Physikalisches Praktikum im Nebenfach

Auszug für Maschinenbau

Technische Universität Braunschweig Institut für Angewandte Physik

> Braunschweig Stand: April 2012

Inhaltsverzeichnis

Ι	Einleitung	5
1	Organisatorisches	9
2	Grundlagen	19
II	Versuchsanleitungen	37
Μ	Pohlsches Pendel, gekoppelte Pendel und Kreisel	41
E	Elektronenstrahloszilloskop	63
F	Franck-Hertz-Versuch und photoelektrischer Effekt	75
0	Geometrische Optik und Mikroskop	89
R	Messungen zur Radioaktivität	109
II	I Anhang	119
I	Verzeichnisse	121

Teil I

Einleitung

Teil I – Einleitung

1	Or	ganisa	torisches	9
	1.1	Sicher	heitshinweise	10
	1.2	Allger	neine Regeln	12
	1.3	Leitfa	den – Von der Vorbereitung bis zum Protokoll	14
		1.3.1	Vorbereitung	14
		1.3.2	Tagesablauf und Messung	15
		1.3.3	Auswertung	16
		1.3.4	Protokoll	17
2	Gr	undlag	gen	19
	2.1	Rechn	en mit physikalischen Größen	19
		2.1.1	Physikalische Größen, Größenarten und Einheiten	20
		2.1.2	Basisgrößenarten und -einheiten	21
		2.1.3	Naturgesetze und Definitionen	22
	2.2	Fehler	rechnung	23
		2.2.1	Ursachen von Messabweichungen	23
		2.2.2	Vier Schritte zur Auswertung von Meßwerten	24
		2.2.3	Beispiel: Messung einer Federkonstanten	29
	2.3	Graph	nische Darstellung von Messwerten und ihre Auswertung	31
		2.3.1	Die Lineare Skala	31
		2.3.2	Logarithmische Skala	33
		2.3.3	Ungenauigkeiten bei der Grafikauswertung	35

Kapitel 1

Organisatorisches

Im Rahmen Ihres Studiums wird an der TU Braunschweig das physikalische Praktikum für Studenten der Ingenieur- und Naturwissenschaften durchgeführt. Neben der Auseinandersetzung mit physikalischen Erkenntnissen ist hierbei das Erlernen grundlegender experimentieller Methodik sowie der Grundlagen von Auswertungsverfahren von besonderem Interesse. Die Studierenden sollen dazu verschiedene Experimente durchführen und lernen, die gewonnenen Ergebnisse anhand von physikalischen Modellvorstellungen zu bewerten.

Zum vorliegenden Skript

Dieses Skript enthält zum einen die Versuchsanleitungen und zum anderen wichtige Informationen zum organisatorischen Rahmen des Praktikums. Ebenso ist ein Kapitel zum Rechnen mit physikalischen Größen sowie mit einer kurzen Zusammenstellung einiger Aspekte der Fehlerrechnung beigefügt. Die vorliegende Praktikumsanleitung gliedert sich demnach wie folgt: Wir empfehlen Ihnen

Teil I–Organisatorisches und GrundlagenTeil II–VersuchsanleitungenTeil III–Anhang

besonders das Kapitel 1 (Organisatorisches) in Teil I zu lesen, bevor Sie sich ihre erste Versuchsanleitung zur Hand nehmen. Dieser Teil erfordert keine tiefgründigen mathematischen Kenntnisse, er enthält jedoch sehr wichtige Informationen, die einen reibungslosen Ablauf Ihres Prkatikums gewährleiten sollen. Von daher ist es ebenso ratsam, jedoch nicht verpflichtend, den Teil I am besten an jedem Praktikumstermin mit sich zu führen.

Kontakt und Wissenswertes

Termine, Gruppeneinteilungspläne, Kontaktadressen und sonstige Hilfsmaterialien finden Sie im Internet auf den Seiten des Instituts für Angewandte Physik (IAP)

 \rightarrow www.iap.tu-bs.de

Für persönliche Gespräche erkundigen Sie sich rechtzeitig nach den aktuellen Sprechzeiten! Die im Literaurverzeichnis angegebenen Werke sind sämtlich in der Universitätsbibliothek erhältlich.

\rightarrow www.biblio.tu-bs.de

Literatur

Im Anhang befindet sich eine Bücherliste, die im Laufe der Jahre aktualisiert wird. Sie enthält neben einigen Standard- und Tafelwerken auch teilweise recht spezielle und themenbezogene Literatur. Die folgende Auflistung ist, ohne einen Anspruch auf Vollständigkeit zu erheben, die "traditionelle Auswahl an Standardwerken", welche den meisten Studierenden der Physik, zumindest namentlich bekannt sein müsste.

L. Bergmann, C. Schaefer	Lehrbuch der Experimentalphysik
	Band I bis VI
H. Franke (Hrsg)	Lexikon der Physik
C. Gehrtsen, D. Meschede	Physik
F. Kohlrausch	Praktische Physik
	Band 2
R. Pohl	Einführung in die Physik
	Band 1 bis 3
H. Stuart, G. Klages	Kurzes Lehrbuch der Physik
W. Walcher	Praktikum der Physik
W. Westphal	Physik
	Physikalisches Praktikum

1.1 Sicherheitshinweise

Bei Unfällen:

Assistenten benachrichtigen / Erste-Hilfe-Kasten am Eingang / bei schweren Fällen (Amt 0)-112

Im Brandfall:

Ruhe bewahren! Assistenten benachrichtigen. Notruf (Amt 0)-112

Selbstrettung VOR Fremdrettung VOR Sachrettung!

Wenn möglich, Löschversuch unternehmen

- 1. CO₂-Feuerlöscher: Im Eingangsbereich innerhalb des Raumes
- 2. Pulver-Feuerlöscher: Am Treppenhaus vor dem Raum

Auf jeden Fall müssen Sie das Gebäude durch den Haupteingang verlassen und sich dann vor dem Haupteingang bei Ihrem Betreuer einfinden.

KAPITEL 1. ORGANISATORISCHES

Elektrische Geräte:

Nur Schutz-Kontaktstecker (SchuKo) in die Netzsteckdosen stecken, niemals "Bananenstecker" oder Ähnliches!

Bei Rauchentwicklung in einem Gerät ist unverzüglich der Netzstecker zu ziehen und ein Assistent zu benachrichtigen.

Chemikalien:

Prinzipiell gilt die Gefahrstoffverordnung. Chemikalien können giftig sein.

Die Quecksilberdampflampen (Versuch S) und die Elektronenröhren (Versuch F) werden sehr heiß. Im Falle der Zerstörung tritt aus beiden Röhren Quecksilber aus, welches giftig ist.

Zur Erhöhung derer Lebensdauer, sollten diese nach dem Ausschalten nicht sofort wieder eingeschaltet werden.

Radioaktive Stoffe:

Generell sind die "drei A's" einzuhalten:

- viel Abstand,
- große Abschirmung und
- kurze Aufenthaltsdauer

Für die Abschirmung des Versuchsstandes werden Abschirmsteine aus Blei verwendet. Eine dauerhafte Übertragung von Blei auf die Schleimhäute (Essen, Trinken, Rauchen, Verwendung von Kosmetika usw.) kann chronische Schäden verursachen: Schädigung der Fortpflanzungsorgane, Blutbildung, Nieren und Nerven. Es besteht eine Meldepflicht für Schwangerschaften wegen des Umgangs mit radioaktiven Stoffen. Es gilt absolutes Verbot von Essen und Trinken im Radioaktivitätsraum. Bei Rauch-, Ess- oder Trinkpausen sind erst die Hände zu waschen! Die anderen im Raum befindlichen Experimentierstände sind tabu. Sie enthalten teilweise recht starke γ -Quellen.

Druckgasflaschen:

Diese werden nur vom Assistenten bedient und müssen mit Ketten an der Wand gesichert sein. Es besteht Gefahr durch Umkippen.

Laser:

Schauen Sie niemals direkt in einen Laserstrahl hinein! Durch die teilweise sehr hohe Strahlleistung können Verbrennungen der Netzhaut hervorgerufen werden. Deshalb ist bei Anwendung von Lasern generell eine Laserschutzbrille zu tragen! Armbanduhren und Armschmuck sind, aufgrund ungewollter Reflektionen, abzulegen. Laserpointer sind verboten.

Beachten Sie außerdem:

Essen, Trinken und Rauchen ist innerhalb der Praktikumsräume nicht gestattet.

Diebstahl führt zu einer Anzeige mit Hausverbot.

Somit ist dieses Praktikum nicht mehr durchführbar.

Defekte Geräte sind sofort zu melden!

Handies sind aus- oder stummzuschalten!

1.2 Allgemeine Regeln

Erster Versuchstermin:

Am ersten Versuchtermin beginnt das Praktikum 15 Minuten früher. In dieser Zeit wird die Sicherheitsbelehrung gehalten, für welche eine Anwesenheitspflicht besteht. Ein gültiger Lichtbildausweis sowie der Studentenausweis sind mitzubringen.

Testatbogen:

Am ersten Versuchstag bekommt jeder Student einen Testatbogen, welcher am Ende des Praktikums ausgefüllt wieder abgegeben werden muss. Dieses Dokument ist an jedem Termin mit sich zu führen. Nebst selbst einzutragenden Angaben zur Person, werden dort von den Betreuern die entsprechenden Eintragungen zu den Versuchen vorgenommen. Sollte der Testatbogen, aus welchen Gründen auch immer, abhanden kommen, ist dies sofort dem Praktikumsleiter zu melden. Für die Eintragung Ihrer Punkte durch den Assistenten sind Sie selbst verantwortlich.

Vorbereitung:

Vor einem Versuchstermin ist das entsprechende Versuchskript durchzuarbeiten. Unvorbereitete Gruppen, die offensichtlich keinerlei Ahnung vom Versuch haben, stellen ein Sicherheitsrisiko dar und dürfen diesen nicht durchführen. Der Versuch wird dann mit 0 Punkten bewertet.

Kolloquium:

Im Laufe des Versuchstages wird ein Kolloquium stattfinden. In diesem, ca. halbstündigen wissenschaftlichen Gespräch wird Ihr Wissen über den theoretischen Hintergrund zur jeweiligen Thematik sowie über das Experiment geprüft und bewertet.

Protokolle:

Das Protokoll wird je Gruppe bis zum jeweils nächsten Versuchstermin in einem gebundenen DIN-A4-Heft angefertigt und dem entsprechenden Assistenen ausgehändigt. Je Termin ist i. d. R. ein Protokoll abzugeben und davon unabhängig ein neues Messprotokoll in ein zweites gebundenes DIN-A4-Heft aufzunehmen. In Kapitel 1.3.4 sind Anweisungen zur Form ihres Protokolls gegeben.

Nachbesserungen von Protokollen Bei fehlerhaften oder unvollständigen Protokollen ist zum nächsten Praktikumstermin eine Nachbesserung anzufertigen. Sollten danach noch Beanstandungen vorhanden sein, besteht eine zweite Chance zur Nachbesserung. Ist das Protokoll nach dieser zweiten Nachbesserung noch immer unzureichend, wird der gesammte Versuch mit 0 Punkten bewertet und

ist am Nachholtermin zu wiederholen. Nur für ein vollständiges und fehlerfreies Protokoll wird ein Testat erteilt.

Verspätete Abgabe von Protokollen Wird ein Protokoll unentschuldigt verspätet abgegeben, so werden für jede angebrochene Woche Verspätung 0,5 Punkte abgezogen. Unter Umständen kann der Versuch dadurch mit 0 Punkten bewertet werden.

Bewertung:

Bewertet werden Kolloquium sowie Protokoll. Die erreichbare Punktzahl und die Mindestanforderungen für jeden Versuch sind nachfolgend in Tabelle 1.1 aufgelistet. Werden die Mindestanforde-

	Kolloquium	Protokoll	Gesamt
Bewertung	individuell	gemeinsam	individuell
Punkte	0 bis 4	-1 bis 1	0 bis 5
Schritte	$0,\!5$	$0,\!5$	0,5
Mindest-	> 0	Abgabe und	> 0
anforderung		evtl. Nachbesserung	

Tabelle 1.1 – Erreichbare Punkte und Mindestanforderungen je Versuch

rungen nicht erfüllt, so wird dieser Versuch mit 0 Punkten bewertet – dies gilt auch für einzelne Gruppenmitglieder. Damit ist der Versuch von der betroffenen Person am Nachholtermin erfolgreich, d. h. den Mindestanforderungen entsprechend, zu wiederholen.

Nachholtermin:

Es gibt nur einen Nachholtermin. Dieser findet i. d. R. am Ende des Semesters, eine Woche nach dem letzten Versuchstermin, statt. Werden für zwei Versuche die Mindestanforderungen nicht erfüllt, muss das Praktikum in einem der folgenden Semester komplett erneut durchgeführt werden.

Krankheitsfall:

Bei Versäumnis eines Praktikumstages aufgrund von Krankheit kann nach Absprache mit dem Praktikumsleiter und gegen Vorlage eines ärztlichen Attests, neben dem Nachholtermin, ein Ersatztermin vereinbart werden.

Täuschungsversuche:

- Die Verwendung fremder Messwerte oder Protokolle während der Durchführung ist unzulässig.
- Nach der Abzeichnung des Messprotokolls darf dieses nicht mehr verändert oder ergänzt werden.
- Das Abschreiben fremder Messwerte oder Protokolle ist verboten. Sie dürfen nur Ihre eigenen, am Versuchstermin aufgenommenen Werte verwenden.
- Die wichtigsten Arbeitsaufgaben sind:
- 1) Versuchsdurchführung

Assistentenanweisungen gehen vor Skriptangaben. Eventuelle Abweichungen vom Versuchsskript müssen mit dem Assistenten abgesprochen und von Ihnen protokolliert werden. 2) Protokollabgabe

Diese hat termingerecht zu erfolgen.

3) Rechtfertigung ihrer Arbeitsleistung Fragen seitens des Betreuers bzgl. Ihres Protokolls oder zu den Messwerten müssen von Ihnen beantwortet werden können.

$Nichteinhaltung = {\bf Arbeitsverweigerung}$

Bei nachweislichem Täuschungsversuch wird der jeweilige Versuch mit 0 Punkten bewertet. In schwerwiegenden Fällen wird der Betroffene aus dem gesamten Praktikum ausgeschlossen.

Erfolgreiche Teilnahme:

Wenn Sie alle Ndurchzuführenden Versuche erfolgreich absolviert haben, muss für Ihre erreichte GesamtpunktzahlGaus der Summe aller Kolloquiums- und Protokollnoten

 $G \geq 2 \cdot N$

gelten. N sowie die Formalitäten für die Schein- bzw. Notenvergabe hängen von Ihrem Studiengang ab.

1.3 Leitfaden – Von der Vorbereitung bis zum Protokoll

Dieses Kapitel dient als Hilfestellung zu den vier wesentlichen Prozessen, welche den Rahmen jedes Versuches bilden. Wie eingangs schon erwähnt wurde, haben Sie nach dem Praktikumstag i. d. R. bis zum nächsten Termin Zeit, die aufgenommenen Daten auszuwerten und Ihr Messprotokoll um ein Versuchsprotokoll zu ergänzen. Vergessen Sie währenddessen die Vorbereitung auf den nächsten Versuch nicht. Bei Fragen und Unklarheiten wenden Sie sich rechtzeitig an die Betreuer bzw. Praktikumsleiter.

1.3.1 Vorbereitung

Grundvoraussetzung für die Teilnahme an einem Praktikumsversuch ist die Vorbereitung. Die folgenden Dinge sind einerseits aus sicherheitstechnischer Hinsicht, andererseits aber auch zur erfolgreichen und eigenständigen Durchführung unverzichtbar oder werden spätestens im Kolloquium von Ihnen verlangt:

- 1. Ein ausreichendes theoretisches Wissen zu den untersuchten physikalischen Phänomenen. Zu Beginn jedes Versuchsskriptes sind einige Stichpunkte unter "Vorkenntnisse" aufgelistet, welche Sie möglichst gewissenhaft studieren sollen. Dieses Wissen benötigen Sie für das Verständnis der Ausführungen unter "Grundlagen" der jeweiligen Versuchsanleitung.
- 2. Darüberhinaus gibt es im Text versuchsvorbereitende Aufgaben, die teilweise am Versuchstag von Ihnen vorzulegen sind und zwar ohne Aufforderung.
- Rudimentäre Kenntnise zur Experimentiertechnik sind erforderlich. Grundsätzlich dient zwar der Versuchstag zum Experimentieren, jedoch schließt dies nicht aus, dass Versuchsdurchführung und -aufbau vorbereitend anhand des Skriptes nachvollzogen werden sollen.

1.3.2 Tagesablauf und Messung

Im Folgenden wird erläutert, wie der Verlauf eines Versuchstages grob strukturiert ist. Darüberhinaus werden anschließend noch Hinweise zur Messung gegeben.

Tagesablauf

Ein Versuchstag lässt sich grob in drei Teile unterteilen:

Beginn Zu Beginn eines Versuchstages begeben Sie sich zu ihren Plätzen, welche den aushängenden Listen vor dem Praktikumsraum entnommen werden können. Zunächst erfolgt nun eine Einweisung in den Versuchsaufbau durch den betreuenden Assistenten. Währenddessen können schon Fragen bezüglich des Versuchsablaufs bzw. -aufbaus geklärt werden. Überprüfen Sie danach den Versuchsplatz auf Vollständigkeit. Fehlende oder defekte Gegenstände sind sofort zu melden.

Durchführung Erst ab jetzt sollten Sie sich um Ihre abzugebenden bzw. abzuholenden Protokolle kümmern. Diese sind dem Assistenten auszuhändigen bzw. bei ihm abzuholen.

Nun werden die einzelnen Versuchaufgaben den Anleitungen entsprechend aufgebaut und durchgeführt. Elektrische Schaltungen müssen vom Assistenten überprüft werden, bevor sie in Betrieb genommen werden dürfen.

Vergessen Sie nicht die in etwa veranschlagte Zeit für das Kolloquium, welches während der Durchführungszeit gehalten wird, mit einzuplanen.

Ende Nach der Durchführung aller Versuchsaufgaben ist es Ihre Pflicht, Ihre Mitschriften vom betreuenden Assistenten gegenzeichnen zu lassen.

Unsignierte Messaufzeichnungen sind ungültig.

Sind die Messwerte nicht abgezeichnet, ist die Durchführung zu wiederholen. Letztlich ist die zu Beginn des Versuches vorgefundene Ordnung wieder herzustellen. Erst danach dürfen Sie sich bei Ihrem Betreuer abmelden.

Messungen

Neben den organisatorischen Ausführungen zum Ablauf eines Versuchstages müssen Sie sich die folgenden Dinge klar machen:

Bevor Sie mit dem Aufbau eines Versuchsstandes beginnen, lesen Sie die Anweisungen der jeweiligen Aufgabenstellung aufmerksam durch und verinnerlichen Sie das Wesentliche. Das heißt nicht, dass freies Experimentieren im Rahmen der Sicherheitsbestimmungen grundsätzlich verboten ist. Allerdings können wichtige Hinweise übersehen werden und zudem ist mit Versuchszeit ökonomisch zu haushalten. Teilweise empfiehlt es sich auch den Aufbau dahingehend zu planen, dass die Versuchsbedingungen während einer Messung nicht grundlegend umstrukturiert werden müssen (z. B. die Messbereiche abschätzen). Gehen Sie bei Aufbau und Durchführung mit den am Versuchsplatz zur Verfügung gestellten Geräten und Materialien sorgsam um. Damit gewährleisten Sie die reibungslose Durchführung Ihrer eigenen Messungen, wie auch die nachfolgender Gruppen.

Protokollieren Sie immer nur unmittelbar abgelesene Werte. Umrechnungen können fehlerhaft sein und sind im Zweifelsfall nicht mehr nachvollziehbar.

Messbereiche und Einheiten dürfen bei der Protokollierung nicht vergessen werden. Es wird auf eine sorgfältige Durchführung der Versuche Wert gelegt, so dass die später ermittelten Ergebnisse im Rahmen der Messgenauigkeit mit falls vorhandenen Erwartungswerten übereinstimmen. Dafür ist es unabdingbar die Genauigkeit ihrer Messungen einzuschätzen und mitzuprotokollieren. Bei Unklarheiten halten Sie Rücksprache mit dem Assistenten. Schon während der Messung muss das erwartete Ergebnis bzw. der erwartete Verlauf abgeschätzt werden, damit eventuelle Fehler im Versuchsaufbau schnell gefunden und behoben werden können.

Die relevanten Einstellungen der verwendeten Messgeräte, z. B. eines Oszilloskops oder eines Multimeters sind gegebenenfalls zu notieren.

Das Messprotokoll stellt, als Teil des gesamten Protokolls, den Nachweis Ihrer Arbeitsleistung am Versuchstag dar. Die Angabe von Versuchsbezeichnung, aktuellem Datum, Gruppennummer und Praktikantennamen ist obligatorisch. Protokollieren Sie Ihre Messwerte, Beobachtungen und Skizzen in einer nachvollziehbaren Form zusammenhängend und handschriftlich während der Messung in ein DIN-A4-Heft (keine Schmierzettel verwenden). Geben Sie dazu zuerst das jeweilige Messziel einer Versuchsaufgabe an. Das Messprotokoll soll jede Phase der Versuchsdurchführung festhalten und es gestatten, die Entstehung eines Messergebnisses zurückzuverfolgen. Hierzu dürfen keine Bleistifte, Tipp-Ex, Tintenlöscher o.ä. verwendet werden. Korrekturen von fehlerhaft durchgeführten Messungen oder von falsch notierten Messwerten müssen eindeutig sein. Das Falsche ist durchzustreichen, und zwar der ganze Messwert. Falscheinträge sollten so durchgestrichen werden, dass sie trotzdem lesbar bleiben. Sie können sich im Nachhinein als richtig erweisen. Falls die Versuchsbedingungen vor Ort von den im Skript genannten abweichen oder falls Ergänzungen nötig scheinen, teilen Sie dies dem Assistenten mit und machen Sie sich entsprechende Notizen. Umgebungsbedingungen, wie Temperatur und Druck sind ebenfalls zu notieren, wenn es der Versuch verlangt.

