ℓ_{1}-Houdini: A New Homotopy Method for ℓ_{1}-Minimization

Christoph Brauer ${ }^{\star}$ Dirk Lorenz ${ }^{\star}$ Andreas Tillmann ${ }^{\dagger}$
* TU Braunschweig, Germany
${ }^{+}$RWTH Aachen University, Germany

Problem and Optimality Conditions

■ Given $A \in \mathbb{R}^{m \times n}, \boldsymbol{b} \in \mathbb{R}^{m}$ and $\delta \geq 0$, we consider the problem

$$
\min _{x \in \mathbb{R}^{n}}\|x\|_{1} \quad \text { s.t. } \quad\|A x-b\|_{\infty} \leq \delta .
$$

- It is well-known that x^{\star} is an optimal solution of $\left(\mathrm{P}_{\delta}\right)$ if and only if there exists a \boldsymbol{y}^{\star} such that

$$
\begin{equation*}
-\boldsymbol{A}^{\top} \boldsymbol{y}^{\star} \in \partial\left\|x^{\star}\right\|_{1} \quad \text { and } \quad A \boldsymbol{x}^{\star}-\boldsymbol{b} \in \delta \partial\left\|\boldsymbol{y}^{\star}\right\|_{1} . \tag{1}
\end{equation*}
$$

■ Each such y^{\star} is by construction an optimal solution to the dual problem of $\left(P_{\delta}\right)$, which is

$$
\max _{y \in \mathbb{R}^{m}}-\boldsymbol{b}^{\top} \boldsymbol{y}-\delta\|\boldsymbol{y}\|_{1} \quad \text { s.t. }\left\|\boldsymbol{A}^{\top} \boldsymbol{y}\right\|_{\infty} \leq 1
$$

Basic Idea

- We solve a sequence of problems $\left(\mathrm{P}_{\delta^{k}}\right)_{k=0, \ldots, K}$ with

$$
\|\boldsymbol{b}\|_{\infty}=\delta_{0}>\delta_{1}>\cdots>\delta_{K}=\delta
$$

- The starting point $\left(x^{0}, y^{0}\right)=(0,0)$ is an optimal pair for $\left(\mathrm{P}_{\delta^{0}}\right)$.
- The transition from an optimal pair $\left(x^{k}, y^{k}\right)$ for $\left(\mathrm{P}_{\delta^{k}}\right)$ to an optimal pair $\left(x^{k+1}, y^{k+1}\right)$ for $\left(\mathrm{P}_{\delta^{k+1}}\right)$ can be done in two steps:
$\underline{U_{D}}$: Fix x^{k} and δ^{k} in (2) and search an appropriate $y^{k+1} \neq y^{k}$ such that the conditions stay valid at $\left(x^{k}, y^{k+1}\right)$ and δ^{k}.
$\underline{U_{P}}:$ Fix y^{k+1} in (2) and search $x^{k+1} \neq x^{k}$ and $\delta^{k+1}<\delta^{k}$ such that the conditions stay satisfied at $\left(x^{k+1}, y^{k+1}\right)$ and δ^{k+1}.

Partitioned Optimality Conditions

- For a thorough understanding of the conditions (1), we define

$$
\begin{array}{ll}
S:=\left\{j: x_{j}^{\star} \neq 0\right\}, & W:=\left\{i:\left|\boldsymbol{a}_{i}^{\top} x^{\star}-b_{i}\right|=\delta\right\}, \\
\text { (primal support) } & \text { (primal active set) } \\
\Sigma:=\left\{j:\left|A_{j}^{\top} \boldsymbol{y}^{\star}\right|=1\right\}, & \Omega:=\left\{i: y_{i}^{\star} \neq 0\right\} . \\
\text { (dual active set) } & \text { (dual support) }
\end{array}
$$

- The optimality conditions (1) are then equivalent to

$$
\begin{array}{rlrl}
-\boldsymbol{A}_{S}^{\top} \boldsymbol{y}^{\star} & =\operatorname{sign}\left(\boldsymbol{x}_{S}^{\star}\right) & \boldsymbol{A}^{\Omega} \boldsymbol{x}^{\star}-\boldsymbol{b}_{\Omega} & =\delta \operatorname{sign}\left(\boldsymbol{y}_{\Omega}^{\star}\right) \\
-\mathbb{1} \leq-\boldsymbol{A}_{S^{c}}^{\top} \boldsymbol{y}^{\star} & \leq \mathbb{1} & -\delta \mathbb{1} \leq \boldsymbol{A}^{\Omega^{c}} \boldsymbol{x}^{\star}-\boldsymbol{b}_{\Omega^{c}} \leq \delta \mathbb{1} \\
\boldsymbol{y}_{W^{c}}^{\star} & =0 & \boldsymbol{x}_{\Sigma^{c}}^{\star} & =0 \tag{2}
\end{array} .
$$

