2313–2351, Dec. 2007.
- M. Lichman, UCI Machine Learning Repository, http://archive.ics.uci. [5] edu/ml, Irvine, CA: University of California, School of Information and Computer Science, 2013.

SPARS 2017 Lisbon, Portugal June 5-8, 2017

Technische Universität Braunschweig