1.3.3 Auswertung

Als zumeist langwierigster Teil, wird die Auswertung der Messdaten empfunden, sofern man mit deren Methoden nicht ausreichend vertraut ist. Halten Sie sich vor Augen, dass die Auswertung Ihrer Messdaten noch nicht das Protokoll ist. Schreiben Sie jetzt also auf keinen Fall sofort los, sondern verwerten Sie zuerst Ihr Messprotokoll zu Ergebnissen. Auch wenn die nun folgenden Ausführungen das Verständnis einiger Begrifflichkeiten und Zusammenhänge aus Kapitel 2 dieses Skriptums voraussetzen, sollen sie dabei behilflich sein, diesen Prozess zumindest überschaubar zu halten.

- Absolut notwendig ist die Kenntnis, der zur Lösung einer Versuchsaufgabe verwendeten physikalischen Zusammenhänge.
- Fehlerabschätzung und -rechnung: Hierfür muss überlegt werden, wie mit Messungenauigkeiten umgegangen wird. Häufig treten hierbei zwei Fälle auf:

1. Eine gemessene Größe wird inklusive ihrer geschätzten Messunsicherheit direkt benötigt. Zum Beispiel zur Angabe des einmalig gemessenen Wertes der Umgebungstemperatur

$$T_{Umgeb.} = T_{Mess.} \pm \Delta T_{Unsich.} = (20\pm2)$$
 °C.

Oder die gleichzeitig gemessenen Strom- und Spannungswerte einer Reihe von NMessungen

$$(I_1 \pm \Delta I_1 | U_1 \pm \Delta U_1), \dots, (I_N \pm \Delta I_N | U_N \pm \Delta U_N)$$

zur grafischen Darstellung einer Diodenkennlinie.

Die Unsicherheiten werden dann als Fehlerbalken eingetragen. Darüber erfahren Sie im Abschnitt 2.3 (grafische Darstellungen) mehr.

- 2. Geht die gemessene Größe zur Bestimmung einer Anderen in einen formelmäßigen Zusammenhang ein, so muss die Auswirkung der Messungenauigkeit nach den Regeln der Fehlerrechnung behandelt werden, auf die in Abschnitt 2.2 (Fehlerrechnung) eingegangen wird.
- Zur Veranschaulichung ihrer Messdaten dienen vor allem übersichtliche Tabellen. Sofern es möglich ist, empfiehlt es sich die Daten zuerst in elektronische Form zu übertragen (Tabellenkalkulationssoftware). Das erspart ein wiederholtes "von Hand" Rechnen und konserviert den Zwischenstand der bis dahin ermittelten Ergebisse schon bevor sie in das Versuchsprotokoll eingehen sollen. Dabei häufig entstehende Nachkommastellen-"Kolonnen" sind, nach den in Kapitel Abschnitt 2.2 gemachten Angaben entsprechend zu runden.

Gelegentlich werden auch grafische Auftragungen gefordert, aus denen gesuchte Größen ermittelt werden müssen. Hilfreiche Tipps dazu werden in Kapitel 2.3 gegeben.

1.3.4 Protokoll

Nach dem Messprotokoll folgt in Ihrem Protokollheft nun eine nachvollziehbar gegliederte und zusammenfassende Darstellung der Auswertung sowie die kritische Auseinandersetzung mit den Ergebnissen. Die folgende Auflistung gilt prinzipiell für jede Versuchsaufgabe.

Das Protokoll ist handschriftlich anzufertigen.

1. Versuchsbeschreibung:

Beschreiben Sie, möglichst in eigenen Worten und in Kurzform, das Messziel, sowie die relevanten Einzelheiten zur Messmethode der jeweiligen Versuchsaufgabe. Skizzen des Aufbaus, qualitative Beobachtungen und Angaben zur Justierung sollen die wesentlichen Arbeitsschritte eines Versuchs wiedergeben. Bedenken Sie: Ein Skript gibt es schon. Eigenständiges Arbeiten ist hier von Interesse.

2. Rechenweg zu den Ergebnissen:

Beschreiben Sie, anhand der benutzten Formeln, wie Sie zu ihrem Ergebnis gekommen sind. Geben Sie die benutzten funktionalen Zusammenhänge, die Sie bei der Auswertung verwendet haben, formelmäßig an.

3. Darstellung der Ergebnisse:

Einzelne Werte, Tabellen oder Grafiken fassen Ihre Auswertung zusammen. Zur grafischen Darstellung funktionaler Zusammenhänge wird, wenn nicht anders gefordert, Millimeterpapier

oder Papier mit logarithmischer Skala benutzt. Die Achsen der Koordinatensysteme müssen außer mit den Maßzahlen noch mit den Angaben über die gemessenen Größen und deren Einheiten beschriftet werden. Bilder und Grafiken sind mit einer knappen, jedoch ausreichenden Beschreibung des Dargestellten zu versehen. Tabellen dürfen ausgedruckt, Grafiken und Bilder jedoch nur von Hand gezeichnet, in das Versuchprotokoll eingeklebt werden.

4. Fehlerrechnung und -abschätzung:

Die in Ihrer Auswertung für die Fehlerrechnung benutzten Formeln und Zusammenhänge sind nötig, um die Aussagekraft Ihrer Messergebnisse anhand der berechneten oder gemessenen Ungenauigkeiten abzuschätzen.

5. Stellungnahme zu den Ergebnissen:

Wo es möglich ist, ziehen Sie Literaturwerte mit der Angabe einer vertrauenswürdigen Quelle heran, um Ihre Ergebnisse zu kommentieren. Am besten benutzen Sie hierzu Nachschlagewerke, wie z. B. [Kuc01] oder [Koh96a]. Von Internetquellen wird abgeraten. Sollte Ihr Ergebnis im Rahmen der Aussagekraft gegenüber dem Erwarteten fragwürdig sein, begänne hier der wesentliche Schritt zur Prüfung der Messmethodik sowie der zugrundeliegenden Modellvorstellungen. Jedoch können z. B. systematische Fehler und Fahrlässigkeiten beim Experimentieren im Nachhinein nicht mehr richtig nachvollzogen und verbessert werden. Geben Sie trotzdem entsprechende Überlegungen an und begründen Sie diese.

Kapitel 2

Grundlagen

Die Motivation Wissenschaft zu betreiben, liegt im menschlichen Bestreben danach grundlegende Gesetzmäßigkeiten zu finden, mit derer Hilfe sich beobachtete Vorgänge in der belebten und unbelebten Natur erklären oder sogar voraussagen lassen. Mit der Erfassung von Vorgängen in der uns umgebenden physischen Welt, beschäftigen sich die verschiedenen Disziplinen der Naturwissenschaften, welche sich zum einen durch spezielle Forschungsziele und zum anderen durch verschiedene Arbeitsweisen und -methoden unterscheiden. Die Physik ist dabei mit der Quantifizierung ihrer Aussagen über die Wesenszüge bestimmter Naturerscheinungen am weitesten fortgeschritten und liefert damit die Grundlagen für viele andere Wissenschaftszweige. Hier liegt auch die Rechtfertigung eines Praktikums in der Physik für Studenten einer naturwissenschaftlichen Studienrichtung.

Allein durch die bloße Beobachtung natürlich ablaufender Vorgänge erhält der Betrachter schon eine Fülle an Informationen. Dennoch überlagern sich dabei oft so viele verschiedene Einflüsse, dass die Differenzierung des beobachteten Vorgangs in die wesentlichen Teilprozesse irgendwann das Vorstellungsvermögen des Beobachters übersteigt. Neben einer rein qualitativen Erkenntnis stellt sich allerdings auch gleichzeitig die Frage nach der Quantität:

Wie stark unterscheidet sich das Beobachtete von schon Bekanntem?

Um Zusammenhänge genauer zu erkennen, scheint es nötig zu sein einen komplizierten Vorgang zu vereinfachen. Vor allem seit Galileo Galilei (1564-1642) ist das Experiment, also die geplante Präparation von Vorgängen, nicht mehr aus den Wissenschaften wegzudenken. Für den Gewinn oder die Bestätigung naturwissenschaftlicher Erkenntnisse ist es sogar unentbehrlich zu experimentieren. Experimente sollten einfacher und übersichtlicher als Naturvorgänge gestaltet sein und müssen überall auf der Welt reproduziert werden können. Sie erleichtern i. Allg. die Messung von physikalischen Größen (vgl. nächsten Abschnitt) und stellen Fragen an die Natur dar. Bei einer sinnvollen Fragestellung (Messung) enthalten die gewonnenen Erkenntnisse dann Informationen (Messergebnisse) zur Antwort oder sie werfen sogar neue Fragen auf, deren Beantwortung es häufig ebenfalls zu untersuchen gilt.

2.1 Rechnen mit physikalischen Größen

Nachfolgend werden zuerst einige Anmerkungen zur allgemeinen Notation in diesem Skript gemacht, um den Einstieg in die, den Naturwissenschaften zugrundeliegende, exakte Ausdrucksweise zu erleichtern. Das grobe Verständnis einiger dabei verwendeter Begriffe, deren Definition erst später erfolgen soll, wird entweder stillschweigend vorausgesetzt oder es ergibt sich direkt aus dem Zusammenhang.

Physikalische Zusammenhänge werden durch die mathematische Abstraktion physikalischer Größen (im folgenden auch einfach: Größen) dargestellt. Dies bietet zum einen Universalität und zum anderen Präzision bei der Aufstellung von Gesetzmäßigkeiten. Zum Rechnen mit physikalischen Größen werden also mathematische Formeln verwendet, innerhalb derer die Größen durch verschiedene Symbole gekennzeichnet sind. Üblicherweise wird dafür die Vereinigung des lateinischen Alphabets $(a, \ldots, z \text{ und } A, \ldots, Z)$ mit dem Griechischen $(\alpha, \ldots, \omega \text{ und } A, \ldots, \Omega)$ in Schrägschrift benutzt (vgl. Tabelle I.1 auf S. 122 im Anhang).

Wenn diese Symbolmenge nicht ausreicht oder es sich sinngemäß einfach anbietet, dann wird häufig auch mit Akzentuierung gearbeitet, also z. B. mit Hochkommata a', $a'' \dots$, Dach \hat{a} und Tilde \tilde{a} . Dieses Vorgehen stellt für viele Studenten zu Beginn eines Naturwissenschaftlichen Studiums oft eine Hürde dar, wird sich jedoch schnell als sehr zweckmäßig erweisen. Dagegen sollte die Unterscheidung von Größen verschiedener Quantität leichter nachzuvollziehbar sein. Diese geschieht häufig mittels tiefgestellten Abkürzungen, Wörtern, Buchstaben oder Ziffern/Zahlen.

Beispiel: $m_1 = 25 \text{ kg}, \ m_2 = 20 \text{ kg} \Rightarrow m_{ges} = m_1 + m_2 = 45 \text{ kg}.$

Prinzipiell erfolgt die Zuweisung zwischen Symbol und Größe willkürlich per Definition, jedoch haben sich für viele Größen schon feststehende Symbole durchgesetzt, wie z. B. m für Masse (engl.: mass), t für Zeit (engl.: time) oder Δ als Vorsatz bei Differenzen ($\Delta x = x_2 - x_1$). In der Literatur verschiedener Sprachräume müssen diese allerdings nicht immer gleich sein, was unmittelbar aus der Methode des Abkürzens hervorgeht.

Die Symbolschreibweise ist für Skalare a, für Vektoren \vec{a} und für Matrizen Großbuchstaben in Fettschrift **A**. Auf den grundlegenden Umgang mit diesen mathematischen Elementen kann hier nicht weiter eingegangen werden; dies sollte aus dem Schulunterricht bekannt sein und wird vorausgesetzt.

2.1.1 Physikalische Größen, Größenarten und Einheiten

Der Begriff der physikalischen Größe hängt unmittelbar mit dem Begriff Messen zusammen. Als physikalische Größen werden i. Allg. alle Eigenschaften von physikalischen Objekten, Zuständen oder Vorgängen bezeichnet, welche sich über eine Messvorschrift ermitteln lassen. Dies kann durch direktes Messen geschehen oder indirekt, anhand physikalischer Zusammenhänge zwischen verschiedenen physikalischen Größen. Daraus folgt, dass Größen von der gleichen Größenart sind, wenn sie anhand äquivalenter Messvorschriften bestimmt werden können.

Die Messung einer physikalischen Größe G ist der quantitative Vergleich zweier Größen der gleichen Größenart, wobei eine von ihnen als Maßstab benutzt wird. Dabei ist die Definition des Maßstabes willkürlich und liefert unmittelbar die Einheit [G] der gemessenen Größe. Der quantitative Teil des Messergebnisses, also die Zahl, welche die Häufigkeit der Einheit in einer gemessenen Größe angibt, ist wird als Maßzahl $\{G\}$ der Größe bezeichnet. Eine physikalische Größe lässt sich demnach als Produkt aus Maßzahl und Einheit angegeben:

$$G = \{G\} \cdot [G]$$

Phys. Größe = Maßzahl · Einheit (2.1)

2.1.2 Basisgrößenarten und -einheiten

Man unterscheidet voneinander unabhängige Basisgrößenarten und davon abgeleitete Größenarten. Zusammen bilden diese beiden Klassen mit ihren Einheiten das seit 1960 international festgelegte Système International d'Unités (SI), dessen Verwendung in der Bundesrepublik seit dem 1. Januar 1978 gesetzlich vorgeschrieben ist. Der Satz der Basisgrößen des SI und deren Messvorschrift wurde seither mehrfach dem technischen Fortschritt angepasst. Der in der Tabelle angeführte Begriff

Basisgrößenart (Dimensionsname)	Symbol der Basisgröße	Dimensions- symbol	Basiseinheit	Symbol der Basiseinheit	
Länge	l	L	Meter	m	
${ m Zeit}^\dagger$	t	Т	Sekunde	\mathbf{S}	
$Masse^{\dagger}$	m	Μ	Kilogramm	kg	
Elektrische Stromstärke	Ι	Ι	Ampère	А	
$\mathrm{Temperatur}^\dagger$	T	Θ	Kelvin	Κ	
Lichtstärke	l	J	Candela	cd	
Stoffmenge	n	Ν	Mol	mol	
[†] sind unabhängig von anderen Basisgrößen definiert					

der Dimension, kennzeichnet die qualitative Eigenschaft einer Größenart unabhängig von einer Einheit. Die Dimension einer abgeleiteten Größe G' wird aus dem Potenzprodukt der Basisgrößen gebildet

$$\dim G' = \mathcal{L}^{\alpha} \cdot \mathcal{T}^{\beta} \cdot \mathcal{M}^{\gamma} \cdot \mathcal{I}^{\delta} \cdot \Theta^{\epsilon} \cdot \mathcal{J}^{\zeta} \cdot \mathcal{N}^{\eta}$$
(2.2)

mit den ganzzahligen Exponenten α, \ldots, η . Dies ist bei der qualitativen Überprüfung von Gesetzmäßigkeiten sehr hilfreich. Größen gleicher Art, wie z. B. "Höhe" und "Abstand" sind eindeutig durch ihre gemeinsame Dimension charakterisiert; sie müssen nicht zwangsweise in gleichen Einheiten gemessen werden (man kann Zoll oder Meter als Maß verwenden) und bleiben trotzdem Größen gleicher Art. In diesem Fall ist dies die Länge L. Dagegen müssen Größen gleicher Dimension nicht von gleicher Art sein, wie dies z. B. bei Arbeit W und Drehmoment M der Fall ist:

$$\dim W = \mathbf{M}^1 \cdot \mathbf{L}^2 \cdot \mathbf{T}^{-2} = \dim M. \tag{2.3}$$

Je
de Einheit einer abgeleiteten Größe G^\prime wird durch das Potenz
produkt der SI-Basiseinheiten ausgedrückt

$$[G'] = 10^{n} \cdot m^{\alpha} \cdot s^{\beta} \cdot kg^{\gamma} \cdot A^{\delta} \cdot K^{\epsilon} \cdot cd^{\zeta} \cdot mol^{\eta}.$$

mit ganzzahligem n und den Dimensionsexponenten $\alpha, \ldots, \eta \in \mathbb{Z}$. Die Zehnerpotenzen 10^n geben die Größenordnung an, welche auch häufig durch, ebenfalls im SI festgelegte, Vorsilben gekennzeichnet sind (vgl. Tabelle 2.2). Ist n = 0, folgt $10^0 = 1$ und man spricht von einer "kohärenten" Einheit. Für Arbeit W und Drehmoment M ist die Einheitengleichung

$$[W] = 10^0 \cdot \text{kg}^1 \cdot \text{m}^2 \cdot \text{s}^{-2} = [M].$$
(2.4)

Weitere häufig verwendete abgeleitete Einheiten sind in Tabelle I.2 auf S. 123 im Anhang tabelliert.

Name	Symbol	Faktor	Name	Symbol	Faktor
pico	р	10^{-12}	tera	Т	10^{12}
nano	n	10^{-9}	giga	G	10^{9}
mikro	μ	10^{-6}	mega	Μ	10^{6}
milli	m	10^{-3}	kilo	k	10^{3}
zenti	с	10^{-2}	hekto	h	10^{2}
dezi	d	10^{-1}	deka	da	10^{1}

Tabelle 2.2 – Einige SI-Präfixe für Größenordnungen

2.1.3 Naturgesetze und Definitionen

Das bisher Gesagte bildet die Grundlage für die Aufstellung von Größengleichungen. Dabei werden entweder durch willkürliche Definitionen oder durch physikalische Gesetzmäßigkeiten (auch kurz: Naturgesetze) neue Größen abgeleitet. Naturgesetze werden häufig zuerst in der Form einer Proportionalitätsgleichung, wie

Größe
$$A \sim \text{Größe } B^m$$
 (2.5)

gefunden. Man sagt dann, dass Größe A der m-ten Potenz der Größe B proportional ist, wobei m positive und negative Werte annehmen kann. Der Proportianalitätsfaktor const, für welchen sich dann die Gleichheit ergibt

Größe
$$A = const \cdot Größe B^m,$$
 (2.6)

ist oft eine Natur- oder Materialkonstante und muss aus Dimensionsgründen ebenfalls eine abgeleitete Größe sein.

Die Größe A kann natürlich auch einer beliebigen Funktion f der Größe B proportional sein:

Größe
$$A = const \cdot f(Größe B).$$
 (2.7)

Also ist f dann z. B. sin, cos, exp, oder log.

Abschließend seien zwei Beispiele angeführt:

Tabelle 2.3 – Zur Veranschaulichung von Größengleichungen

	Definition	Naturgesetz
Name	mittlere Beschleunigung	2. Newtonsches Gesetz
abgeleitete Größe	Beschleunigung a	Kraft F
phys. Zusammenhang	Dies sei die Änderung der Ge-	Um die Geschwindigkeit v einer
	schwindigkeit Δv eines Objekts	Masse m zu verändern, ihr also
	im Zeitintervall Δt .	eine Beschleunigung a zu ertei-
Größengleichung	$a = \frac{\Delta v}{\Delta t}$	$a \sim m^{-1}$ bzw. $a = F \cdot m^{-1}$
Dimensionsgleichung	$\dim a = \frac{\dim \Delta v}{\dim \Delta t} = \frac{\mathbf{L} \cdot \mathbf{T}^{-1}}{\mathbf{T}} =$	$\dim a = \dim F \cdot (\dim m)^{-1} =$
	$L \cdot T^{-2}$	$\dim F \cdot \mathbf{M}^{-1} \stackrel{!}{=} \mathbf{L} \cdot \mathbf{T}^{-2} \qquad \Rightarrow \qquad$
		$\dim F = \mathbf{M} \cdot \mathbf{L} \cdot \mathbf{T}^{-2}$
Einheitengleichung	$[a] = \frac{[\Delta v]}{[\Delta t]} = \frac{\mathbf{m} \cdot \mathbf{s}^{-1}}{\mathbf{s}} = \mathbf{m} \cdot \mathbf{s}^{-2}$	$[F] = [m] \cdot [a] = \mathrm{kg} \cdot \mathrm{m} \cdot \mathrm{s}^{-2} = \mathrm{N}$

2.2 Fehlerrechnung

Experimente dienen dazu theoretische Modelle zu überprüfen und vorausgesagte physikalische Größen quantitativ zu ermitteln bzw. diese zu bestätigen. Der durch Messen bestimmte Wert einer Größe ist nie exakt. Er ist mit einer Unsicherheit behaftet, welche ein Intervall um den Messwert vorgibt, in welchem neue Messwerte zu erwarten sind, wenn die Messung unter gleichbleibenden Versuchsbedingungen wiederholt wird. Wenn die Abweichung zwischen gesuchter Größe und gemessenem Wert maximal der Unsicherheit des Messwertes entspricht, wird das theoretische Modell vom Experiment bestätigt.

In diesem Kapitel wird beschrieben, wie die Unsicherheit einer Messung im Rahmen dieses Praktikums bestimmt wird. Damit wird es dem Praktikanten ermöglicht, festzustellen inwiefern die gemachten Messungen die theoretischen Ausführungen zum jeweiligen Versuch bestätigen.

Oftmals werden Messabweichungen und Unsicherheiten auch als "Fehler" bezeichnet. Nach DIN 1319 ist dies allerdings zu vermeiden, denn Messabweichungen sind jene Fehler, die während einer Messung auftreten und Unsicherheiten solche, welche bei der Angabe von Messergebnissen verwendet werden. Einige Begriffe, wie z.B. Fehlerrechnung oder Gaußsche Fehlerfortpflanzung werden hier allerdings trotzdem benutzt.

2.2.1 Ursachen von Messabweichungen

Gemäß ihres Ursprungs unterscheidet man prinzipiell drei Arten von Messabweichungen, grobe Fehler, systematische Abweichungen und statistische Abweichungen.