Dual Update U_{D}

- S and W now denote the support and active set of x^{k}.
- We solve the following linear program with $|W|$ bounded variables and $2 n-|S|$ constraints to obtain a new dual solution:

$$
\begin{array}{lr}
\begin{aligned}
\boldsymbol{y}_{W}^{k+1} \in \underset{y_{W} \in \mathbb{R}^{|W|}}{\arg \min } & -\operatorname{sign}\left(\boldsymbol{A}^{W} \boldsymbol{x}^{k}-\boldsymbol{b}_{W}\right)^{\top} \boldsymbol{y}_{W} \\
\text { s.t. } & -\left(\boldsymbol{A}_{S}^{W}\right)^{\top} \boldsymbol{y}_{W}=\operatorname{sign}\left(\boldsymbol{x}_{S}^{k}\right) \\
& -\mathbb{1} \leq-\left(\boldsymbol{A}_{S^{c}}^{W}\right)^{\top} \boldsymbol{y}_{W} \leq \mathbb{1}
\end{aligned} \\
& -\operatorname{sign}\left(\boldsymbol{A}^{W} \boldsymbol{x}^{k}-\boldsymbol{b}_{W}\right) \odot \boldsymbol{y}_{W} \leq 0
\end{array}
$$

Properties

- After $K \leq\left(3^{m+n}+1\right) / 2$ consecutive dual and primal updates, the method terminates yielding an optimal pair $\left(x^{K}, y^{K}\right)$ for $\left(\mathrm{P}_{\delta^{K}}\right)$.
- The solution path of $\left(\mathrm{P}_{\delta}\right)$ is continuous piecewise linear. Our method implicitly generates an optimal solution for each problem $\left(\mathrm{P}_{\hat{\delta}}\right)$ with $\delta \leq \hat{\delta} \leq\|\boldsymbol{b}\|_{\infty}$.
- The linear programs in U_{D} and U_{P} can be tackled by an arbitrary LP solver. We propose an active set approach that covers two essential aspects:
l. The iterates y^{k} and x^{k} are feasible starting points for U_{D} and U_{P}, respectively.

2. Lagrange multipliers certifying optimality of y^{k+1} in U_{D} qualify as an initial search direction at x^{k} in U_{P}, and vice versa.

Primal Update U_{P}

$■$ In the following, Ω and Σ denote the support and active set of y^{k+1}.

- For the primal update, we solve the following linear program with $|\Sigma|+1$ bounded variables an $2 m-|\Omega|$ constraints:

$$
\begin{aligned}
& \left(x_{\Sigma}^{k+1}, t^{k+1}\right) \in \quad \arg \max \quad t \\
& \left(x_{\Sigma}, t\right) \in \mathbb{R}^{|\Sigma|} \times \mathbb{R} \\
& \text { s.t. } \quad A_{\Sigma}^{\Omega} x_{\Sigma}-\boldsymbol{b}_{\Omega}=\left(\delta^{k}-t\right) \operatorname{sign}\left(\boldsymbol{y}_{\Omega}^{k+1}\right) \\
& -\left(\delta^{k}-t\right) \mathbb{1} \leq A_{\Sigma}^{\Omega^{c}} x_{\Sigma}-\boldsymbol{b}_{\Omega^{c}} \leq\left(\delta^{k}-t\right) \mathbb{1} \\
& \left(A_{\Sigma}^{\top} y^{k+1}\right) \odot x_{\Sigma} \quad \leq 0 \\
& t \leq \delta^{k}-\delta \\
& x_{\Sigma^{c}}^{k+1}:=0 \\
& \delta^{k+1}:=\delta^{k}-t^{k+1}
\end{aligned}
$$

- The choice of the objective functions in U_{D} and U_{P} is motivated by a theorem of the alternative and plays a key role in view of finite termination.

Exemplary Solution Path

Exemplary run of ℓ_{1}-Houdini (using active set) with $A \in \mathbb{R}^{6 \times 12}$ and $b \in \mathbb{R}^{6}$ randomly generated and $\delta=0$. The algorithm needed 9 iterations to solve the problem. Horizontal labels display the value of the homotopy parameter δ^{k} after each iteration. The plots represent the solution paths of x_{j}^{k} for $j=1, \ldots, 12$. The optimal solution has 6 nonzero entries.