Grobe Fehler

Grobe Fehler entstehen durch den falschen Gebrauch von Meßgeräten und durch Verwechselungen von Messwerten. Diese so entstandenen Abweichungen können nur durch sorgfältiges Arbeiten vermieden, jedoch nicht nachträglich korrigiert werden.

Systematische Abweichungen

Systematische Abweichungen können z. B. durch die Benutzung falsch geeichter Meßgeräte, die Verwendung unreiner Substanzen, vernachlässigte physikalische Effekte und auch durch die Anwendung von Näherungsformeln auftreten. Sie verfälschen das Meßergebnis stets in die gleiche Richtung und sind prinzipiell beliebig reduzierbar. Dies erfordert jedoch oft großen Aufwand und ist daher unter Praktikumsbedingungen kaum möglich. Systematische Abweichungen werden bei der Fehlerrechnung korrigiert oder vernachlässigt und bei größenmäßiger Angabe des Ergebnisses nicht berücksichtigt. Oftmals sind sie von vornherein auch gar nicht bekannt. Das schließt jedoch eine qualitative Diskussion von Messwertabweichungen systematischer Herkunft nicht aus.

Statistische Abweichungen

Die Ursache statistischer Abweichungen liegt in vielerlei veränderlichen Einflüssen, wie z. B. Temperaturschwankungen, Netzspannungsschwankungen, Veränderung der Sehschärfe usw., welche in ihrer Summe eine statistisch rein zufällige Schwankung der Messergebnisse bewirken. Statistische Abweichungen sind unvermeidbar und verändern das Resultat in beide Richtungen. Erst die mehrfach wiederholte Durchführung einer Messung ermöglicht es, die dabei gewonnenen Messwerte mit den Methoden der Wahrscheinlichkeitsrechnung und der Statistik zu behandeln. Dies bildet dann die Grundlage der Fehlerrechnung, welche dazu dient die statistische Abweichung durch Unsicherheiten abzuschätzen.

Messwert und wahrer Wert, Unsicherheit und Erwartungswert

In Abbildung 2.1 ist der Zusammenhang zwischen Abweichung und Unsicherheit einer gemessenen Größe skizziert. Der wahre Wert x_w einer physikalischen Größe x, kann durch Messen nicht genau bestimmt werden. Die Messung jedoch liefert den Messwert \bar{x} , der sich aufgrund unbekannter systematischer Abweichungen, bekannter systematischer Abweichungen und statistischer Abweichungen vom wahren Wert unterscheidet. Die statistische Abweichung des Messwertes vom sogenannten Erwartungswert $\langle x \rangle$ wird durch die Unsicherheit $\Delta \bar{x}$ abgeschätzt. Der Erwartungswert ist ein theoretischer Mittelwert von unendlich vielen Messungen, der keine Unsicherheit hat. Eine Korrektur von \bar{x} um bekannte systematische Abweichungen ergibt dann den korrigierten Messwert \bar{x}_k . Aus $\Delta \bar{x}$ wird durch Fehlerfortpflanzung die Unsicherheit $\Delta \bar{x}_k$, welche die statistische Abweichung des korrigierten Messwerts vom korrigierten Erwartungswert $\langle x \rangle_k$ abschätzt.

Abbildung 2.1 – Schematische Darstellung theoretischer und berechneter Werte mit Abweichungen und Unsicherheiten

Experimentell ist nur $\bar{x}_k \pm \Delta \bar{x}_k$ zugänglich und der wahre Wert weiterhin unbekannt. Deshalb sind die Basiseinheiten über Messvorschriften definiert.

Praktisch existieren keine wahren Werte, jedoch per Definition können Literaturwerte oder Skriptangaben, welche auch nur durch Messungen gewonnen wurden, für dieses Praktikum als wahrer Wert angenommen werden, um Messwertabweichungen bestimmen zu können. Da somit ein durch Messung erhaltener Wert als wahrer Wert angenommen wird ist zu erwarten, dass durch eine Wiederholung des Experiments das Ergebniss sich im Bereich $\bar{x}_k \pm \Delta \bar{x}_k$ befindet.

2.2.2 Vier Schritte zur Auswertung von Meßwerten

In diesem Unterabschnitt werden die vier wesentlichen Schritte

zur Auswertung von Messwerten erklärt.

2.2.2.1 Schritt 1: Aufstellen des physikalischen Modells

Physikalische Zusammenhänge sind in jedem Versuchsskript i. d. R. in mathematischen Formeln hergeleitet oder angegeben.

Häufig gehen die Eingangsgrößen x_a, x_b, \ldots zur Bestimmung eines Messergebnisses y in einen funktionalen Zusammenhang $y = f(x_a, x_b, \ldots)$ ein. Ebenso kann es vorkommen, dass mehrere Formeln $f_{\alpha}(x_a, x_b, \ldots), f_{\beta}(x_a, x_b, \ldots), \ldots$ kombiniert werden müssen, um das Messergebnis über $y = f(f_{\alpha}, f_{\beta}, \ldots)$ zu berechnen.

Generell sind bekannte systematische Abweichungen durch experimentellen Aufwand soweit zu verringern, dass man sie vernachlässigen kann. Ist dies nicht möglich, sollte das Modell so modifiziert werden, dass es die Abweichungen korrigiert. Im einfachsten Fall bedeutet dies die Berücksichtigung einer additiven Konstanten (Offset), kann jedoch auch komplizierter sein, so dass die Korrektur den Umfang des Praktikums sprengen würde. Bei zu großem Aufwand reicht es die durch vernachlässigen entstandene Abweichung qualitativ abzuschätzen.

2.2.2.2 Schritt 2: Vorbereitung der Eingangsgrößen

In diesem Praktikum wird vereinfachend davon ausgegangen, dass alle Eingangsgrößen unabhängig voneinander gemessen werden können – diese also nicht korreliert ¹ sind. Damit sind auch deren Unsicherheiten unabhängig und können mit den folgenden Formeln bearbeitet werden.

Mittelwert und Standardabweichung Die sinnvollste Möglichkeit Aussagen über die Unsicherheit einer Messgröße x zu erhalten, ist es die Messung dieser Größe unter gleichbleibenden Bedingungen möglichst oft zu wiederholen. Bei n-facher Messung einer physikalischen Größe x ergeben sich aufgrund statistischer Abweichungen i. d. R. unterschiedliche Messwerte x_i , welche jedoch aufgrund der gleichbleibenden Bedingungen alle die gleiche, noch unbekannte, Unsicherheit haben. Die Menge der Messwerte (x_1, x_2, \ldots, x_n) wird Messreihe des Umfangs n genannt. Durch Zählen gleicher Messwerte x_i in der Messreihe, erhält man die absolute Häufigkeit $h(x_i)$, welche bezogen auf die Anzahl n aller Messwerte die relative Häufigkeit $h'(x_i) = h(x_i)/n$ ergibt. Die relative Häufigkeit $h'(x_i)$ aufgetragen über den zugehörigen Messwerten x_i entspricht nach empirischen Erkenntnissen für große n Punkten einer Gaußfunktion. Für $n \to \infty$ und wenn die x_i beliebig dicht liegen ergibt sich die Funktion:

$$f_{Gauss}(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2} \left(\frac{x-\langle x \rangle}{\sigma}\right)^2}$$
(2.8)

Diese ist symmetrisch um den Erwartungswert $\langle x \rangle$ der Messgröße. Die Fläche unter der Kurve im Intervall [$\langle x \rangle - \sigma, \langle x \rangle + \sigma$] beträgt ca. 70% der Gesamtfläche. Dies bedeutet, dass ca. 70% aller Messwerte in diesem Intervall liegen.

In der Praxis können keine unendlich langen Messreihen aufgenommen werden. Werden also n Messungen einer Größe x durchgeführt, kann der arithmetische Mittelwert \bar{x} der Messreihe (x_1, x_2, \ldots, x_n) nach

$$\bar{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i \tag{2.9}$$

¹ Der Interessierte sei auf die Literatur verwiesen (Bronstein, Taschenbuch der Mathematik).

gebildet werden. Der arithmetische Mittelwert \bar{x} stellt einen guten Schätzwert für den Erwartungswert $\langle x \rangle$ dar, da er für $n \to \infty$ in diesen übergeht.

Als Schätzwert für die Streuung der Messwerte x_i einer Messreihe um deren Mittelwert \bar{x} wird die Standardabweichung der Einzelwerte $\sigma(x)$

$$\sigma(x) = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2}$$
(2.10)

berechnet. Bei gleichbleibenden Messumständen ist die Standardabweichung der Einzelwerte durch die Messmethode festgelegt und nimmt für $n \to \infty$ einen endlichen festen Wert $0 < \sigma_{\infty}(x) < \infty$ an. Die Standardabweichung der Einzelwerte ist nicht die gesuchte Unsicherheit des Mittelwertes (siehe nächster Abschnitt).

Standardunsicherheit des Mittelwertes Für die Beurteilung der Aussagekraft einer Messreihe kommt es auf die Unsicherheit $\Delta \bar{x}$ des Mittelwertes an.

Nach den bisherigen Überlegungen hat jede Messreihe ihren eigenen arithmetischen Mittelwert \bar{x}_j . Für eine große Anzahl m gleicher Messreihen jeweils vom Umfang n ergibt sich dann eine Menge von m Mittelwerten $(\bar{x}_1, \ldots, \bar{x}_m)$. Die relative Häufigkeit $h'(\bar{x}_j)$ eines Mittelwertes aufgetragen über den zugehörigen Mittelwerten \bar{x}_j entspricht im Fall $m \to \infty$ (und \bar{x}_j beliebig dicht beieinander) ebenfalls einer Gaußfunktion, welche auch den Erwartungswert $\langle x \rangle$ hat, jedoch durch eine Standardunsicherheit $\sigma(\bar{x})$ der Mittelwerte charakterisiert ist. Die Standardunsicherheit $\sigma(\bar{x})$ der Mittelwerte sollte für n = 1 der Streuung der Einzelwerte entsprechen und für $n \to \infty$ gegen null gehen, da der Erwartungswert keine Unsicherheit hat. Dies erfüllt:

$$\sigma(\bar{x}) = \frac{\sigma(x)}{\sqrt{n}}.$$
(2.11)

Durch Einsetzen von $\sigma(x)$ ergibt sich die Standardunsicherheit des Mittelwertes zu

$$\sigma(\bar{x}) = \sqrt{\frac{1}{n(n-1)} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2}.$$
(2.12)

Sie gibt das Intervall um den jeweiligen arithmetischen Mittelwert an, in dem der Erwartungswert zu erwarten ist.

Die Standardunsicherheit des Mittelwertes $\sigma(\bar{x})$ kann verkleinert werden durch das:

- Erhöhen der Anzahl *n* an Messungen. Erfordert einen hohen Zeitaufwand je Messreihe, jedoch sind im allgemeinen 5-20 Messungen sinnvoll, um die Ungenauigkeit der Messmethode einschätzen zu können.
- Verringern von $\sigma(x)$.

Dies kann nur durch entsprechende Verbesserungen der Messmethode und der Messumstände erreicht werden.

Die Eingangsgrößen liegen nun also in der Form

$$x = \bar{x} \pm \sigma(\bar{x})$$

vor und sind somit im weiteren für die Berechnung eines indirekten Ergebnisses verwendbar. Anstelle von $\sigma(\bar{x})$ wird auch häufig $\Delta \bar{x}$ geschrieben, wie in 2.1 geschehen

Ableseungenauigkeit und Messreihen sehr geringen Umfangs – Jedes Gerät hat eine maximale Ablesegenauigkeit, welche einfach durch die kleinste ablesbare Einheit im entsprechenden Messbereich definiert ist. Es kann vorkommen, vorallem für kleine n, dass bei einer Messung lediglich n-mal der exakt gleiche Wert x_i gemessen wird. Für n = 1 ist dies immer so. In diesen Fällen, ist natürlich die Bestimmung einer Streuung nach obigen Formeln sinnfrei, da sie 0 würde und das kann man nach den theoretischen Überlegungen ausschliessen.

Gängige Verfahren in dieser Situation gehen davon aus, dass man die Ungenauigkeit der Messmethode schon aus früheren Messungen kennt und dementsprechend abschätzen kann. Dies ist jedoch bei Ihrem vermutlich ersten physikalischen Praktikum unwahrscheinlich, und daher ist die Streuung der Einzelwerte $\sigma(x)$ einfach durch die Ableseungenauigkeit nach oben abzuschätzen. Dies ist sehr grob aber im Rahmen des Nebenfachpraktikums praktikabel. Daher sind die ablesbaren Skaleneinteilungen auch immer mit zu protokollieren.

Es kann vorkommen, dass sich ein Wert fortlaufend in eine Rich-Drift und Schwankungen tung verändert also monoton sinkt oder steigt. Dies liegt eigentlich immer daran, dass bestimmte die Messung beeinflussenden Größen sinken oder steigen. Ein häufiges Beispiel sind Messungen elektrischer Größen, da durch die eingespeiste elektrische Leistung die Bauteile erwärmt werden und sich somit die Widerstände verändern. Für die Messwertaufnahme bleiben hier nur zwei Möglichkeiten. Entweder man nimmt die Messwerte der gesamten Messreihe in einer im Verhältnis zur Drift sehr kurzen Zeit auf um den Einfluss der Drift zu minimieren oder man versucht rauszufinden welche andere Größe für die Drift verantwortlich ist und versucht diese konstant zu halten. In beiden Fällen sollte die Störgröße vor und nach dem Versuch gemessen und das Ergebnis aufgeschrieben werden. Schwankt ein Wert während der Messung um einen Mittelwert, so sind dieser Mittelwert wie auch Ober- und Untergrenze des Intervalles, in welchem er schwankt zu protokollieren. Die Ableseungenauigkeit wird dann auf die halbe Schwankungsbreite erweitert. Wird ein Wert aus einer Messreihe jeweils schwankender Werte ermittelt, so ist die Streuung mit einem Viertel der Schwankungsbreite zu multiplizieren. Dies sind der Einfachheit halber gemachte Abschätzungen die nicht immer richtig sein müssen, jedoch so im Rahmen dieses Praktikums akzeptiert werden.

Literaturwerte und Skriptangaben Literaturwerte, Angaben im Skript und mathematische Größen haben meist einen so geringen Fehler, dass sie im Rahmen dieses Praktikums vernachlässigt weden können.

Natürlich haben sie im Allgemeinen auch eine Ungenauigkeit und sind unter Umständen auch dahingehend zu beurteilen worauf genau sie sich beziehen. Zum Beispiel:

 $c_0 =$ Vakuumlichtgeschwindigkeit \neq Lichtgeschwindigkeit in Medien.

2.2.2.3 Schritt 3: Berechnung des Messergebnisses und der Messunsicherheit

Nun sollten alle Eingangsgrößen als geschätzter Mittelwert \bar{x}_l mit geschätzter Unsicherheit Δx_l vorliegen. Die Mittelwerte der *r*-Eingangsgrößen $\bar{x}_1, \ldots, \bar{x}_r$ werden zur Berechnung des geschätzten

Messergebnisses einfach in die im "Schritt 1" aufgestellte Funktion eingesetzt.

$$\bar{y} = f(\bar{x}_1, \dots, \bar{x}_r). \tag{2.13}$$

In 2.1 wird der Fall einer direkten Messung, in dem $\bar{y} = f(\bar{x}_1)$ und somit $\dim(\bar{y}) = \dim(\bar{x}_1)$ gilt, f also nur eine Korrektur von \bar{x}_1 ist, dargestellt. Hierbei ist $\bar{y} = \bar{x}_k$ und $\Delta \bar{y} = \Delta \bar{x}_k$. Im Allgemeinen handelt es sich natürlich um mehrdimensionale Probleme, welche von mehreren Eingangsgrößen x_l abhängen und anschaulich nicht darzustellen wären.

Gaußsche Fehlerfortpflanzung Die Gaußsche Fehlerfortpflanzung (nach DIN 1319 Fortpflanzung der Messunsicherheiten) gibt eine Möglichkeit die Unsicherheit des Messergebnisses Δy mit den Unsicherheiten Δx_l der einzelnen k- Eingangsgrößen abzuschätzen. Die Formel für die Gaußsche Fehlerfortpflanzung ist:

$$\Delta y = \sqrt{\sum_{l=1}^{k} (\frac{\partial f}{\partial x_l} \cdot \Delta x_l)^2}$$
(2.14)

Hierbei ist $\frac{\partial f}{\partial x_l}$ die partielle Ableitung der in Schritt 1 aufgestellten Funktion $f(\bar{x_1}, \ldots, \bar{x_k})$ nach den Eingangsgrößen x_l .

Sollte man in Schritt 1 keine vollständige Formel erstellt haben, die das Ergebnis direkt aus den Eingangsgrößen sondern aus Zwischenergebnissen berechnet, so ist die Fehlerfortpflanzung zuerst für die Zwischenergebnisse durchzuführen und erst dann für das Endergebnis mit den Unsicherheiten der Zwischenergebnisse als Eingangsgrößen.

Davon ist meist abzuraten, ausser in den wenigen Fällen in denen das Zwischenergebnis explizit gefordert wird, da der Einfluss der einzelnen Unsicherheiten nicht allzu deutlich wird.

Gewichteter Mittelwert Sollen Messungen (G_1, \ldots, G_n) unterschiedlicher Genauigkeiten ΔG_i gemittelt werden, so ist es sinnvoll den Werten mit höheren Genauigkeiten auch größere Gewichtung einzuräumen. Dazu benötigt man natürlich nicht nur die Information, dass die Unsicherheiten ungleich sind, sondern auch Informationen darüber, wie groß diese sind. Daher ist das gewichtete Mittel meist nur nützlich um auf unterschiedlichen Wegen oder aus Messreihen unterschiedlichen unbekannten Umfangs erhaltene Messergebnisse zu einem zusammenzufassen, jedoch nicht hilfreich um überhaupt eine Unsicherheit zu bestimmen.

Die Formel für den gewichteten Mittelwert \bar{G}_{qew} lautet

$$\bar{G}_{gew} = \frac{1}{\sum_{i=1}^{n} \frac{1}{(\Delta G_i)^2}} \cdot \sum_{i=1}^{n} \frac{G_i}{(\Delta G_i)^2}$$
(2.15)

und die Unsicherheit des gewichteten Mittelwertes berechnet sich zu

$$\Delta G_{gew} = \sqrt{\frac{1}{\sum_{i=1}^{n} \frac{1}{(\Delta G_i)^2}}}$$
(2.16)

2.2.2.4 Schritt 4: Angabe des vollständigen Messergebnisses

Zur bündigen Angabe ist die Messunsicherheit auf einheitlich **signifikante** Stellen zu runden, und das Messergebnis mit der gleichen Anzahl an Stellen nach dem Komma anzugeben.

$$1,43030 \,\mathrm{m} \pm 0,0035714265 \,\mathrm{m} \approx 1,430 \,\mathrm{m} \pm 0,004 \,\mathrm{m}.$$
 (2.17)

Häufig wird auch der relative Fehler

$$\gamma = \frac{\Delta y}{\bar{y}} \tag{2.18}$$

verwendet. Das Ergebnis ist dann in der Form

$$y = (1 \pm \gamma) \cdot \bar{y} \tag{2.19}$$

anzugeben.

In jedem Fall ist das Ergebnis besonders hervorzuheben, um die Übersicht zu gewährleisten.

Nun kann das Ergebniss mit Literaturwerten oder Skriptangaben verglichen werden und man kann überprüfen ob der durchgeführte Versuch die bekannten Werte bestätigt. Wenn dies nicht der Fall ist sollte dies nicht unerwähnt bleiben und eventuelle sinnvoll zu vermutende Ursachen der Messabweichungen diskutiert werden.

2.2.3 Beispiel: Messung einer Federkonstanten

Die Federkonstante k einer Feder soll bestimmt werden.

Schritt 1) Modell aufstellen

Für kleine Auslenkungen ist die Kraft, die auf eine, an einer Spiralfeder befestigten Masse m wirkt, annähernd proportional zur Auslenkung x aus der Ruhelage x_0 der Masse. Die Ruhelage sei durch eine vollkommen entspannte Feder charakterisiert. Aus dem 2. Newtonschen Gesetz leitet sich die Bewegungsgleichung für den harmonischen Oszillator ab:

$$m \cdot \ddot{x} = -k \cdot x$$
 umgeschrieben $\ddot{x} + \omega_0^2 \cdot x = 0$ (2.20)

mit der Kreisfrequenz

$$\omega_0 = \sqrt{\frac{k}{m}} = \frac{2\pi}{T},\tag{2.21}$$

worin T die Periodendauer einer vollen Schwingung ist. Gleichung 2.21 liefert schon die Möglichkeit einer Messmethode für k: Man Messe die Masse m und die Dauer T und berechne dann

$$k = \frac{(2\pi)^2 \cdot m}{T^2}.$$
(2.22)

• Messaufbau: Der Messaufbau muss so gestaltet sein, dass die Schwerkraft und sonstige Reibungseinflüsse minimiert werden. Dies geht zum Beispiel mit einer Luftkissenbahn. Als Masse dient dann ein Gleiterwagen der Masse m. Die Feder wird an einem Halter befestigt und an ihr die Masse. Unter idealen Bedingungen stellt sich bei eingeschaltetem Luftstrom die Ruhelage x_0 ein. Lenkt man nun die Masse aus, so wird sie aufgrund der Federkraft hin und her gleiten (oder anders ausgedrückt: hin- und herschwingen).

Abbildung 2.2 – Der Messaufbau zur Bestimmung der Federkonstanten k

• Messung: Die Periodendauer T kann per Hand mit der Stoppuhr bestimmt werden. Um die Ungenauigkeit beim Stoppen kurzer Perioden zu verringern, kann eine Messung 5 Perioden dauern $T' = 5 \cdot T$. Man nehme eine Messreihe von n = 6 Wiederholungen auf und bestimmeh die Masse m des Gleiterwagens mit einer Waage.

Schritt 2: Vorbereitung der Eingangsgrößen

Die Massenwägung ergab:

$$m = (0,2000\pm0,0005) \,\mathrm{kg} \,. \tag{2.23}$$

Die Unsicherheit wurde aus den Herstellerangaben zur Waage bezogen. Die Messung und Umrechnung der Periodendauer T ist tabellarisch festgehalten: Die Ungenauigkeit der Messungen wird als

Tabelle 2.4 – Zur Messung der Schwingungsdauer T

Messung	1	2	3	4	5	6
T'_i [s]	23	22	22	22	23	23
T_i [s]	4,6	4,4	4,4	4,4	$4,\!6$	$4,\!6$

gleich angenommen. Damit kann der arithmetische Mittelwert \bar{T} für die Schwingungsdauer gebildet werden:

$$\Rightarrow \qquad \bar{T} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} T_i} = 4,5 \,\mathrm{s.} \tag{2.24}$$

Für die Standardunsicherheit $\Delta \bar{T}$ des Mittelwertes ergibt sich somit

$$\Delta \bar{T} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (T_i - \bar{T})^2} \approx 0.05 \,\mathrm{s}$$

Die Auswertung der Messung von T liefert nun

$$\Rightarrow \qquad T = \overline{T} \pm \Delta \overline{T} = (4,50\pm0,05) \,\mathrm{s} \,. \tag{2.25}$$

Schritt 3: Berechnung von Messergebnis und -unsicherheit

Jetzt wird aus den gemessenen Größen \overline{T} und m mit den dazugehörigen Unsicherheiten die Federkonstante $k = k(m, \overline{T})$ zu

$$k = \frac{(2\pi)^2 \cdot m}{\bar{T}^2} \approx 0.39 \,\mathrm{N/m}$$

berechnet und deren Unsicherheit Δk über das Gaußsche Fehlerfortpflanzungsgesetz zu

$$\begin{split} \Delta k &= \sqrt{\left(\frac{4\cdot\pi^2}{\bar{T}^2}\cdot\Delta m\right)^2 + \left(-\frac{8\cdot m\cdot\pi^2}{\bar{T}^3}\cdot\Delta\bar{T}\right)^2} \\ &\approx 9\cdot10^{-3}\,\mathrm{N/m} \end{split}$$

abgeschätzt.

Schritt 4: Angabe Messergebnis

Die Messergebnis lässt sich jetzt vollständig angeben:

$$k \pm \Delta k = (0,39\pm0,01) \,\mathrm{N/m}$$
 (2.26)

Diskussion des Messergebnisses

Es galt die Federkonstante k einer Spiralfeder zu bestimmen. Laut einer Angabe auf der Verpackung beträgt diese $k = 0.40 \,\text{N/m}$. Die Unsicherheit dieser Angabe ist uns nicht bekannt.

Unsere Messung von k ergibt $(0,39\pm0,01)$ N/m, was den angegebenen Wert im Rahmen der Messunsicherheit bestätigt.

Durch eine weitere Modifikation dieses Messaufbaus lässt sich mit Sicherheit keine große Veränderung der Messunsicherheit herbeiführen. Die Federkonstante kann sich durch die bisherige Abnutzung (k nähme dann zu) oder durch Umgebungseinflüsse, wie z. B. Änderung der Raumtemperatur, Luftfeuchte oder des Luftdrucks, verändern (Variation von k in beide Richtungen). Diese Einflüsse quantitativ zu erfassen ist uns mit diesem Messaufbau nicht möglich.

2.3 Graphische Darstellung von Messwerten und ihre Auswertung

Die Darstellung von Daten in tabellarischer Form ist häufig nicht ausreichend. Besonders, wenn die Datenmenge zu groß wird, ist es sinnvoll sich die Daten grafisch zu veranschaulichen. Aus einer Grafik lassen sich in der Regel mindestens die Tendenzen oder gar die funktionalen Zusammenhänge eines Problems erkennen.

Dazu werden die Daten als Koordinatenpaare in ein 2-dimensionales Koordinatensystem eingetragen. Allgemein werden x- bzw. y-Koordinate eines einzelnen Wertepaares als Abszissen- bzw. Ordinatenwert bezeichnet.

Es gibt verschiedene Auftragungsformen, was nichts anderes bedeutet, als dass die Achsen speziell skaliert werden können. Der Umgang mit skalierten Koordinatensystemen wird, für die in diesem Praktikum gängigen Probleme, in den folgenden Abschnitten erläutert.

2.3.1 Die Lineare Skala

Die lineare Auftragung von Messergebnispaaren $(x_i|y_i)$ kann beliebige Zusammenhänge ergeben. Annähernd zweifelsfrei lässt sich dabei jedoch nur feststellen, ob ein linearer Zusammenhang zwischen x und y besteht, also ob $y \sim x$ ist. Der genaue funktionale Zusammenhang ist in diesem Fall dann allgemein über

$$y(x) = y_0 + m \cdot x \tag{2.27}$$

mit dem y-Achsenabschnitt y_0 und der Steigung m zu suchen. Um diese unbekannten Parameter zu bestimmen, mit denen die Abhängigkeit zwischen y und x dann vollständig bestimmt ist, bieten sich verschiedene Möglichkeiten an. Die direkte rechnerische Ermittlung von y_0 und m aus den Messwerten, die lineare Regression, ist eine in der Praxis häufig angewandte Methode. Ungenauer dagegen, dafür jedoch von Hand schneller durchzuführen ist die folgende Vorgehensweise, welche in diesem Praktikum gängig ist:

- 1. Einzeichnen einer Geraden, die so gut wie möglich durch alle Messwerte geht. Hierbei müssen allerdings gemessenen/ermittelten Unsicherheiten ($\Delta x_i | \Delta y_i$) als sogenannte Fehlerbalken berücksichtigt werden. Es ergeben sich also Kreuze, welche die Unsicherheit der Koordinate auf beiden Achsen widerspiegeln und im Besonderen eine durchgezogene Linie als Ausgleichsgerade, rechtfertigen.
- 2. Graphische Bestimmung der Steigung m, durch ein einzuzeichnendes Steigungsdreieck

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} \tag{2.28}$$

und Ablesen des y-Achsenabschnittes y_0 . Das Steigungsdreieck sollte möglichst groß gewählt werden. Damit wird die Ableseungenauigkeit in der Grafik verringert. Dabei ist darauf zu achten, dass die gewählten Punkte $(x_1; y_1)$ und $(x_2; y_2)$ keine Messpunkte, sondern Punkte der Ausgleichsgeraden sind.

Dies ist in folgender Darstellung illustriert. Aus der Grafik ergibt sich für Steigung und y-Achsenabschnitt

Abbildung 2.3 – Lineare Auftragung von Messergebnissen und die Bestimmung der Geradenparameter

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6, 7 - 2, 4}{9, 8 - 1, 7} \approx 0,53$$
$$y_0 \approx 1,5$$

Der Zusammenhang zwischen den gemessenen Größen x und y kann demnach mathematisch zu der Aussage

$$y(x) = 0, 5 \cdot x + 1,66$$

zusammengefasst werden.

Wenn ein nichtlinearer Zusammenhang quantitativ erfasst werden soll, hilft die lineare Skala meist nicht mehr weiter. Dennoch ist diese Technik, die Parameter einer Geradengleichung zu bestimmen, essentiell, denn auch andere Zusammenhänge können, durch eine entsprechende Umskalierung des Koordinatensystems, in eine lineare Form gebracht werden.

Ein Punkt, der gerne übersehen wird:

Die Messwerte haben i. d. R. Einheiten, wie z. B. m(=Meter) oder Skt.(=Skalenteil), die in der Achsenbeschriftung nicht vergessen werden dürfen:

$$x [s^{-1}]$$
 und $y [10^{-4}V]$

wären ein Beschriftungsbeispiel. Beim Ausrechnen eines gesuchten Parameters muss darauf geachtet werden, dass die richtigen Einheiten verrechnet werden bzw. sind diese immer mit im Ergebnis anzugeben. Das wäre in diesem Beispiel dann

$$m = 0.5 \cdot 10^{-4} \,\mathrm{V} \cdot \mathrm{s}.$$

2.3.2 Logarithmische Skala

Oft besteht zwischen zwei Messgrößen x und y ein exponentieller Zusammenhang $y(x) \sim e^{\beta x}$ mit unbekanntem β oder es wird eine Proportionalität zur *n*-ten Potenz $(y(x) \sim x^n)$ bei unbekanntem $n \neq 0$ vermutet und der Parameter β bzw. n ist von Interesse. Dazu muss die Auftragung der Daten auf einfach bzw. doppelt logarithmisches Papier erfolgen. Da von Hand gezeichnet werden soll, wird $\lg() = \log_{10}()$ der Logarithmus zur Basis 10 verwendet.

2.3.2.1 Exponential funktion – einfach logarithmische Auftragung

Unter Verwendung einer Rechenregel für den Logarithmus und einer Umformung ergibt sich,

$$y(x) \sim e^{\beta x} \qquad | \lg()$$

$$\lg(y(x)) \sim \lg(e^{\beta x}) \qquad |e^{\beta \cdot x} = (e^{\beta})^{x}$$

$$\lg y(x) \sim \lg((e^{\beta})^{x}) \qquad | \lg(a^{b}) = b \cdot \lg(a)$$

$$\lg y(x) \sim x \cdot \lg(e^{\beta}) = x \cdot \beta \cdot \lg(e)$$

$$\lg y(x) \sim \beta' \cdot x,$$

wobei im letzten Schritt die konstante Größe $\beta \cdot \lg(e)$, welche die Steigung darstellt, zur Veranschalichung in β' umbenannt wurde. Es ist lg $e \approx 0, 43$. Das Ergebnis stellt einen linearen Zusammenhang in einem Koordinatensystem dar, in welchem die y-Achse mit dem Logarithmus skaliert ist (einfach logarithmisch, wird auch häufig mit "halb-logarithmisch" bezeichnet). Die Steigung $\beta' = \lg e \cdot \beta = 0, 43 \cdot \beta$ wird dann, wie in Gleichung 2.28 berechnet, nur dass die abgelesenen y-Werte mit dem Logarithmus skaliert sind:

$$\beta' = \frac{\lg(y_2) - \lg(y_1)}{x_2 - x_1} = \frac{\lg\left(\frac{y_2}{y_1}\right)}{x_2 - x_1} \quad \Rightarrow \beta = 2, 3 \cdot \frac{\lg\left(\frac{y_2}{y_1}\right)}{x_2 - x_1}.$$
(2.29)

In der Grafik ist dies noch einmal dargestellt. Auch hier gilt wieder, dass die Punkte $(x_1; y_1)$ und $(x_2; y_2)$ keine Messpunkte, sondern Punkte der Ausgleichsgeraden sind.

Abbildung 2.4 – Logarithmische (bzw. "halblogarithmische") Auftragung einer Messreihe

Hier ergibt sich

$$\beta' = \frac{\lg\left(\frac{y_2}{y_1}\right)}{x_2 - x_1} = \frac{\lg\left(\frac{30}{800}\right)}{80 - 15} \approx -0,051 \quad \Rightarrow \beta \approx -0,12.$$
(2.30)

Somit ist die Proportionalität des Zusammenhanges mit

$$y(x) \sim e^{-0,12 \cdot x}$$

bestimmt.

2.3.2.2 Potenzfunktion – doppelt logarithmische Auftragung

Hier wird die Gleichung $y(x) \sim x^n$ umgeformt:

$$y(x) \sim x^n \qquad |\lg()|$$

$$\lg y(x) \sim \lg (x^n) \qquad |\lg(a^b) = b \cdot \lg(a)|$$

$$\lg y(x) \sim n \cdot \lg x$$

und es ergibt sich ebenfalls ein linearer Zusammenhang, allerdings in einem Koordinatensystem, in dem die x-Achse und die y-Achse mit dem Logarithmus skaliert sind (doppelt logarithmisch).

Die Steigung ist hier n und wird wie in Gleichung 2.28 berechnet, nur dass die abgelesenen x- und y-Werte mit dem Logarithmus skaliert sind

$$n = \frac{\lg(y_2) - \lg(y_1)}{\lg(x_2) - \lg(x_1)} = \frac{\lg\left(\frac{y_2}{y_1}\right)}{\lg\left(\frac{x_2}{x_1}\right)}$$
(2.31)

berechnet. Dies ist in der Grafik noch einmal dargestellt. Hier gilt ebenfalls, dass die Punkte $(x_1; y_1)$ und $(x_2; y_2)$ keine Messpunkte, sondern Punkte der Ausgleichsgeraden sind.

 ${\bf Abbildung} \ {\bf 2.5} - {\rm Doppeltlogarithmische} \ {\rm Auftragung} \ {\rm einer} \ {\rm Messreihe}$

Hier ergibt sich

$$n = \frac{\lg\left(\frac{20}{90}\right)}{\lg\left(\frac{90}{30}\right)} \approx -1,37.$$
 (2.32)

Somit ist der die Proportionalität des Zusammenhanges

$$y(x) \sim x^{-1,37} = \frac{1}{x^{1,37}}$$

2.3.3 Ungenauigkeiten bei der Grafikauswertung

Im Rahmen dieses Praktikums wird auf eine quantitative Bestimmung von Unsicherheiten, der aus Grafiken ermittelten Funktionsparameter, verzichtet.

Es soll aber trotzdem immer die Qualität diskutiert werden. Wenn eine grafisch ermittelte Größe zur Berechnung einer anderen Größe herangezogen wird, muss ebenfalls diskutiert werden.
Teil II

Versuchsanleitungen

Teil II – Versuchsanleitungen

\mathbf{M}	Pohlsches Pendel, gekoppelte Pendel und Kreisel	41
\mathbf{E}	Elektronenstrahloszilloskop	63
\mathbf{F}	Franck-Hertz-Versuch und photoelektrischer Effekt	75
0	Geometrische Optik und Mikroskop	89
R	Messungen zur Radioaktivität	109

Versuch M

Pohlsches Pendel, gekoppelte Pendel und Kreisel

Ziel des Versuches

In dem Versuch sollen die dynamischen Grundlagen von Drehbewegungen und die Grundphänomene bei Schwingungen verdeutlicht werden. Das Pohlsche Pendel, ein Schwinger mit einem Freiheitsgrad, soll im wesentlichen die erzwungene Schwingung mit den dabei auftretenden Resonanzphänomenen veranschaulichen. Stellvertretend für kompliziertere Systeme kann mit den gekoppelten Pendeln (2 Freiheitsgrade) das Auftreten von Schwebungen und die Einflüsse der Kopplung auf das System untersucht werden. Hierbei werden die Amplitudenverläufe der Schwinger mit einem Computer aufgenommen und anschließend mit einer Fouriertransformation analysiert. Beim Kreisel werden die Bewegungsformen Nutation und Präzession demonstriert. Die Präzessionswinkelgeschwindigkeit wird an einem schnellen, schweren Kreisel als Funktion der Momente gemessen.

Vorkenntnisse

Grundbegriffe von Translations– und Rotationsbewegungen (im besonderen: Trägheitsmoment, Drehimpuls, Drehmoment und deren Entsprechungen), Newtonsche Gesetze, Drehimpulserhaltungssatz, Berechnung von Trägheitsmomenten einfacher Körper, Steinerscher Satz, Aufstellen von Bewegungsgleichungen für harmonische Schwingungen (insbesondere für Drehschwingungen), ungedämpfte und gedämpfte freie Schwingung, erzwungene Schwingung, Resonanz, Phasenlage zwischen Erreger und Resonator, Dämpfungsfaktor, logarithmisches Dekrement, physikalisches Pendel, Freiheitsgrad, Schwebung, Grundidee der Fouriertransformation. **Kreisel:** Mechanik des starren Körpers, Beziehung zwischen Drehimpuls und Winkelgeschwindigkeit in allgemeinster Form bei einem rotierenden starren Körper.

M.1 Grundlagen

M.1.1 Allgemeines

Zur Beschreibung von Rotationsbewegungen (Drehbewegungen) werden denen der Translation äquivalente Größen eingeführt:

Translation		Rotation	
Weg	\vec{s}	Drehwinkel	$ec{arphi}$
Geschwindigkeit	$\vec{v} = \dot{\vec{s}}$	Winkelgeschwindigkeit	$ec{\omega}=\dot{ec{arphi}}$
Beschleunigung	$\vec{a} = \ddot{\vec{s}}$	Winkelbeschleunigung	$\vec{lpha} = \ddot{\vec{arphi}}$
Masse	m	Trägheitsmoment um A^{\dagger}	$\Theta_A = \int r^2 \cdot dm$
Impuls	$\vec{p}=m\vec{v}$	Drehimpuls	$ec{L} = \mathbf{\Theta} \cdot ec{\omega}$
Kraft	$\vec{F} = m\vec{a}$	Drehmoment	$\vec{M} = \vec{r} \times \vec{F} = \boldsymbol{\Theta} \cdot \ddot{\vec{\varphi}}$
^{†)} A: Drehachse			

Einen möglichen Ansatz für das Aufstellen von Bewegungsgleichungen für Rotationsbewegungen stellt der Drehimpulserhaltungssatz dar:

$$\frac{d\vec{L}}{dt} = \sum_{i} \vec{M_i} \tag{M.1}$$

Er besagt, dass die zeitliche Änderung des Drehimpulses eines Systems gleich der Summe der angreifenden (Dreh–)Momente ist.

M.1.2 Das Pohlsche Pendel

Spezialisiert man Gl. M.1 auf das Pohlsche Pendel als System mit einem Freiheitsgrad, so folgt

$$\dot{L} = \Theta \ddot{\varphi} = \sum_{i} M_{i} \tag{M.2}$$

Als angreifende Drehmomente kommen hier in Frage

- das Rückstellmoment der Feder $M_1 = \mathcal{D}(\varphi)$,
- durch Dämpfung (Reibung) hervorgrufene Drehmomente $M_2 = \mathcal{R}(\dot{\varphi})$ und
- Erregerdrehmomente $M_3 = \mathcal{E}(t)$.

I.a. sind $\mathcal{D}(\varphi)$ und $\mathcal{R}(\dot{\varphi})$ <u>nichtlineare</u> Funktionen. In diesem Fall sind die resultierenden Differentialgleichungen (DGLn) jedoch häufig nicht mehr analytisch zu lösen. Oft lassen sich die Kennlinien aber hinreichend genau linearisieren (Terme 2. und höherer Ordnung werden weggelassen), indem man sich auf kleine Pendelauslenkungen beschränkt.

M.1.2.1 Freie ungedämpfte Schwingung

Ein von außen angreifendes Drehmoment sei nicht vorhanden ($\mathcal{E}(t) = 0$) und ebenso wird die in jedem real bewegten System auftretende Reibung zunächst vernachlässigt ($\mathcal{R}(\dot{\varphi}) = 0$).

Dann ergibt sich die Bewegungsgleichung für dieses System mit dem Rückstellmoment $M_1 = -D\varphi$ (Minuszeichen, da das angreifende Drehmoment der Bewegung entgegenwirkt) durch Einsetzen in Gl. M.2:

$$\Theta\ddot{\varphi} + D\varphi = 0 \quad \iff \quad \ddot{\varphi} + \omega_0^2 \varphi = 0 \quad \text{mit} \quad \omega_0^2 := \frac{D}{\Theta}$$
 (M.3)

Zur Bestimmung der allg. Lösung wird der exponentielle Ansatz

$$\varphi = A \cdot e^{\lambda t} \tag{M.4}$$

mit den noch unbestimmten Konstanten A und λ gemacht. Differenzieren und Einsetzen in Gl. M.3 liefert die charakteristische Gleichung

$$\lambda^2 + \omega_0^2 = 0 \tag{M.5}$$

Diese quadratische Gleichung hat die beiden Lösungen

$$\lambda_{1,2} = \pm \sqrt{-\omega_0^2} = \pm i\omega_0 \tag{M.6}$$

wobei die imaginäre Zahl $i := \sqrt{-1}$ ausgeklammert wurde. Zu jedem λ_j (j = 1, 2) gehört eine Lösung der Differentialgleichung M.3; die allg. Lösung ist eine Linearkombination der beiden Teillösungen:

$$\varphi(t) = A \cdot e^{\lambda_1 t} + B \cdot e^{\lambda_2 t} = A \cdot e^{i\omega_0 t} + B \cdot e^{-i\omega_0 t} \equiv \varphi_0 \cdot e^{i(\omega_0 t - \beta)}$$
(M.7)
mit $\varphi_0, \ \beta = \text{const}$

 ω_0 wird als die Eigen(kreis)frequenz¹ des ungedämpften Schwingers bezeichnet; d.h. mit dieser Kreisfrequenz schwingt das ungedämpfte System, wenn es einmal angeregt wird. Die Eigenfrequenz ω_0 ist ausschließlich von den physikalischen Parametern des Systems abhängig, während φ_0 und β durch die Anfangsbedingungen — also durch die Versuchsdurchführung — bestimmt werden.

Der eigentliche Bewegungsvorgang der Schwingung wird durch den Realteil dieser Gleichung beschrieben. Die Darstellung durch die komplexe e-Funktion wird nur häufig wegen der sich ergebenden Rechenvorteile bevorzugt. Die Eulersche Gleichung

$$e^{\pm i\alpha} = \cos\alpha \pm i \sin\alpha \tag{M.8}$$

verbindet die komplexe e-Funktion mit den trigonometrischen Funktionen.

¹Beachte: Die Kreisfrequenz ω ist nicht mit der Schwingungsfrequenz f zu verwechseln. Zwischen den beiden Frequenzen besteht die Beziehung $\omega = 2\pi f$.

Die Schwingungsdauer T_0 der ungedämpften Schwingung ist mit der Eigenfrequenz ω_0 über die Beziehung

$$\omega_0 = \frac{2\pi}{T_0} = 2\pi f_0 \tag{M.9}$$

verknüpft.