Runtime and Accuracy Comparison for the Dantzig Selector [4]

inst.	runtime in seconds			$\left\\|x^{\star}\right\\|_{1}$			constraint violation		
	ℓ_{1}-Hou.	PDP	Gur.	ℓ_{1}-Hou.	PDP	Gur.	ℓ_{1}-Hou.	PDP	Gur.
1	0.19	0.14	2.22	97.09	97.09	97.09	$3 \cdot 10^{-15}$	$4 \cdot 10^{-15}$	$3 \cdot 10^{-15}$
2	1.02	0.64	2.36	154.93	154.93	154.93	$3 \cdot 10^{-15}$	7. 10^{-15}	$4 \cdot 10^{-15}$
3	0.34	0.27	8.93	96.41	96.41	96.41	$3 \cdot 10^{-15}$	$3 \cdot 10^{-15}$	$4 \cdot 10^{-15}$
4	2.74	1.48	9.19	188.03	188.03	188.03	$4 \cdot 10^{-15}$	$1 \cdot 10^{-14}$	$6 \cdot 10^{-15}$
5	0.21	0.26	2.26	98.68	98.68	98.68	$3 \cdot 10^{-15}$	$5 \cdot 10^{-15}$	$2 \cdot 10^{-15}$
6	0.47	0.52	2.35	152.03	152.03	152.03	$5 \cdot 10^{-15}$	$1 \cdot 10^{-14}$	$5 \cdot 10^{-15}$
7	0.44	0.41	9.11	95.73	95.73	95.73	$5 \cdot 10^{-15}$	$6 \cdot 10^{-15}$	$5 \cdot 10^{-15}$
8	0.84	0.86	9.22	186.19	186.19	186.19	$5 \cdot 10^{-15}$	$1 \cdot 10^{-14}$	$5 \cdot 10^{-15}$
9	0.03	0.02	<0.01	44.64	44.64	9.36	$3 \cdot 10^{-10}$	$3 \cdot 10^{-4}$	$2 \cdot 10^{-2}$
10	0.03	0.02	<0.01	304.27	304.27	6.03	$1 \cdot 10^{-8}$	$4 \cdot 10^{-3}$	$2 \cdot 10^{-1}$
11	0.02	0.01	<0.01	316.35	316.35	316.35	$7 \cdot 10^{-8}$	$1 \cdot 10^{-4}$	$1 \cdot 10^{-7}$
12	0.04	0.02	<0.01	64.18	64.18	64.18	$3 \cdot 10^{-9}$	$6 \cdot 10^{-7}$	$7 \cdot 10^{-10}$
13	0.02	-	0.03	0.79	-	$2 \cdot 10^{5}$	$7 \cdot 10^{-7}$	-	$4 \cdot 10^{-9}$
14	0.21	3.47	0.52	0.67	1.88	634.89	$7 \cdot 10^{-7}$	$1 \cdot 10^{-7}$	$1 \cdot 10^{-11}$
15	176.76	5.52	1.11	998.72	157.41	998.72	$8 \cdot 10^{-7}$	$4 \cdot 10^{4}$	$4 \cdot 10^{-7}$

The first part of the comparison shows that the runtimes of ℓ_{1}-HouDINI [3] and PDP [1] often lie in the same magnitude while the respective runtimes of Gurobi are significantly larger. We can further observe that ℓ_{1}-Houdinı is fastest in case $m>n$ which is of interest in many machine learning applications, where the number of training examples is much larger than the number of features. Applied to the empirical data from [5], Gurobı is the fastest algorithm in the majority of cases, while PDP fails to find an optimal solution in three out of seven cases. The table finally shows that ℓ_{1}-Houdini is the only algorithm that works with high accuracy on the whole test set.

inst.	description	m	n	δ	$\|S\|$
1	random [4]	1024	1024	0.39	66
2	random [4]	1024	1024	0.51	152
3	random [4]	1024	2048	0.27	69
4	random [4]	1024	2048	0.39	166
5	random [4]	2048	1024	0.35	65
6	random [4]	2048	1024	0.55	128
7	random [4]	2048	2048	0.29	64
8	random [4]	2048	2048	0.39	130
9	Wine (red) [5]	1599	12	0.00	12
10	Wine (white) [5]	4898	12	0.00	12
11	Airfoil Self-Noise [5]	1503	6	0.00	6
12	Housing [5]	506	14	0.00	14
13	Online News Popularity [5]	39644	59	0.00	6
14	Blog Feedback [5]	52396	280	0.00	11
15	Relative location of CT	53500	385	0.00	385
	sclices on axial axis [5]				

References

[1] M. S. Asif and J. Romberg, "Dantzig selector homotopy with dynamic measurements", Proc. SPIE, vol. 7246, pp. $72460 \mathrm{E}-72460 \mathrm{E}-11$, Feb. 2009.
[2] C. Brauer, T. Gerkmann and D. A. Lorenz, "Sparse Reconstruction of Quantized Speech Signals", 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5940-5944, 2016.
[3] C. Brauer, D. A. Lorenz and A. M. Tillmann, "A Primal-Dual Homotopy Algorithm for ℓ_{1}-Minimization with ℓ_{∞}-Constraints", submitted, Oct. 2016. arXiv:1610.10022 [math.OC].
[4] E. J. Candès and T. Tao, "The Dantzig Selector: Statistical Estimation When p Is Much Larger than n ", The Annals of Statistics, vol. 35, no. 6, pp. 2313-2351, Dec. 2007.
[5] M. Lichman, UCI Machine Learning Repository, http://archive.ics.uci. edu/ml, Irvine, CA: University of California, School of Information and Computer Science, 2013.