M.1.2.2 Freie gedämpfte Schwingung

Es gelte weiterhin $\mathcal{E}(t) = 0$. Nun wird aber die in realen Systemen stets vorhandene Reibung und die daraus resultierende Dämpfung durch eine geschwindigkeitsproportionale Reibung (linearer Ansatz!) berücksichtigt: $M_2 = -R\dot{\varphi}$. Dies gilt für die im Versuch verwendete Wirbelstrombremse, nicht aber z.B. für die Luftreibung, bei der M_2 für große Geschwindigkeiten proportional $\dot{\varphi}^2$ wird.

Die Schwingungsgleichung lautet für diesen Fall

Zur Bestimmung der allg. Lösung wird wieder der exponentielle Ansatz (Gl. M.4) gewählt, was zu den beiden Lösungen

$$\lambda_{1,2} = -\delta \pm \sqrt{\delta^2 - \omega_0^2} = -\frac{R}{2\Theta} \pm \sqrt{\left(\frac{R}{2\Theta}\right)^2 - \frac{D}{\Theta}} \tag{M.11}$$

der charakteristischen Gleichung führt. Hier müssen nun je nach der Art der Werte von $\lambda_{1,2}$ drei Fälle unterschieden werden, in denen sich das System gänzlich verschieden verhält:

schwache Dämpfung oder Schwingfall ($\delta < \omega_0 \Longrightarrow \lambda_{1,2}$ komplex):

Bei der schwachen Dämpfung ist der Radikant in Gl. M.11 negativ. Durch Ausklammern der imaginären Zahl $i = \sqrt{-1}$ schreiben sich die Lösungen der charakteristischen Gleichung dann in der Form

$$\lambda_{1,2} = -\delta \pm i \sqrt{\omega_0^2 - \delta^2}$$

= $-\delta \pm i \omega$ mit $\omega := \sqrt{\omega_0^2 - \delta^2}$ (M.12)

Zu jedem λ_i (i = 1, 2) gehört eine Lösung der DGL M.10; die allg. Lösung ist wieder eine Linearkombination der beiden Teillösungen:

$$\varphi(t) = A \cdot e^{\lambda_1 t} + B \cdot e^{\lambda_2 t} = e^{-\delta t} \left(A \cdot e^{i\omega t} + B \cdot e^{-i\omega t} \right)$$
(M.13)

Der Bewegungsvorgang der Schwingung wird durch den Realteil dieser Gleichung beschrieben. Dies ist eine exponentiell abklingende harmonische Schwingung; δ heißt deshalb auch Abklingkonstante oder Dämpfungskonstante. Die Kreisfrequenz ω der gedämpften Schwingung ist gegenüber der ungedämpften verringert (vergl. Gl. M.12). Wegen $\omega = \frac{2\pi}{T}$ ist also die gedämpfte Schwingungsdauer T größer gegenüber der ungedämpften.

Abbildung M.1 – Amplitudenverläufe einer freien gedämpften Schwingung

Häufig wird die Dämpfung nicht durch Angabe der Dämpfungskonstante δ charakterisiert, sondern durch das sog. logarithmische Dekrement Λ

$$\Lambda := \ln\left(\frac{\varphi(t)}{\varphi(t+T)}\right) = \delta T = \frac{2\pi\delta}{\omega} \tag{M.14}$$

Es beschreibt den Logarithmus des Verhältnisses von je zwei Auslenkungen des Schwingers im Zeitabstand einer Schwingungsdauer T.

mittlere Dämpfung oder aperiodischer Grenzfall $(\delta = \omega_0 \Longrightarrow \lambda_1 = \lambda_2)$:

Bei Vergrößerung der Dämpfung wird irgendwann der aperiodische Grenzfall mit $\delta = \omega_0$ erreicht. Die beiden Wurzeln der charakteristischen Gl. fallen nun zusammen: $\lambda_1 = \lambda_2 = -\delta$.

Die allg. Lösung der Bewegungsgleichung lautet dann

$$\varphi(t) = A \cdot e^{\lambda_1 t} + B \cdot t \cdot e^{\lambda_1 t} = (A + B \cdot t) \cdot e^{-\delta t}$$
(M.15)

starke Dämpfung oder Kriechfall ($\delta > \omega_0 \Longrightarrow \lambda_{1,2}$ reell):

Bei starker Dämpfung sind λ_1 und λ_2 reell. Der zeitliche Verlauf der Bewegung ist hier, wie beim aperiodischen Grenzfall, nicht mehr durch eine Schwingung zu beschreiben, sondern durch eine Kriechbewegung. Daher nennt man diesen Fall auch den Kriechfall.

Soll der Schwinger nach einer Auslenkung möglichst schnell wieder seinen Gleichgewichtszustand erreichen, ist die Dämpfungskonstante δ einerseits möglichst klein zu wählen, damit nicht der langsame Kriechfall eintritt, andererseits darf δ aber auch nicht zu klein werden, damit das System nicht zu schwingen anfängt. Für diese Problemstellung (z.B. Dämpfung von Zeigermessinstrumenten, wo das Messgerät möglichst schnell den wahren Messwert anzeigen soll) wird man also den aperiodischen Grenzfall wählen.

M.1.2.3 Erzwungene gedämpfte Schwingung

Wirkt zusätzlich zu den bisher behandelten Drehmomenten ein von außen angreifendes periodisches Drehmoment $M_3 = \phi_0 \cos(\Omega t)$, so lautet die Bewegungsgleichung

$$\ddot{\varphi} + 2\delta\dot{\varphi} + \omega_0^2 \varphi = \frac{\phi_0}{\Theta} \cos(\Omega t) \tag{M.16}$$

Die allg. Lösung $\varphi(t)$ dieser inhomogenen DGL setzt sich additiv aus der Lösung φ_h der homogenen Gleichung $(M_3 = 0)$ und einer partikulären Lösung φ_p der inhomogenen Gleichung $(M_3 \neq 0)$ zusammen

$$\varphi(t) = \varphi_h(t) + \varphi_p(t) \tag{M.17}$$

Die Lösung der homogenen DGL ist bereits oben erfolgt (vergl. Gl. M.13). Für die inhomogene Gleichung wird folgender Ansatz für eine partikuläre Lösung gewählt:

$$\varphi_p = A\cos(\Omega t) + B\sin(\Omega t) \tag{M.18}$$

Durch Einsetzen und Koeffizientenvergleich ergibt sich

Abbildung M.2 – Einschwingvorgang

Die gesamte Lösung besteht also aus der Überlagerung einer gedämpften Schwingung mit der Frequenz ω und einer Schwingung mit der Erregerfrequenz Ω .

Der erste Anteil verschwindet wegen der Dämpfung nach hinreichend langer Zeit, dem Einschwingvorgang der erzwungenen gedämpften Schwingung. Danach dominiert der zweite Teil der Lösung, d.h. das System, (dessen Eigenfrequenz ω_0 ist,) schwingt mit derselben Frequenz Ω wie der Erreger. Deshalb spricht man von einer erzwungenen Schwingung. Hierbei stellt sich eine stationäre Amplitude des Schwingers ein (s. Abb. M.2).

Zur besseren Übersicht wird die partikuläre Lösung, also die stationäre Schwingung, in der Form

$$\varphi_P(t) = \Phi_0(\Omega, \delta) \cdot \cos\left[\Omega t + \epsilon(\Omega, \delta)\right] \tag{M.20}$$

geschrieben. Diese ergibt sich aus trigonometrischen Gleichungen für die Überlagerung von Schwingungen. Es gilt $\Phi_0(\Omega, \delta) = \sqrt{A^2 + B^2}$ und $\epsilon(\Omega, \delta) = \arctan(\frac{B}{A})$ (auf die richtigen Quadranten ist zu achten). Hierbei ist $\Phi_0(\Omega, \delta)$ die Amplitude der erzwungenen Schwingung und $\epsilon(\Omega, \delta)$ die Phasenverschiebung zwischen Resonator und Erreger. Die Rechnung liefert

Abbildung M.3 – Resonanzkurven und Phasenverlauf für verschiedene Dämpfungen δ

$$\Phi_0(\Omega, \delta) = \frac{\phi_0}{\Theta \sqrt{\left(\omega_0^2 - \Omega^2\right)^2 + 4\delta^2 \Omega^2}} \tag{M.21}$$

$$\epsilon(\Omega, \delta) = \arctan\left(\frac{2\delta\Omega}{\omega_0^2 - \Omega^2}\right)$$
 (M.22)

Der Verlauf der Amplitude Φ_0 und der Phasenverschiebung ϵ über der Erregerfrequenz Ω ist für verschiedene Dämpfungen δ_i in Abbildung M.3 zu sehen.

Die Extremwertbestimmung bei Gleichung M.21 ergibt für die Resonanzfrequenz

$$\omega_R = \sqrt{\omega_0^2 - 2 \cdot \delta^2}.\tag{M.23}$$

Es ist zu erkennen, dass ω_R mit steigender Dämpfung δ abnimmt.

M.1.3 Gekoppelte Pendel

Bis jetzt wurde mit dem Pohlschen Pendel ein schwingungsfähiges System mit einem Freiheitsgrad betrachtet. In der Natur, aber auch in der Technik, bestehen schwingungsfähige Systeme jedoch häufig aus vielen gekoppelten Elementen (z.B. Moleküle oder komplizierte Maschinen). Sie besitzen damit mehrere Freiheitsgrade. Solche Systeme zeigen außerordentlich vielfältige Schwingungsverhalten. Stellvertretend wird in diesem Versuch ein System mit zwei Freiheitsgraden untersucht.

Ein solches System stellen z.B. zwei physikalische Pendel gleicher Bauart (gleiche Eigenfrequenz), die über einen Faden, an welchem ein Kopplungsgewicht hängt (s. Abb. M.5), miteinander verbunden sind, dar.

Wird Pendel A durch einen Stoß zu Schwingungen angeregt, während Pendel B zunächst noch in Ruhe gehalten wird, so beobachtet man, dass B durch A zu Schwingungen angeregt wird. Nach einer gewissen Zeit ist die gesamte Schwingungsenergie von Pendel A auf B übergegangen, d.h. nun ist A in Ruhe und B schwingt maximal. Der Vorgang wiederholt sich dann in umgekehrter Richtung und ist erst beendet, wenn durch Reibung der anfängliche Energievorrat des Systems verzehrt ist. Abb. M.4 zeigt den zeitlichen Verlauf der Schwinger.

Abbildung M.4 – Schwebungen der gekoppelten Pendel

Es ist deutlich zu erkennen, dass beide Schwingungskurven eine Schwebung beschreiben. Schwebungen treten immer dann auf, wenn zwei harmonische Schwingungen mit wenig verschiedenen Kreisfrequenzen ω_1 und ω_2 überlagert werden. Die allgemeinste Bewegung für unser System mit zwei Freiheitsgraden ist also eine Überlagerung zweier einfacher harmonischer Schwingungen, die gleichzeitig ausgeführt werden. Diese beiden harmonischen Schwingungen heißen Normal– oder Eigenschwingungen. In diesen Schwingungszuständen schwingen alle Teilchen mit der gleichen Frequenz; der sog. Normal– oder Eigenfrequenz ω_1 bzw. ω_2 . In dem Zustand der Eigenschwingung findet kein Energieübertrag von einem zum anderen Pendel statt, obwohl die beweglichen Teile gekoppelt sind.

Um die Bewegungen der beiden Pendel zu beschreiben, ist es also notwendig, die beiden Eigenfrequenzen des Systems zu kennen.

Bei unserem einfachen System lassen sich die Eigenschwingungen, deren Eigenfrequenzen dann zu bestimmen sind, leicht erraten. Es sind die in Abb. M.5 skizzierten Fälle der Gleichtaktschwingung, bei der beide Pendel in Phase schwingen, und der Gegentaktschwingung, bei der sie gegenphasig schwingen. Bei der Gleichtaktschwingung spielt die Kopplung zwischen den Pendeln keine Rolle; die

Abbildung M.5 – Eigenschwingungen: (a) gleichphasig, (b) gegenphasig

rücktreibende Kraft rührt nur von der Schwerkraft her. Bei der gegenphasigen Schwingung kommt zu dieser noch die durch das Rückkopplungsgewicht bedingte Zugkraft hinzu.

Nun sollen die Eigenfrequenzen dieser beiden Normalschwingungen berechnet werden.

M.1.3.1 Gleichphasige Schwingung

Da hier die Kopplung nicht berücksichtigt werden muss, reduziert sich das Problem wegen der Symmetrie auf die Betrachtung eines physikalischen Pendels. Im Versuch besteht das Pendel aus einem homogenen Rundstab, der in seinem Schwerpunkt drehbar aufgehängt ist, und einem verschiebbaren Gewicht, welches die Einstellung verschiedener Eigenfrequenzen erlaubt (s. Abb. M.6).

Abbildung M.6 – Physikalisches Pendel

Bei der Schwingung des physikalischen Pendels handelt es sich wieder um eine Drehbewegung mit einem Freiheitsgrad, so dass der Drehimpulserhaltungssatz (Gl. M.2) zum Aufstellen der Bewegungsgleichung herangezogen werden kann. Wird die Reibung vernachlässigt, wirkt einer Auslenkung φ des Pendels das Drehmoment

$$M_G = -F_G \cdot d_G \cdot \sin \varphi = -m_G \cdot g \cdot d_G \cdot \sin \varphi \approx -m_G \cdot g \cdot d_G \cdot \varphi \tag{M.24}$$

entgegen. (Die Stange liefert keinen Beitrag, da sie in ihrem Schwerpunkt gelagert ist.) Um die Bewegungsgleichungen einfach zu halten, beschränkt man sich hier wieder auf kleine Winkel φ ; d.h. sin φ wird durch φ approximiert. Sie lautet dann

$$\Theta \ddot{\varphi} = M_G \tag{M.25}$$

Umformen und Einsetzen liefert

$$\ddot{\varphi} + \frac{m_G \cdot g \cdot d_G}{\Theta} \cdot \varphi = 0 \tag{M.26}$$

Diese DGL ist vom gleichen Typ wie die Bewegungsgleichung der freien ungedämpften Schwingung des Pohlschen Pendels (Gl. (M.3)) mit der Eigenfrequenz

$$\omega_0 = \sqrt{\frac{D}{\Theta}}, \quad \text{wobei hier} \quad D := g \cdot m_G \cdot d_G$$
 (M.27)

Um die Eigenfrequenz dieser Normalschwingung angeben zu können, ist noch das Trägheitsmoment Θ des Pendels zu bestimmen. Dafür nutzt man aus, dass sich das Gesamtträgheitsmoment Θ eines Systems additiv aus den Einzelträgheitsmomenten Θ_i der einzelnen Komponenten zusammensetzt, so dass die Trägheitsmomente von Stange und Gewicht einzeln bestimmt werden können:

Trägheitsmoment der Stange: Es wird das Trägheitsmoment Θ_{St}^{SPkt} der Stange bei Drehung um eine zum Stab senkrechte Achse durch den Schwerpunkt berechnet.

Abbildung M.7 – Trägheitsmoment der Stange

Da $R_{St} \ll L$ gilt, kann das Massenelement dm von der Drehachse aus vereinfachend als Massenpunkt betrachtet werden:

$$\Theta_{St}^{SPkt} = \int_{V} x^2 \cdot dm \quad \text{mit} \quad dm = \rho_{St} \cdot dV = \rho_{St} \cdot \pi \cdot R_{St}^2 \cdot dx$$
$$= \int_{-L/2}^{+L/2} x^2 \cdot \rho_{St} \cdot \pi \cdot R_{St}^2 \cdot dx$$
$$= \frac{\pi}{12} \cdot \rho_{St} \cdot R_{St}^2 \cdot L^3 = \frac{L^2}{12} \cdot m_{St} \qquad (M.28)$$

Trägheitsmoment des Gewichtes: Näherungsweise kann hier das Gewicht von der Drehachse A aus als punktförmig angesehen werden. Beträgt seine Masse m_G und ist sein Abstand von der Drehachse d_G , ergibt sich ein bei der Schwingung auftretendes Trägheitsmoment von

$$\Theta_G^D = m_G \cdot d_G^2 \tag{M.29}$$

Schätzen Sie den Fehler ab, der bei diesem Ansatz gegenüber einer Rechnung analog der der Stange gemacht wird!

Mit den Gleichungen M.27 – M.29 lautet die Eigenfrequenz der gleichphasigen Schwingung dann

$$\omega_1 = \sqrt{\frac{g \cdot m_G \cdot d_G}{\frac{1}{12}m_{St}L^2 + m_G \cdot d_G^2}} \tag{M.30}$$

M.1.3.2 Gegenphasige Schwingung

Um die Eigenfrequenz der gegenphasigen Schwingung auf einfache Weise zu bestimmen, denken wir uns die Kopplung durch eine Feder anstelle des Fadens mit Gewicht realisiert.

 ${\bf Abbildung} \ {\bf M.8}-{\rm Gegen phasige \ Schwingung \ bei \ Kopplung \ mit \ einer \ Feder$

Die Feder sei im Abstand d_F unterhalb der Drehachse an den Schwingern befestigt. Bei der gegenphasigen Schwingung kommt es dann bei einer Auslenkung der Pendel um den Winkel φ zu einer Auslenkung s der Feder von

$$s = 2x = 2 \cdot d_F \cdot \sin \varphi \tag{M.31}$$

Zu dem rücktreibenden Moment aus Gl. M.25, welches von der Schwerkraft herrührt, kommt also noch das Rückstelldrehmoment M_F , welches aus der rücktreibenden Kraft $F_F = -Ks$ der Feder mit einer Federkonstanten K resultiert, hinzu:

$$M_F = F_F \cdot d_F \cdot \sin \psi = -2 \cdot K \cdot d_F \cdot \sin \varphi \cdot d_F \cdot \cos \varphi$$

$$\approx -2 \cdot K \cdot d_F^2 \cdot \varphi$$
(M.32)
da für kleines $\varphi : \sin \varphi \approx \varphi$ und $\cos \varphi \approx 1$

Mit der vorgenommenen Beschränkung auf kleine Ausschläge lautet die Eigenfrequenz für diese Normalschwingung dann

$$\omega_2 = \sqrt{\frac{g \, m_G \, d_G + 2 \, d_F^2 \, K}{\frac{1}{12} m_{St} L^2 + m_G \, d_G^2}} \tag{M.33}$$

Die Schwebung als allgemeine Bewegung der Schwinger ist eine Überlagerung der beiden einzelnen harmonischen Fundamentalschwingungen, welche vom Typ der Gl. M.7 sind. Das Schwingungsverhalten von Pendel A kann also durch die Linearkombination

$$\varphi_A(t) = A_1 \cdot e^{i(\omega_1 t - \beta_1)} + B_1 \cdot e^{i(\omega_2 t - \beta_2)} \tag{M.34}$$

beschrieben werden. Zur Beschreibung der Bewegung von Pendel B werden dieselben Fundamentalschwingungen wie bei Pendel A überlagert; lediglich die Konstanten A_j und B_j (j = 1, 2) sind andere:

$$\varphi_B(t) = A_2 \cdot e^{i(\omega_1 t - \beta_1)} + B_2 \cdot e^{i(\omega_2 t - \beta_2)} \tag{M.35}$$

Die Zeit zwischen zwei aufeinanderfolgenden maximalen Amplituden heißt die Schwebungsdauer T_S ; sie ist gegeben durch

$$T_S = \frac{T_1 \cdot T_2}{T_1 - T_2} \tag{M.36}$$

wobei $T_1 = \frac{2\pi}{\omega_1}$ und $T_2 = \frac{2\pi}{\omega_2}$ die Schwingungsdauern der beiden Eigenschwingungen bedeuten. Mit zunehmender Kopplung der Pendel wird die Differenz zwischen T_1 und T_2 nach Gl. M.33 größer, d.h. die Schwebungsdauer kleiner. Die Geschwindigkeit des Energieübertrages zwischen den Pendeln steigt also mit der Stärke der Kopplung.

Eine Schwebung findet auch statt, wenn die beiden physikalischen Pendel unterschiedliche Eigenfrequenzen (durch unterschiedliche Abstände der Gewichte zu den Drehachsen) haben; jedoch ist der Energieübertrag dann nicht vollständig, d.h. kein Pendel kommt gänzlich zur Ruhe. In diesem Fall spricht man von einer unreinen Schwebung. Der oben diskutierte Fall gleicher Eigenfrequenzen der beiden Schwinger führt zu einer reinen Schwebung — also vollständigem Energieübertrag.

M.1.4 Fourierzerlegung

Das Fouriertheorem besagt, dass eine beliebige Bewegung s(t) eindeutig als Überlagerung von harmonischen (sinusförmigen) Teilbewegungen darstellbar ist. Bei der sog. Fourieranalyse ist grundsätzlich zwischen periodischen und unperiodischen Vorgängen zu unterscheiden:

periodische Vorgänge: Ein Vorgang s(t) heißt periodisch in der Zeit t mit der Periodendauer T, wenn für alle Zeiten t

$$s(t) = s(t+T) \tag{M.37}$$

gilt. Ein solcher Vorgang s(t) ist dann darstellbar durch lineare Überlagerung harmonischer Schwingungen diskreter Frequenzen

$$s(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega t) + \sum_{n=1}^{\infty} b_n \sin(n\omega t) \quad \text{mit} \quad \omega = 2\pi f = \frac{2\pi}{T}$$
(M.38)

Die Grundschwingung hat die Frequenz $f \equiv f_1 = \frac{1}{T}$ des nichtharmonischen Vorganges; die Frequenzen der Oberschwingungen betragen ganzzahlige Vielfache der Grundfrequenz: $f_2 = 2f, f_3 = 3f, \ldots$ Die Amplituden der einzelnen Teilschwingungen hängen von der Form des nichtharmonischen Vorganges s(t) ab und lassen sich berechnen durch

$$a_{0} = \frac{1}{T} \int_{0}^{T} s(t) dt$$

$$a_{n} = \frac{2}{T} \int_{0}^{T} s(t) \cos(n\omega t) dt$$

$$b_{n} = \frac{2}{T} \int_{0}^{T} s(t) \sin(n\omega t) dt$$
(M.39)

Wegen der bereits oben angesprochenen Rechenvorteile wird die Fourier–Reihe häufig in komplexer Form geschrieben

$$s(t) = \sum_{n=-\infty}^{+\infty} a_n \cdot e^{in\omega t} \qquad \text{mit} \qquad a_n = \frac{1}{T} \int_0^T s(t) \cdot e^{-in\omega t} dt \tag{M.40}$$

Das Spektrum eines periodischen Vorganges ist stets ein Linienspektrum.

unperiodische Vorgänge: Ist der Vorgang s(t) unperiodisch, wird zu seiner Darstellung ein kontinuierliches Spektrum harmonischer Funktionen benötigt. An die Stelle der Fourier–Summe (Gl. M.38) bzw. (Gl. M.40) tritt nun das Fourier–Integral

$$s(t) = \int_0^\infty \left[a(\omega) \cos(\omega t) + b(\omega) \sin(\omega t) \right] d\omega$$
 (M.41)

mit den Spektralfunktionen

$$a(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} s(t) \cos(\omega t) dt$$

$$b(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} s(t) \sin(\omega t) dt$$
(M.42)

bzw. in der komplexen Darstellung

$$s(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} a(\omega) \cdot e^{i\omega t} d\omega$$
(M.43)
mit $a(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} s(t) \cdot e^{-i\omega t} dt$

Das Spektrum eines unperiodischen Vorganges ist stets kontinuierlich. Man mache sich klar, dass jedes endliche Signal ein unperiodischer Vorgang ist und daher ein kontinuierliches Spektrum besitzt. Je länger das Signal ist umso schärfer sind die Peaks der beteiligten Schwingungen, vorrausgesetzt das Signal ändert sich nicht mit der Zeit (reale Signale physikalischer Vorgänge tun dies z. B. infolge der Dämpfung).

M.1.5 Der Kreisel

Bekanntlich kann eine beliebige Bewegung eines starren Körpers aus einer Translation und Rotation dieses Körpers zusammengesetzt werden. Wird die allgemeine Bewegung des starren Körpers derart beschränkt, dass ein Punkt des Körpers an der Bewegung nicht teilnehmen darf, d.h. er bleibt raumfest, so spricht man von einer Kreiselbewegung. Der Körper heißt dann Kreisel. Die Bewegungen des Kreisels können mittels des folgenden, sehr wichtigen physikalischen Gesetzes vollständig verstanden werden: Die Änderung des Drehimpulses \vec{L} des rotierenden starren Körpers ist gleich der Summe aller an ihm angreifenden Momente \vec{M} ,

$$\frac{d\vec{L}}{dt} = \vec{M} \tag{M.44}$$

Ist die Summe der Momente gleich Null, so folgt, dass die Änderung des Drehimpulses gleich Null ist. Der Drehimpuls bleibt also konstant. (Achtung: Die hier behandelten Größen sind <u>Vektoren</u>. Bleibt ein Vektor konstant, so gilt dies für seinen Betrag und seine Richtung. Analog kann sich bei der Änderung eines Vektors nur der Betrag, nur die Richtung oder auch beides gemeinsam ändern.) Einen Kreisel, für den $|\vec{M}| = 0$ ist, nennt man einen kräftefreien Kreisel. Richtiger wäre die Bezeichnung momentenfreier Kreisel. Im folgenden soll nur der einfache Spezialfall eines symmetrischen Kreisels betrachtet werden. Dieser ist ein starrer Körper mit Rotationssymmetrie. Die Symmetrieachse heißt Figurenachse.

M.1.5.1 Die Nutation des symmetrischen, kräftefreien Kreisels

Neben der Figurenachse unterscheidet man beim Kreisel zwei weitere, durch den Schwerpunkt gehende Achsen: die Drehimpulsachse und die momentane Drehachse. Erteilt man dem Kreisel einen Drehimpuls \vec{L} , der nicht parallel zur Figurenachse ist, so rotiert er mit der Winkelgeschwindigkeit $\vec{\omega}$ um die sogenannte momentane Drehachse. Die Richtung des Drehimpulses nennt man Drehimpulsachse. Laut Voraussetzung bleibt der Drehimpuls \vec{L} erhalten. Also ändert die Drehimpulsachse ihre Lage im Raum nicht.

Die Vektoren \vec{L} und $\vec{\omega}$ können jeweils in zwei Komponenten senkrecht und parallel zur Figurenachse zerlegt werden. Mit der allgemeinen Beziehung

$$\vec{L} = \vec{\Theta} \cdot \vec{\omega}$$
(M.45)
$$(\vec{\Theta} = \text{Trägheitstensor}, \quad \vec{\omega} = \text{Vektor der Winkelgeschwindigkeit})$$

gilt im System der Hauptträgheitsachsen:

$$\vec{L}_{\parallel} = \Theta_{\parallel} \cdot \vec{\omega}_{\parallel} \quad \text{und} \quad \vec{L}_{\perp} = \Theta_{\perp} \cdot \vec{\omega}_{\perp}$$
 (M.46)

Da aber im allgemeinen Fall $\Theta_{\parallel} \neq \Theta_{\perp}$ ist, wird der resultierende Vektor der Winkelgeschwindigkeit $\vec{\omega} = \vec{\omega}_{\parallel} + \vec{\omega}_{\perp}$ nicht parallel zur Drehimpulsrichtung \vec{L} liegen. Deshalb müssen bei der Kreiselbewegung sowohl die Figurenachse als auch die momentane Drehachse die raumfeste Drehimpulsachse auf Kegelmänteln umkreisen. Diese allgemeine Bewegungsform des kräftefreien Kreisels wird als Nutation bezeichnet. Ein Kreisel ist nutationsfrei, wenn seine Figurenachse mit der Drehimpulsachse zusammenfällt.

M.1.5.2 Die Präzession eines Kreisels

Greift an einen Kreisel senkrecht zur Drehimpulsachse ein Moment an, so bewirkt dieses eine Richtungsänderung des Kreiseldrehimpulses \vec{L} . Die Drehimpulsachse bleibt nicht mehr raumfest. Sie bewegt sich ihrerseits auf einem im Raum festen Kegelmantel. Diese Bewegung heißt Präzession. Die Winkelgeschwindigkeit $\vec{\omega}_P$, mit der die Drehimpulsachse den Präzessionskegel umläuft, lässt sich sehr einfach für den Spezialfall eines symmetrischen, schnellen Kreisels berechnen. Darunter versteht man einen Kreisel, bei dem der Drehimpulsvektor nahezu in die Figurenachse fällt; d.h. bei vergleichbaren Trägheitsmomenten muss der Kreisel viel schneller um die Figurenachse als um Achsen senkrecht zu dieser rotieren. Es gilt:

$$\frac{d\vec{L}}{dt} = \vec{M} \qquad \text{oder} \qquad d\vec{L} = \vec{M} \cdot dt \tag{M.47}$$

Die Änderung $d\vec{L}$ des Drehimpulses hat also die Richtung des angreifenden Moments. Steht das Moment immer senkrecht auf \vec{L} , so wird nur die Richtung, nicht aber der Betrag des Drehimpulses \vec{L} geändert. Dreht sich \vec{L} in der Zeit dt um $d\phi$, so erhält man $\vec{L} + d\vec{L}$ (Abbildung M.9). Mit $d\vec{L} = \vec{M} \cdot dt$ gilt dann:

Abbildung M.9 – Zur Bestimmung der Präzessionsfrequenz

Den Drehsinn der Präzession findet man mit $d\vec{L} = \vec{M}dt$. Wie liegt $\vec{\omega}_P$? Der Drehimpulsvektor präzediert dabei mit konstanter Winkelgeschwindigkeit $\vec{\omega}_P$ um die Richtung

der Kraftlinien des Kraftfeldes, das die am Kreisel angreifenden Momente verursacht. Die allgemeinste Bewegung des Kreisels besteht aus einer gleichzeitigen Präzession und Nutation und kann somit sehr komplizierte Formen annehmen.

M.2 Messungen

M.2.1 Das Pohlsche Pendel

Lassen Sie sich die Vorgehensweise und Bedienung der Computerprogramme, sowie die Handhabung des Pohlsches Pendels gut erklären!

M.2.1.1 Freie ungedämpfte Schwingung

An das Pendel wird noch kein Netzgerät angeschlossen. Durch Drehen der Scheibe am Motor mit der Hand im Uhrzeigersinn ist die Pendelmarke auf den Nullpunkt einzustellen, dazu bitte den Schrittmotor auschalten (Schalter hinten am Motorgehäuse!), zur Messunge aber wieder anschalten. Der Schrittmotor hält dann die Position. Das Pendel wird ausgelenkt und losgelassen; man untersuche die "ungedämpften" (d.h. in der Praxis schwach gedämpften) Schwingungen und messe die Schwingungsdauer T_0 .

• Messung: Um Unsicherheiten zu reduzieren, ist die Dauer von 10 Schwingungen 3 mal zu messen. Man notiere das auf dem Pohlschen Pendel angegebene Trägheitsmoment des Pendels Θ . Das Computerprogramm ermittel zudem eine Fouriertranformation (FFT). Notieren Sie den Wert.

• Auswertung: Man bestimme aus den 3 Messungen die Periodendauer T_0 und ihre Unsicherheit. Dabei ist die Anzahl an Schwingungen als Fehlerfrei anzunehmen. Die Kreisfrequenz ω_0 bestimme man über die Beziehung $\omega_0 = \frac{2\pi}{T_0}$. Aus dem notierten Trägheitsmoment des Pendels Θ berechne man mittels der Beziehung $\omega_0^2 = \frac{D^*}{\Theta}$ das Richtmoment D^* der Feder. Vergleichen Sie zudem die Schwingungsdauer mit der des FFTs.

M.2.1.2 Freie gedämpfte Schwingungen

Als Maß für die Dämpfung dient der durch die Wirbelstrombremse fließende Strom *I*. Er kann mit einem Spannungsregler am Netzgerät variiert werden. Der Strom darf 1,2 A nicht überschreiten!

• Messung: Man messe für die Stromstärken (I = 0.15A, I = 0.25A und I = 0.40A) für die Wirbelstrombremse (Schaltung siehe Abbildung M.10) die Schwingungsdauer T und drei aufeinanderfolgende Maximalausschläge ϕ_k mit $k \in 1, 2, 3$, also Amplituden des Pendels in der gleichen Auslenkrichtung. Ermitteln sie zudem die Zeit, welche es bei der kleinsten Dämpfung dauert, bis keine messbare Amplitude mehr zu sehen ist. Dieser Wert dient als Richtlinie für die Dauer des Einschwingvorganges im nächsten Aufgabenteil.

• Auswertung: Berechnen sie die 6 logarithmischen Dekremente $\vartheta = \ln(\frac{\phi_k}{\phi_{k+1}})$, wobei ϕ_k und ϕ_{k+1} jeweils aufeinanderfolgende Amplituden sind. Hieraus berechne man nun mit der Gleichung M.14 die Dämpfungen δ_I .

Abbildung M.10 – Versuchsaufbau für die freie gedämpfte Schwingung und die erzwungene gedämpfte Schwingung

M.2.1.3 Erzwungene gedämpfte Schwingung

Die Motorfrequenz wird über das Computerprogramm eingestellt.

• Messung: Es sollen die Resonanzkurven für drei verschiedene Dämpfungen (I = 0.15A, I = 0.25A und I = 0.40A) aufgenommen werden. Dafür empfiehlt es sich zuerst das Resonanzmaximum aufzusuchen. Bei welcher Erregerfrequenz sollte das Maximum erreicht werden und was sollte für die Phasenlage gelten? In der Umgebung der Resonanz sind nun möglichst viele (mindestens 13) Werte (Maximalausschlag, Frequenz aus FFT) aufzunehmen, wobei sie umso dichter zu legen sind, umso größer die Krümmung der Kurve ist (vgl. M.3). Für sehr große und sehr kleine Erregerfrequenz ist auch jeweils nochmals ein Wertepaar aufzunehmen.

Beim Ablesen der Amplituden ist darauf zu achten, dass der Einschwingvorgang abgeklungen ist.

• Auswertung: Die Messwerte in Kreisfrequenzen mit Unsicherheiten umzurechnen. Die Ergebnisse sind dann tabellarisch zusammenzustellen. Tragen sie graphisch die Amplituden gegen die Er-

regerfrequenz Ω auf. Beschreiben sie Ihr Messergebnis. Bei welchen Erregerfrequenzen liegen die Resonanzmaxima? Wie hoch liegen diese?

M.2.2 Gekoppelte Pendel

• Aufgabe: Die Maße und Gewichte der einzelnen Bestandteile des Pendels und der Gewichte sind zu wiegen und zu notieren. Befestigen sie nun die Stangen in Ihrem Schwerpunkt an der Drehachse. Den Schwerpunkt kann man abschätzen, indem man die Stange auf den Finger legt und versucht sie ins Gleichgewicht zu bringen.

Die Aufnahme der Bewegung der beiden Pendel erfolgt per Computer. Der aufgenommene Verlauf der Auslenkung des Pendels über der Zeit und das fouriertransformierte Spektrum werden angezeigt und können ausgedruckt werden. Da der Ausdruck in schwarz/weiß erfolgt, ist eine der Schwingungen farblich hervorzuheben solange das Computerbild noch einsehbar ist. Das Programm ist weitestgehend selbsterklärend, bei verbleibenden Fragen ist der betreuende Assistent zu konsultieren.

M.2.2.1 Physikalisches Pendel

Hängen Sie den Kopplungsfaden aus, nehmen Sie die Schwingungen des linken Pendels für den Abstand $d_G = 0.30$ m des Gewichtes von der Drehachse auf, und ermitteln Sie die Eigenfrequenz durch Fouriertransformation.

• Auswertung: Vergleichen Sie die Frequenz, welche sie aus dem Auslenkungs-Zeit-Graphen bestimmen können mit der aus der Fouriertransformation hervorgehenden. Wieso treten neben der erwarteten Frequenz noch andere im Frequenzspektrum auf? Berechnen Sie nach Gl. M.30 die Eigenfrequenzen der gleichphasigen Normalschwingung für den Abstand $d_G = 0.30$ m des Gewichtes von der Drehachse. Vergleichen Sie die Ergebnisse mit den theoretisch berechneten.

M.2.2.2 Gekoppelte Pendel

Reine Schwebung: Klemmen Sie an beiden Pendeln die Gewichte 0.30m von den Drehachsen entfernt fest. Koppeln Sie nun durch Einhängen des Kopplungsfadens die beiden Pendel. Wählen Sie als Kopplungsgewicht 20g. Nehmen Sie gleichzeitig die zeitlichen Verläufe der beiden Schwinger auf, indem Sie ein Pendel auslenken, und bilden dann mit der Fouriertranformation die Frequenzspektren der Schwingungsvorgänge. Wiederholen Sie den Versuch mit den Kopplungsgewichten von 50g und 80g.

• Auswertung: Bestimmen Sie aus den Auslenkungs-Zeit-Graphen die Schwebungsdauer T_S und berechnen sie nach Gl. M.36 T_2 . Verwenden Sie dabei für T_1 die Periodendauer des Physikalischen Pendels. Bestimmen sie T'_1 und T'_2 aus den Fouriertransformierten und mittels Gl. M.36 T'_S . Vergleichen Sie die Ergebnisse jeweils für die einzelnen Kopplungen. Beachten Sie den Unterschied zwischen Kreisfrequenz, Frequenz und Schwingungsdauer.

Wie verändert sich die Schwebungsdauer mit der Stärke der Kopplung?

Bestimmen Sie jeweils das Richtmoment der Kopplung. Nehmen Sie dafür an, dass die Kopplung durch eine Feder realisiert wäre und bestimmen so mit Gl. M.33 ein "federäquivalentes" Richtmoment K.

Unreine Schwebung: Verschieben Sie am linken Pendel das Gewicht auf einen maximalen Abstand von der Drehachse so, dass es noch frei schwingen kann und fest an der Stange montiert ist, während Sie das rechte Gewicht bei $d_G = 0.30$ m belassen. Nun führen sie mit diesen geänderten Abständen wieder die gleichen Messungen wie für die reine Schwebung mit allen drei Kopplungen durch.

• Auswertung: Bestimmen Sie aus den Auslenkungs-Zeit-Graphen die Schwebungsdauer T_S . Bestimmen sie aus den Fouriertransformierten die beteiligten Schwingungsdauern. Vergleichen Sie die Ergebnisse jeweils für die einzelnen Kopplungen. Beachten Sie den Unterschied zwischen Kreisfrequenz, Frequenz und Schwingungsdauer.

Wie verändert sich die Schwebungsdauer mit der Stärke der Kopplung?

• Auswertung: Diskutieren Sie die Unterschiede zwischen reiner und unreiner Schwebung anhand Ihrer Ergebnisse. Erstellen Sie dazu eine Tabelle in die Sie die Schwebungsdauern eintragen. Wie unterscheiden sich die Fouriertransformierten einer reinen Schwebung von denen einer unreinen?

M.2.3 Der Kreisel

M.2.3.1 Experimentelle Anordnung

Im Versuch wird ein sogenannter schwerer Kreisel benutzt. Bei diesem werden die Momente durch die Schwerkraft erzeugt (siehe Abbildung M.11).

Abbildung M.11 – Versuchsanordnung zum schweren Kreisel

Ein mit 50 Umdrehungen pro Sekunde laufender elektrischer Synchronmotor mit künstlich vergrößertem Trägheitsmoment liefert den Drehimpuls vom Betrag $|\vec{L}_M| = \Theta_M \cdot |\vec{\omega}_M|$. Der Drehimpulsvektor liegt zunächst exakt in der Figurenachse der Anordnung (nutationsfreier Kreisel). Der Kreisel steht unter Einfluss von durch die Schwerkraft verursachten Momenten. Das vom Eigengewicht des Motors bewirkte Moment sei $|\vec{M}_m|$. Mit Hilfe von auf einer Stange verschiebbaren Gewichten können weitere Momente erzeugt werden. Die Stange hat cm-Markierungen. Auf diese Weise kann $|\vec{M}_m|$ kompensiert (kräftefreier Kreisel) oder sogar überkompensiert werden (Vorzeichenwechsel des resultierenden Moments). Beginnt die obige Anordnung zu präzedieren, so kommt ein zusätzlicher Drehimpuls zustande. Seine Richtung liegt parallel zur Winkelgeschwindigkeit der Präzession. Das Trägheitsmoment der Anordnung um die Achse A sei Θ_A . Gilt jedoch $\Theta_A \cdot |\vec{\omega}_P| \ll \Theta_M \cdot |\vec{\omega}_M|$, so kann der Kreisel als schneller Kreisel betrachtet werden.

Für die Winkelgeschwindigkeit der Präzession gilt dann:

$$|\vec{\omega}_{P}| = \frac{|\vec{M}_{result.}|}{|\vec{L}_{M}|}$$
(M.49)
mit $|\vec{M}_{result.}| = |\vec{M}_{m}| - |\vec{M}_{Gewichte}|$

(Man zeige, dass die Winkelgeschwindigkeit der Präzession in dem hier geschilderten Fall auch dann noch denselben Betrag hat, wenn die Figurenachse der Anordnung nicht waagerecht steht!)

M.2.3.2 Demonstrativer Teil

- a) Die Erhaltung des Drehimpulses im momentenfreien Fall:
 - Aufgabe: Durch eine entsprechende Positionierung des Gewichts ist das vom Motor verursachte Moment zu kompensieren (Ein gutes Kriterium hierfür ist das Verschwinden der Präzession). Jetzt kann der Kreiselfuß beliebig gedreht und gekippt werden, ohne dass der Drehimpuls seine Richtung ändert.

• Messung: Ferner benutze man den eingestellten Zustand des Momentengleichgewichts zur Ermittlung von $|\vec{M}_m|$. Das Gewicht ist hierzu zu wiegen. Die Dicke d_1 sowie die Entfernung von der Drehachse x_1 sind zu messen.

• Auswertung: Berechnen sie | \vec{M}_m | über das vom Gewicht erzeugte Moment (vgl. Abbildung M.12):

$$|\vec{M}_G| = m_1 g(x_1 + \frac{1}{2}d_1)$$
 (M.50)

mit m_1 = Masse, g = Erdbeschleunigung, x_1 = Entfernung von der Drehachse, d_1 = Dicke. Bestimmen Sie die Unsicherheit. Diese Beziehung gilt natürlich nur, wenn die Figurenachse waagerecht steht! Man gebe Beispiele für die technische Anwendung dieses Verhaltens.

Abbildung M.12 – Zur Berechnung der Momente

b) Nutation im momentenfreien Fall:

Der Kreisel ist von der Konstruktion her frei von Nutation (nahezu). Erteilt man dem Kreiselsystem einen zusätzlichen Drehimpuls durch einen Stoß senkrecht zur ursprünglichen Drehimpulsrichtung, so wird die Nutationsbewegung sofort sichtbar. Sie klingt jedoch bald durch Lagerreibung ab.

• *Aufgabe:* Erteilen Sie dem Kreiselsystem einen kleinen Stoß mit einem Kugelschreiber und beschreiben Sie Ihre Beobachtungen.

c) Nutation und Präzession:

Analog wie bei b) kann auch im Falle der Einwirkung von Momenten die Nutation vorgeführt werden. Hierzu ist es jedoch zweckmäßig mit einem großen Trägheitsmoment um die A bzw. B – Achse zu arbeiten.

• *Aufgabe:* Verschieben Sie daher das Gewicht bis ans Ende des Balkens. Erteilen Sie dem Kreiselsystem nochmals einen kleinen Stoß mit einem Kugelschreiber und beschreiben Sie Ihre Beobachtungen.

M.2.3.3 Messungen

Die Winkelgeschwindigkeit der Präzession ist als Funktion der am Kreisel angreifenden Momente zu messen. Es gilt:

$$|\vec{\omega}_P| = \frac{|\vec{M}_m| - |\vec{M}_G|}{\Theta_M \cdot |\vec{\omega}_M|} \tag{M.51}$$

Da $\Theta_M \cdot \vec{\omega}_M$ eine Konstante ist und außerdem

$$|\vec{\omega}| = \frac{2\pi}{T}$$
 (T = Umlaufzeit) (M.52)

gilt, folgt

$$\frac{1}{T} = \frac{\mid \vec{M}_m \mid - \mid \vec{M}_G \mid}{2\pi \cdot \Theta_M \cdot \mid \vec{\omega}_M \mid} \tag{M.53}$$

Es besteht also ein linearer Zusammenhang zwischen $\frac{1}{T}$ und $|\vec{M}_{res}| = |\vec{M}_m| - |\vec{M}_G|$.

• Messung: Bestimmen Sie mindestens 10 unterschiedliche Abstände x_1 , die zugehörigen Umlaufzeiten und deren Richtung.

• Auswertung: Man trage $\frac{1}{T}$ über $|\vec{M}_{res}|$ auf und bestimme das Trägheitsmoment aus der Steigung der sich ergebenden Geraden. Der Vorzeichenwechsel von $\vec{\omega}$ kann in der Auftragung formal durch negative $\frac{1}{T}$ -Werte berücksichtigt werden. Es sei darauf hingewiesen, dass $|\vec{\omega}_M|$ die Kreisfrequenz des Motors ist und von $|\vec{\omega}|$ zu unterscheiden ist.

(Hinweis: Durch Lager- und Kontaktreibung entsteht ein weiteres Moment, welches in A-Richtung wirkt. Dieses bewirkt eine, allerdings sehr viel langsamere Präzession um die B-Achse. Diese stört die Messung jedoch so lange nicht, bis die C-Achse des Kreisels durch einen Anschlag an ihrer weiteren Bewegung gehindert wird, siehe obigen Beweis).

Mit der folgenden Liste soll auf einige Anwendungen des Kreisels hingewiesen werden (Literatur z.B. Bergmann-Schaefer):

- Kreiselkompass wodurch entsteht das den Drehimpuls verändernde Moment?
- Das Freihändigfahren mit dem Fahrrad!
- Künstlicher Horizont und seine Bedeutung in der Navigation!
- Kreiselstabilisierung von Raketen und Weltraumkapseln!
- Störende Kreiselauswirkung Änderung der Richtung der Rotationsachse von Motoren!

Versuch E

Elektronenstrahloszilloskop

Ziel des Versuches

Der Versuch vermittelt eine Einführung in die Funktionsweise des Elektronenstrahloszilloskops anhand der wichtigsten Anwendungsmöglichkeiten dieses in der Messtechnik sehr vielseitig eingesetzten Gerätes. Dabei geht es nicht um das Verständnis der elektronischen Einzelheiten, sondern um die funktionsgerechte Anwendung des Gerätes nach gegebenen Regeln (Bedienungsanleitung) und gegebenem Blockschaltbild. Als Beispiele für die Arbeitsweisen eines Oszilloskops werden folgende Messungen durchgeführt: Frequenzmessung, Aufnahme einer Diodenkennlinie (XY-Betrieb), Bestimmung von Phasenverschiebungen am Serienschwingkreis und Bestimmung der Schwingungsfrequenz einer Stimmgabel.

Vorkenntnisse

Funktionsweise des Oszilloskops: Aufbau der Braunschen Röhre, Bündelung und Beschleunigung eines Elektronenstrahls (Wehneltzylinder), Wirkung von elektrischen und magnetischen Feldern auf bewegte Ladungen (Lorentzkraft), Sägezahnspannung, Triggerung. Schwingungen: Überlagerung von Schwingungen, Lissajous-Figuren. Wechselspannung und Wechselstrom: Zeigerdiagramm, Verhalten eines ohmschen Widerstands, eines Kondensators und einer Spule (Lenzsche Regel) bei Anlegen einer Wechselspannung, Phasenverschiebung, elektrischer Serienschwingkreis (Resonanzverhalten, Unterschied zum Parallelschwingkreis), Kirchhoffsche Regeln, Halbleiterdiode.

E.1 Grundlagen

E.1.1 Aufbau und Funktionsweise des Oszilloskops

Ein Oszilloskop besteht aus einer Elektronenstrahlröhre und den elektronischen Bauelementen zur Steuerung dieser Röhre. Ein Elektronenstrahl kann durch elektrische und magnetische Felder abgelenkt werden. Er kann dabei den Feldänderungen bis zu sehr hohen Frequenzen folgen. Mit modernen Geräten lassen sich Frequenzen bis zu 10⁷ Hz untersuchen, dabei werden Schreibgeschwindigkeiten des Elektronenstrahls von $10^7 \frac{m}{s}$ erreicht. Bei Anwendung des Elektronenstrahls als "Zeiger" ist das Oszilloskop ein besonders schnelles Messinstrument. Durch die Anpassungsfähigkeit der Steuerelektronik an die unterschiedlichsten Versuchsbedingungen wird es zu einem universell einsetzbaren Gerät.

Die wichtigsten Eigenschaften der Elektronik des Oszilloskops sind der hohe Eingangswiderstand (damit ist die dem Messkreis entnommene Energie sehr gering) und die hohen Empfindlichkeiten der elektronischen Verstärker. Mit fast allen Oszilloskopen lassen sich Spannungen zwischen $10^{-5}V$ und 300V messen.

E.1.1.1 Die Elektronenstrahlröhre

Es gibt auch noch andere Bezeichnung wie etwa Braunsche Röhre oder englisch CRT (cathode ray tube) .

Abbildung E.1 – Schema einer Elektronenstrahlröhre

K = Glühkathode	$U_x =$ Spannung für x–Ablenkung
W = Wehneltzylinder	$U_y =$ Spannung für y–Ablenkung
A = Beschleunigungsanode	U_H = Heizspannung für Glühkathode ($\approx 5V$)
F = Fluoreszenzschirm	$U_B = \text{Beschleunigungsspannung} (\approx 1000V)$

Herzstück des Oszilloskops ist die evakuierte *Elektronenstrahlröhre*. In ihr werden Elektronen durch thermische Emission aus der Glühkathode herausgelöst. Durch den Wehneltzylinder wird der Elektronenstrahl gebündelt und dessen Intensität kontrolliert. Beschleunigt wird der Strahl mit Hilfe der positiv geladenen Anode, die ein Loch hat, durch das der Strahl durchtreten kann. Danach passieren die Elektronen zwei Ablenkplattenpaare (Y- und X- Platten), zwischen denen bei Anwesenheit eines elektrischen Feldes bzw. einer Spannung U die Elektronen abgelenkt werden. Schließlich trifft der Elektronenstrahl auf den Fluoreszenzschirm, wo er durch Anregung des Schichtmaterials Licht erzeugt.

Abbildung E.2 – Frontansicht eines Oszilloskops

E.1.1.2 Kurzbeschreibung des Oszilloskops

Abbildung E.2 zeigt als Beispiel die Frontansicht eines in diesen Versuch verwendeten Oszilloskops (HAMEG, HM203–6). Die wesentlichen Bedienelemente sind in der folgenden Zusammenstellung stichwortartig aufgeführt (Als Beispiel dient hier das oben erwähnte HM203–6):

1	POWER on/off	Netz Ein/AUS; Leuchtdiode zeigt Betriebszustand an
2	INTENS.	Helligkeitseinstellung für den Kathodenstrahl
3	FOCUS	Schärfeeinstellung für den Kathodenstrahl
5	X-Y	Umschaltung auf XY–Betrieb
6	X-POS	Strahlverschiebung in horizontaler Richtung
8	TRIG	Anzeige leuchtet, wenn Zeitbasis getriggert wird
11	+/-	Wahl der Triggerflanke
12	TIME/DIV.	Bestimmt Zeitablenkgeschwindigkeit der Zeitbasis.
		Beachte: der Zeitkoeffizient ist nur dann kalibriert,
		wenn die variable Zeitbasiseinstellung 13 auf CAL eingestellt ist!
14	EXT.	Umschaltung auf externe Triggerung
15	TRIG.INP	Eingang für externes Triggersignal
17	LEVEL	Einstellung des Triggerpunktes

18	X-MAG.x10	10fach–Dehnung in X–Richtung
21	Y–POS.I	Einstellung der vertikalen Position für Kanal I
22	INVERT	Invertierung von Kanal I
23	CH.I	Signaleingang - Kanal I
25	DC-AC-GD	Eingangssignalankopplung für Kanal I
26	$\mathbf{VOLTS}/\mathbf{DIV}$	Bestimmt den Y–Verstärkungsfaktor,
		gibt den Umrechungsfaktor in V/cm bzw. mV/cm an.
		Beachte: Auch hier gilt das unter 12 gesagte
		in Bezug auf die Kalibrierung!
28	CH I/II–TRIG. I/II	Wahl des Triggerkanals
$\overline{29}$	DUAL	Wahl zwischen Einkanal– und Zweikanalbetrieb
30	ADD.	Algebraische Addition von Kanal I und II

Alle für Kanal I angegebenen Bedienelemente existieren analog auch für Kanal II.

E.1.1.3 Die Sägezahnspannung

Bei der Arbeitsweise automatische Zeitablenkung liegt an den x-Ablenkplatten die im Sägezahngenerator des Oszilloskops erzeugte Sägezahnspannung. Diese periodische Spannung wächst von einem Startwert beginnend linear an und fällt dann wieder sehr schnell auf diesen zurück. Das bedeutet, dass der Elektronenstrahl in x-Richtung zunächst mit konstanter Geschwindigkeit über den Bildschirm läuft und dann, wenn die Ablenkspannung U_x wieder abnimmt, mit sehr hoher Geschwindigkeit zum Einsatzpunkt zurückläuft. In dem Rücklaufintervall wird der Strahl elektronisch unterdrückt, wodurch dieser Vorgang nicht beobachtet werden kann.

Abbildung E.3 – Sägezahnspannung

Wenn man mit dem Timebase–Schalter z.B. eine Ablenkgeschwindigkeit von $1\frac{cm}{s}$ einstellt, kann man gut beobachten, wie der Elektronenstrahl in x–Richtung mit konstanter Geschwindigkeit von links nach rechts über den Bildschirm läuft. Bei immer kleineren Perioden T ergibt sich daraus durch das Nachleuchten des Fluoreszenzschirmes und der Trägheit des Auges der Eindruck eines gleichmäßig hellen Striches.

E.1.1.4 Freischwingender und getriggerter Sägezahngenerator

Der Sägezahngenerator gibt entweder ununterbrochen mit der eingestellten Periode T die Sägezahnspannung ab oder arbeitet, ausgelöst durch ein sogenanntes Triggersignal, jeweils nur während einer einzigen Periode. Im ersten Fall schwingt der Generator frei, im zweiten Fall arbeitet er getriggert. Im folgenden wird an einem Beispiel erläutert, wie durch diese beiden Arbeitsweisen des Sägezahngenerators "laufende" oder "stehende" Bilder entstehen.

Die Zeitpunkte t_i , für die $U_x = 0$ ist, werden durch die eingestellte Periode T_x des Sägezahngenerators (Zeitablenkung) bestimmt. In y-Richtung wird, vom Momentanwert der zum Zeitpunkt t_i anliegenden Spannung $U_y(t = t_i)$ beginnend, der zeitliche Verlauf von U_y dargestellt. Für den allgemeinen Fall T_x ungleich T_y ergibt sich der Eindruck einer nach rechts bzw. links laufenden Sinusfunktion, sofern $U_y(t)$ eine sinusförmige Wechselspannung ist.

Abbildung E.4 – Freischwingender Sägezahngenerator: Spannungsverläufe an den Ablenkplatten und das daraus resultierende Bild auf dem Leuchtschirm

Für den Sonderfall $T_y = m \cdot T_x$ (m ganzzahlig) sind die beiden periodischen Signale $U_y(t)$ und $U_x(t)$ synchron zueinander.

Dieser Sonderfall kann durch Änderung der Timebase erreicht werden. Es ergibt sich dann ein stehendes Bild, wobei aber auf eine kalibrierte Zeitachse verzichtet wird.

Abbildung E.5 – Getriggerter Sägezahngenerator: Spannungsverläufe an den Ablenkplatten und das daraus resultierende Bild auf dem Leuchtschirm

In der getriggerten Arbeitsweise ist der Sägezahngenerator so eingestellt, dass er immer dann für eine Periode ausgelöst wird, wenn die Signalspannung U_y einen bestimmten positiven oder negativen Spannungswert hat. Hier wird dann noch unterschieden, ob der Wert überschritten (positive Spannungsflanke) oder unterschritten (negative Spannungsflanke) wird. Dieser Wert heißt trigger level (Triggerspannung) und kann auch variiert werden. Dadurch ergibt sich im Gegensatz zu dem frei schwingenden Sägezahngenerator immer ein stehendes Bild, denn die Signalspannung bestimmt selbst den Zeitpunkt, ab dem sie dargestellt wird. Falls die Signalspannung $U_y(t)$ die Triggerspannung nicht erreicht, ist auch kein Bild auf dem Oszilloskop zu sehen.

E.1.1.5 Externe Triggerung

Uber die externe Triggerung hat man die Möglichkeit, die x-Ablenkung unabhängig vom Eingangssignal zu triggern, indem man ein weiteres Signal auf den Eingang der externen Triggerung gibt, womit nun der Triggerpunkt ausgelöst wird. Das ist wünschenswert, wenn die Zeitzuordnung von Impulsen untersucht wird, oder wenn internes Triggern nicht zu einem stehenden Bild führt und ein synchrones Triggersignal zur Verfügung steht. Ein Beispiel dafür ist die gedämpfte Schwingung eines Parallelschwingkreises.

E.1.2 Der RCL–Kreis

Bei der RCL-Reihenschaltung (Serienschwingkreis) werden ein ohmscher Widerstand R, eine Spule mit der Induktivität L und ein Kondensator mit der Kapazität C in einem Stromkreis hintereinander geschaltet. Dabei werden der ohmsche Widerstand R, der induktive Widerstand $X_L = \omega \cdot L$ und der kapazitive Widerstand $X_C = \frac{1}{\omega C} (\omega = \text{Kreisfrequenz})$ vom gleichen Strom I(t) durchflossen. Bei Anlegen einer Spannung der Form $U(t) = U_0 \cdot \cos(\omega t + \phi)$ zeigt der Strom den Verlauf: $I(t) = I_0 \cdot \cos \omega t$. Dabei ist ϕ ein Phasenwinkel zwischen Strom und Spannung, der, z.B. mit Hilfe des Oszilloskops, gemessen werden kann. Im RCL-Kreis teilt sich die Spannung dann in drei Teilspannungen auf:

1. Am ohmschen Widerstand sind zeitliche Änderungen von I(t) proportional zu Änderungen von $U_R(t)$:

$$U_R(t) = R \cdot I_0 \cdot \cos \omega t = U_0 \cdot \cos \omega t \tag{E.1}$$

 $U_R(t)$ ist mit I(t) in Phase.

2. Für die Spule folgt aus dem Gesetz der Selbstinduktion $U_L = -L \cdot \frac{dI}{dt}$ (siehe hierzu auch Lenzsche Regel). Daraus folgt nach Einsetzen von I(t):

$$U_L(t) = -\omega \cdot L \cdot I_0 \cdot \sin \omega t = \omega \cdot L \cdot I_0 \cdot \cos(\omega t + \frac{\pi}{2})$$
(E.2)

 ωL bezeichnet man aus Analogie zum Ohmschen Gesetz als den Wechselstromwiderstand der Spule. $U_L(t)$ eilt dem gemeinsamen Strom I(t) um 90° voraus.

3. Allgemein gilt für die Spannung am Kondensator:

$$U_C(t) = \frac{1}{C} \cdot Q(t) \tag{E.3}$$

Q(t) ist dabei die Ladung auf dem Kondensator. Ein Strom transportiert in der Zeit von 0 bis t die Ladung:

$$Q(t) = \int_0^t I(\tau) d\tau$$
 (E.4)

Durch Einsetzen erhält man:

$$U_C(t) = \frac{1}{C} \cdot I_0 \cdot \int_0^t \cos \omega \tau d\tau = \frac{I_0}{\omega C} \cdot \sin \omega t = \frac{I_0}{\omega C} \cdot \cos(\omega t - \frac{\pi}{2})$$
(E.5)

 $\frac{1}{\omega C}$ ist der Wechselstromwiderstand des Kondensators. $U_C(t)$ hinkt dem Strom um 90° nach.

Aufgrund der phasenverschiebenden Eigenschaft von Induktivität und Kapazität ist der Gesamtwiderstand nun nicht einfach die Summe der Einzelwiderstände. Zu seiner Berechnung müssen die im Kreis auftretenden Phasenwinkel berücksichtigt werden. Das geschieht am einfachsten im sogenannten Zeigerdiagramm (vgl. Abbildung E.6). Dabei entsprechen die Zeiger den jeweiligen Spannungen U_{Rmax} , U_{Lmax} und U_{Cmax} .

Abbildung E.6 – Zeigerdiagramm

Zur Aufstellung eines Zeigerdiagramms geht man folgendermaßen vor: Man zeichnet zunächst einen Pfeil der Länge U_{Rmax} in x-Richtung. Da $U_R(t)$ ständig in Phase zu I(t) ist, würde ein dem Strom entsprechender Zeiger ebenfalls dieselbe Richtung besitzen. Wie oben erläutert, eilt nun die Spannung $U_L(t)$ dem Strom (und damit $U_R(t)$) um $\frac{\pi}{2}$ voraus. Im Zeigerdiagramm wird deshalb der $U_L(t)$ repräsentierende Pfeil um $\frac{\pi}{2}$ gegenüber U_{Rmax} gedreht eingezeichnet. Seine Länge beträgt U_{Lmax} . U_{Cmax} hinkt I_{max} um $\frac{\pi}{2}$ hinterher, darum wird dieser Zeiger um $-\frac{\pi}{2}$ gedreht ins Diagramm eingetragen. Aus diesem Diagramm kann die Spannung U_{ges} und deren Phasenlage relativ zu den Teilspannungen durch vektorielle Addition ermittelt werden. Man erhält:

$$U_{ges} = \sqrt{U_R^2 + (U_L - U_C)^2}$$
(E.6)

Da durch alle Bauteile derselbe Strom I(t) fließt, lässt sich der Gesamtwiderstand berechnen. Unter Ausnutzung von $Z = \frac{U_{ges}}{I_{ges}}$ erhält man :

$$Z = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2} \tag{E.7}$$

Bei Veränderung der von außen aufgeprägten Frequenz ω erhält man einen bestimmten Wert ω_r , bei dem der Term $\omega L - \frac{1}{\omega C} = 0$, d.h. der Gesamtwiderstand Z minimal und vom Betrag R ist. In diesem Fall erreicht der im Kreis fließende Strom seinen maximalen Wert; es liegt der Resonanzfall vor. Da die beiden Spannungswerte U_L und U_C zu jeder Zeit entgegengerichtet sind (zwischen beiden besteht eine Phasendifferenz von insgesamt 180°), im Resonanzfall aber auch gleichen Betrag ($|U_L| = \omega \cdot L \cdot I_0$ bzw. $|U_C| = \frac{I_0}{\omega C}$) besitzen, ist ihre Summe null, d.h. $U_{ges} = U_R$. Somit ist die Phasendifferenz zwischen U_{ges} und I(t) gleich null. (Welchen Wert hat die Phasendifferenz bei kleinen bzw. großen Frequenzen?)

Anmerkung: Diese Erklärung gilt nur für kleine Widerstände $(R \ll \sqrt{\frac{4L}{C}})$.

E.2 Messungen

E.2.1 Frequenzmessung

Die Spannung des analogen Signalgenerators ist auf den ersten Eingang am Oszilloskop zu geben und der eingestellte Wert sollte im Bereich $f \ge 1000Hz$ liegen. Diese Einstellung am analogen Signalgenerator wird für die weiteren 3 Messungen nicht mehr verändert. Es sei für die Arbeit mit dem Elektronenstrahloszilloskops angemerkt, dass am Schirm Längeneinheiten abgelesen werden, welche erst multipliziert mit der Timebase einen Wert in Sekunden darstellen. Dies ermöglicht dann auch die Bestimmung einer Ableseungenauigkeit. Von daher sind auch die abgelesenen Längen und jeweils die verwendete Timebase zu notieren. (Für abgelesene Spannungen verhält es sich analog, nur dass die Timebase durch die Verstärkung zu ersetzen ist)

Drei verschiedene Arten zur Bestimmung der Frequenz:

- 1. Aufgabe: Die Zeitablenkung (Timebase) ist so zu wählen, dass bei stehendem Bild möglichst viele Perioden der Sinusspannung auf dem Bildschirm dargestellt werden. Ihre Anzahl muss aber zweifelsfrei abzählbar bleiben.
 - *Messung:* Bestimmen Sie die Anzahl der dargestellten Perioden, sowie deren Gesamtlänge auf dem Bildschirm. Notieren Sie sich die Einstellung der Timebase.
 - Auswertung: Bestimmen Sie nun die Frequenz der Sinusspannung.
- 2. *Aufgabe:* Man stelle die Timebase so ein, dass eine Periode größtmöglich auf dem Bildschirm erscheint.

• *Messung:* Messen Sie an den Nulldurchgängen der Sinusspannung die Länge einer Periode, Notieren Sie sich die eingestellte Timebase.

- Auswertung: Berechnen Sie daraus die Frequenz.
- 3. Aufgabe: Mit dem zusätzlichen digitalen Frequenzgenerator kann die Frequenz der Sinusspannung durch direkten Vergleich bestimmt werden. Dazu wird das Signal des digitalen Frequenzgenerators auf den Eingang II gegeben und durch Drücken der Taste DUAL der

Zweistrahlbetrieb aktiviert. Auf dem Oszilloskop sind nun zwei Signale zu erkennen, wobei ein Signal "fest steht" und das andere "läuft". Dies liegt daran, dass sich die Triggerung nur auf eins der beiden Eingangssignale bezieht. Wenn sie nun das Oszilloskop in den XY-Betrieb schalten, erhalten sie eine, sich im Allgemeinen bewegende, Lissajous-Figur.

• *Messung:* Versuchen Sie durch Verstellen der Frequenz des digitalen Frequenzgenerators eine stehende Lissajous-Figur ohne Knotenpunkte zu erzeugen. Lesen sie die am digitalen Frequenzgenerator angezeigte Frequenz genau zu dem Zeitpunkt ab, wenn die Lissajous-Figur gerade zum stehen gekommen ist. Verstellen Sie anschließend die Frequenz am **digitalen** Frequenzgenerator um mindestens 10 Hz und versuchen Sie erneut die stehende Lissajous-Figur ohne Knotenpunkte zu finden.

Nehmen Sie auf diese Weise 5 Messwerte für die am analogen Frequenzgenerator eingestellte Frequenz auf. Versuchen Sie außerdem, Lissajous-Figuren mit einem und mit mehreren Knotenpunkten zu finden und notieren Sie sich wieder die Frequenz des digitalen Frequenzgenerators.

• Auswertung: Für die ersten zwei Messmethoden schätzen Sie die Messgenauigkeit ab, indem Sie die Gaußsche Fehlerfortpflanzung (siehe Kap.2.2, Stichwort: Ableseungenauigkeit) anwenden. Für die dritte Messmethode schätzen Sie die Messgenauigkeit ab, indem Sie die Standardabweichung der 5 Messwerte für die Frequenz der am analogen Frequenzgenerator eingestellten Frequenz bilden.

Vergleichen Sie diese drei Methoden.

Vergleichen Sie außerdem die Frequenz der Lissajous-Figuren **mit** Knotenpunkten mit dem Mittelwert der 5 Messwerte der Lissajous-Figuren **ohne** Knotenpunkte. Diskutieren Sie die Ergebnisse!

E.2.2 Kennlinie einer Halbleiterdiode

Abbildung E.7 – Schaltung zur Aufnahme der Diodenkennline

Für diesen Versuchsteil ist einer der analogen Signalgeneratoren (zu erkennen an den zwei Bananenbuchsen) zu verwenden! Zunächst stecke man die Schaltung aus Abbildung E.7 zusammen und schalte das Gerät in den XY-Betrieb (Taste "X-Y" (5)). Achtung: Der Leuchtfleck kann sich im XY-Betrieb in die Fluoreszenzschicht einbrennen - also mit Regler "INTENS" (2) die Intensität verringern! Dann invertiere man Kanal I (Taste "INVERT"(22) drücken), damit die Kennlinie in der üblichen Form auf dem Bildschirm erscheint (wegen der gemeinsamen Masseleitung der beiden Eingänge, würde die Spannung U_D negativ dargestellt). Zunächst schalte man beide Kanäle ab (auf GD schalten) und drehe den Leuchtfleck mit den Reglern "XPOS"(6) und "YPOS 1"(21) im Abstand von je 2cm in die rechte untere Ecke des Bildschirms, dort liegt jetzt der Nullpunkt (von Strom und Spannung) der Kennlinie. Jetzt schalte man die beiden Eingänge wieder an (auf DC) und ändere die Verstärkung, bis ein zufriedenstellendes Bild erscheint.

• *Messung:* Die erhaltene Kennlinie ist auf Millimeterpapier abzuzeichnen. Dabei ist auf die Lage des Ursprungs (Verschiebung des Leuchtflecks!) des Koordinatensystems sowie die richtige Achsenbeschriftung (Strom über Spannung) zu achten.

• Auswertung: Beschreiben sie Ihre Graphen und bestimmen sie die Spannung, ab welcher ein Strom fließt. Erklären Sie anhand Ihres Graphen **ausführlich** die Vorgänge in der Diode (Aufbau und Funktionsweise).

E.2.3 Messung am RCL–Kreis

Die Schaltung zu diesem Versuchsteil zeigt Abbildung E.8. Beachten Sie, dass jeweils ein Anschluss der beiden Kanäle (und zwar der schwarze) intern geerdet ist. Falsche Verbindungen können zu Kurzschlüssen führen!

Abbildung E.8 – Schaltung für die Messung am RCL-Kreis

• Aufgabe: Berechnen Sie zunächst aus den Werten C und L die Resonanzfrequenz $\nu_r = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$ (Woher kommt diese Beziehung?). Am Serienschwingkreis ist die Gesamtspannung U_{ges} und eine dem Strom I(t) proportionale Spannung (in diesem Fall U_R) mit Hilfe des Oszilloskops darzustellen. Betrachten Sie im Zweikanalbetrieb die Phasendifferenz zwischen diesen beiden Größen in der Nähe der berechneten Resonanzfrequenz. Experimentell bestimmt man nun die Resonanzfrequenz. Dies geht am leichtesten, wenn man sich zunächst den gemeinsamen Spannungsabfall an Spule, Kondensator und Widerstand (Ch. II) ansieht. Im Falle der Resonanz sollte er minimal und so groß wie der Spannungsabfall an R sein (Warum ist er es nicht?). Man kann auch ausnutzen, dass die Phasenverschiebung zwischen U_{ges} und I bei der Resonanzfrequenz null ist. Damit ein sinnvoller Messbereich gewählt werden kann, sollten Sie vor Beginn der Messwertaufnahme den Frequenzbereich um die Resonanzfrequenz bestimmen, in welchem sich die Messgrößen sichtbar verändern (Es ist hilfreich, wenn Sie wissen, wie der Kurvenverlauf theoretisch aussieht).

• *Messung:* Nehmen Sie 10 Messpunkte oberhalb und 10 unterhalb der gemessenen Resonanzfrequenz auf (Amplituden, Phasenverschiebung mit Vorzeichen und Frequenz)!

• Auswertung: Wie groß ist die gemessene Resonanzfrequenz im Vergleich mit dem vorher berechneten Wert? Aus $U_R(t)$ und R lässt sich nach dem Ohmschen Gesetz I(t) bestimmen. Tragen Sie die gemessenen Werte für U_{ges} (Ch. II) und I (Ch. I) in **ein** Diagramm (zweite y-Achse verwenden) und
die gemessene Phasendifferenz (**Einheit Grad oder Bogenmaß**, Umrechnung über die Frequenz) in ein zweites Diagramm über der Frequenz auf (Millimeterpapier!). Gegen welche Phasendifferenz streben Ihre Messwerte oberhalb und unterhalb der Resonanzfrequenz und welcher Verlauf wird theoretisch erwartet, was ergibt sich für die Verläufe von U_{ges} und I (wieso?)?

E.2.4 Schwingungsfrequenz einer Stimmgabel

Mit Hilfe eines Mikrofons sollen die akustischen Schwingungen einer Stimmgabel in elektrische umgewandelt und auf dem Oszilloskopschirm sichtbar gemacht werden. Dazu wird der Aufbau nach Abbildung E.9 verwendet.

Abbildung E.9 – Aufbau zur Bestimmung der Frequenz einer Stimmgabel

Halten Sie die Stimmgabel so nah wie möglich an das Mikrofon, um eine große Aussteuerung des Oszilloskops zu erreichen und Störungen durch Nebengeräusche zu vermeiden. Während der Messung muß der Schalter am Mikrofon gedrückt gehalten werden.

• *Messung:* Bestimmen Sie die Schwingungsfrequenz mittels der Verfahren 2 und 3 aus Abschnitt E.2.1 auf S. 70.

• *Auswertung:* Bestimmen sie auch hier die Unsicherheit Ihrer Messung. Vergleichen sie das Ergebniss mit der angegebenen Frequenz auf der Stimmgabel.

Versuch F

Franck-Hertz-Versuch und photoelektrischer Effekt

Ziel des Versuches

Es sollen Kenntnisse über die Atomhülle gewonnen und Einblick in die Problematik der Termschemata von Atomen gegeben werden. Die gequantelte Anregung von Atomen wird untersucht und die Anregungsenergie von Quecksilber und Neon bestimmt.

Als weiteres Beispiel für die korpuskulare Deutung des Lichtes wird im zweiten Versuchsteil der photoelektrische Effekt demonstriert.

Vorkenntnisse

Atommodelle von Thomson, Rutherford und Bohr, Energietermschema, elastischer und inelastischer Stoß, Auger-Effekt, Compton-Effekt, Absorption und Emission von Licht, Ladungen in elektrischen und magnetischen Feldern, photoelektrischer Effekt, Auslöseenergie.

F.1 Grundlagen

F.1.1 Franck-Hertz-Versuch

Mit Hilfe des Franck-Hertz-Versuchs nach James Franck und Gustav Hertz wurde 1913/14 das von Bohr kurz zuvor postulierte Schalenmodell des Atoms experimentell bestätigt. Den Experimentatoren wurde für diesen Versuch im Jahr 1925 der Nobelpreis in Physik verliehen.

Der Franck-Hertz-Versuch veranschaulicht leicht nachvollziehbar, dass die Übertragung von Energie auf Atome nur in Form diskreter Energiebeträge erfolgt. Nach der klassischen Physik sollte eine solche Anregung auch kontinuierlich möglich sein.

Streuprozesse zwischen freien Elektronen und Atomen

Um die Quantelung der Anregungsenergie zu überprüfen, kann die Streuung von freien Elektronen an Atomen untersucht werden. Dazu werden Elektronen in einem elektrischen Feld beschleunigt, in dem diese dann mit den Atomen eines Gases wechselwirken können.

Ist die kinetische Energie E_{kin,e^-} eines Elektrons vor dem Stoß kleiner als die niedrigste Anregungsenergie E_A eines Atoms der Atomsorte

$$E_{kin.e^-} < E_A,\tag{F.1}$$

so ist nur ein elastischer Stoßprozess möglich. Die gesamte kinetische Energie bleibt dabei erhalten und die innere Energie des Atoms verändert sich nicht. Da das Elektron eine sehr viel kleinere Masse als das Atom besitzt, bleibt seine kinetische Energie vor und nach dem Stoß sogar annähernd gleich und es bewegt sich vom Betrag fast ohne Geschwindigkeitsänderung weiter. Gilt dagegen

$$E_{kin,e^-} \ge E_A,$$
 (F.2)

so ist auch ein inelastischer Stoßprozess wahrscheinlich, bei dem die innere Energie des Atoms um E_A erhöht wird, während das Elektron dann nach dem Stoß eine um den gleichen Betrag verringerte kinetische Energie aufweist. Dies kann mit dem Franck-Hertz-Versuch anschaulich vorgeführt werden. Ebenso lassen sich die erste Anregungsenergie der Atomsorte messen und einige qualitative Erkenntnisse gewinnen.

Ein weiterer und ebenfalls wichtiger Aspekt ist die Tatsache, dass das angeregte Atom nach einer Zeit von ca. 10⁻⁸ s, unter Energieabgabe in seinen Grundzustand zurückkehrt. Die Energieabgabe kann über Stöße mit anderen Atomen erfolgen, aber auch durch Emission ein oder mehrerer Photonen. Die Energie eines emittierten Photons $E_P = h\nu$ entspricht gerade der Energiedifferenz der Zustände, zwischen denen ein Quantensprung erfolgt. In vielen Fällen erfolgt dieser Quantensprung vom angeregten Zustand E_1 (entsprechend der Anregungsenergie E_A plus Grundzustandsenergie E_0) direkt in den Grundzustand (E_0) des Atoms (z.B. für Hg-Atome, siehe Abb. F.1).

$$E_P = h \cdot \nu = E_{\text{oberesNiveau}} - E_{\text{unteresNiveau}} = E_1 - E_0 = E_A \tag{F.3}$$

mit h = Plancksches Wirkungsquantum. Daraus ergibt sich unmittelbar die Frequenz ν der ausgestrahlten Welle und über $c = \nu \cdot \lambda$ (c: Vakuumlichtgeschwindigkeit) deren Wellenlänge λ . Anhand spektroskopischer Untersuchungen können diese Wellenlängen bestätigt werden.

Man mache sich an dieser Stelle anhand des Termschemas (Abb. F.6) das abweichende Verhalten

 $\label{eq:abbildung} \textbf{F.1} - \text{Die} \text{ unelastische Streuung eines Elektrons am Atom}.$

für Neon klar. Dies ist sehr hilfreich für die Auswertung des Franck-Hertz-Versuchs (und für die Vorbereitung auf das Kolloquium).

Die Elektronenstoßröhre

Der Nachweis der diskreten Anregungsenergie E_A erfolgt in diesem Versuch an Quecksilber (Hg) mit einer Triode und an Neon (Ne) mit einer Tetrode.

Die im Folgenden als Hg-Röhre bezeichnete Elektronenstoßröhre sei zur Veranschaulichung des Messprinzips herangezogen. Sie hat drei ebene und zueinander parallel angeordnete Elektroden: eine indirekt geheizte Oxidkathode K, eine gitterförmige Beschleuigungselektrode G (kurz: Gitter) und eine Auffängerelektrode AE. Die ansonsten evakuierte Röhre enthält einen Tropfen Hg. Über

Abbildung F.2 – *links*) Aufbau der Hg-Röhre (vgl. Text). *rechts*) Verlauf des Auffängerelektrodenstromes I_a in Abhängigkeit von der Beschleunigungsspannung U_B .

ein externes Heizelement (in der Zeichnung nicht eingezeichnet) wird das Hg verdampft und auf möglichst konstanter Temperatur gehalten. Der Abstand zwischen Kathode und Gitter muss groß gegenüber der mittleren freien Weglänge der Elektronen im Hg-Gas bei Betriebstemperatur sein, damit eine möglichst hohe Stoßwahrscheinlichkeit erzielt wird.

Die Kathode K wird von einer Heizkathode H aufgeheitzt, so dass freie Elektronen erzeugt werden. Diese werden dann durch das elektrische Feld, welches aufgrund der angelegten Beschleunigungsspannung U_B zwischen Gitter und Kathode vorherrscht, in Richtung Gitter beschleunigt. Für einen festen Spannungswert U_B erreichen die beschleunigten Elektronen das Gitter mit der kinetischen Energie

$$E_{kin, \text{Elektron}} = e \cdot U_B. \tag{F.4}$$

Durch die Lücken der gitterförmigen Anode könnten einige der Elektronen nun die Auffängerelektrode erreichen. Dazu müssen sie allerdings ein schwaches und konstantes Gegenfeld überwinden, welches durch die zwischen Gitter und Auffängerelektrode angelegte Spannung U_G verursacht wird. Der Auffängerstrom I_a an der Auffängerelektrode ist dann der an einem Arbeitswiderstand R_a abgegriffenen Spannung U_a proportional. Letzteres wird im Versuch über ein Betriebsgerät bewerkstelligt. Unter Berücksichtigung der oben gemachten Ausführungen über Streuprozesse zwischen beschleunigten Elektronen und Atomen erhält man bei einer Variation der Beschleunigungsspannung für festes U_G und U_H eine ähnliche Kennline, wie in Abbildung F.2 auf der rechten Seite skizziert.

Deutung der Kennlinie

Zuerst besitzen alle Elektronen im elektrischen Feld zwischen Kathode und Gitter zu wenig kinetische Energie, um die Atome in der Gasphase anzuregen. Sie erreichen die Auffängerelektrode trotz der kleinen Gegenspannung zwischen dem Beschleunigungsgitter und der Auffängerelektrode. Der Kurvenverlauf entspricht bis dahin dem einer Diodenkennlinie. Sind die Elektronen auf Atomanregungsenergie E_A beschleunigt, stößt ein Teil der Elektronen inelastisch. Dabei geben diese ihre kinetische Energie an die Atome ab und können die Auffängerelektrode wegen der Gegenspannung nicht mehr erreichen. Der Strom an der Auffängerelektrode fällt ab. Erhöht man die Beschleunigungsspannung weiter, steigt der Auffängerstrom wieder gemäß einer Diodenkennlinie an, da immer nur der diskrete Energiewert E_A an die Atome abgeben werden kann. Wird die Beschleunigungsspannung so weit erhöht, dass die Energie der Elektronen ausreicht, um auf dem Weg zur Auffängerelektrode möglicherweise zwei Atome anzuregen, so macht sich dies durch einen weiteren Einbruch des Auffängerstroms bemerkbar. Dieser Vorgang wiederholt sich immer wieder und setzt sich so weit fort, bis die Energie der Elektronen ausreicht, um die Atome zu ionisieren.

Die Spannungsdifferenz ΔU_B zwischen zwei Maxima oder zwei Minima in der Kennlinie gibt das erste Anregungsniveau der Atome an.

Eine Tatsächlich gemessene Kurve weicht aus praktischen Gründen vom bisher Gesagten ab.

- Nicht alle Elektronen haben die gleiche kinetische Energie. Diese variiert aufgrund der Kathodentemperatur und der sich dadurch ergebenden Breite der Energieverteilung.
- Die Geschwindigkeitsverteilung der Atome hängt ebenfalls von der jeweiligen Betriebstemperatur ab (Dopplerverbreiterung).
- Ein Elektron kann auf ein bereits angeregtes Atom treffen und es auf höhere Energiezustände anregen.
- Da Kathode und Anode der Franck-Hertz-Röhre aus unterschiedlichen Materialien bestehen, ist der Beschleunigungsspannung eine "Kontaktspannung" zwischen Kathode und Anode überlagert. Dies bewirkt eine horizontale Verschiebung der Franck-Hertz-Kurve.

Durch Differenzbildung zweier aufeinanderfolgender Maxima oder Minima, bei der Auswertung einer gemessenen Kennlinie, werden die meisten dieser Fehler verringert.

F.1.2 Photoelektrischer Effekt

Unter dem photoelektrischen Effekt versteht man das Phänomen, dass aus einer Metalloberfläche durch einen einfallenden Lichtstrahl Elektronen herausgeschlagen werden können. Um diesen Effekt zu erklären, deutet man einen monochromatischen Lichtstrahl der Frequenz ν als ein Paket von Energiequanten mit der Energie $E = h\nu$. Werden diese Energiequanten als Teilchen (Korpuskeln), die sog. Photonen, interpretiert, ist die Wechselwirkung des Lichtes mit den Elektronen

in der Materie als Stoß zu verstehen. Um ein Elektron aus dem Metall herauszuschlagen, ist eine materialspezifische Arbeit, nämlich die Austrittsarbeit W_A , von den Photonen aufzubringen. Die überschüssige Energie $h\nu - W_A$ verwandelt sich in die kinetische Energie $E_{kin} = \frac{1}{2}mv^2$ des herausgeschlagenen Elektrons, mit der es die Metalloberfläche verlässt¹. Wir können für die Energiebilanz des photoelektrischen Effektes also schreiben:

$$E_{kin} = \frac{1}{2}mv^2 = h\nu - W_A \tag{F.5}$$

Der Photoeffekt tritt erst oberhalb einer, für jedes Material charakteristischen Grenzfrequenz ν_0 auf. Bei Frequenzen kleiner ν_0 besitzt kein einziges Photon die zur Emission von Photoelektronen erforderliche Energie W_A , egal wie intensiv die Fläche bestrahlt wird. Natürlich ist die Anzahl der emittierten Elektronen der Anzahl der Photonen, und damit der Lichtintensität, proportional.

F.2 Messungen

F.2.1 Vorbemerkungen zum Franck-Hertz-Versuch

Es werden zwei Franck-Hertz-Röhren verwendet. In der einen Röhre befindet sich ein Tropfen Quecksilber (Hg-Röhre). Sie ist eine Dreielektrodenröhre mit einer indirekt geheizten Oxidkathode. Die andere Röhre ist mit Neongas (Ne-Röhre) gefüllt. Sie ist eine Tetrode mit einer indirekt geheizten Bariumoxidkathode und einer zusätzlichen netzförmigen Steuerelektrode.

Beide Röhren besitzen eine netzförmige Gitteranode und eine Auffängerelektrode.

F.2.2 Messung an der Hg-Röhre

Zu jeder Röhre wird die Kennlinie zuerst mit Hilfe eines Oszilloskops dargestellt und skizziert (qualitativ). Danach wird diese anhand zweier Digitalmultimeter aufgenommen (quantitativ).

F.2.2.1 Aufbau und Inbetriebnahme der Hg-Röhre

An Ihrem Arbeitsplatz befinden sich die Hg-Röhre in einem Schutzkasten, ein Betriebsgeträt, ein Oszilloskop, ein BNC-Kabel sowie zwei Digitalmultimeter. Alle übrigen "Bananenstecker" sind den Stirnseiten der Tischreihe zu entnehmen.

• Aufgabe: Bauen Sie die Hg-Röhre gemäß Abbildung F.3 auf.

Da das Heizen der Röhre auf 200 °C zwischen 7 bis 15 min dauern kann, schalten Sie diese als erstes über den Drehregler am Gehäuse ein.

Achtung: Der Schutzkasten der Hg-Röhre wird sehr heiß! Achten Sie darauf, dass er nicht in Kontakt mit Netzsteckern oder anderen Gegenständen kommt.

¹Das herausgeschlagene Elektron hat nur dann die Energie $E_{kin} = \frac{1}{2}mv^2 = h\nu - W_A$, wenn es im Metall keine energieverzehrenden Stöße erleidet, wovon wir hier der Einfachheit halber ausgehen wollen.

Die Temperatur lässt sich an dem, in den Kasten eingebrachten Ausdehnungsthermometer überprüfen. Währenddessen verschalten Sie zuerst die Hg-Röhre, bevor diese zu heiß wird, mit dem Betriebsgerät und danach letzteres mit dem Oszilloskop gemäß Abbildung F.3. Beim Zusammenstecken von Betriebsgerät und Oszilloskop muss die Beschleunigungsspannung auf den x-Kanal und die Signalspannung von der Auffängerelektrode auf die y-Achse gelegt werden, sonst erscheint das Bild um 90° gekippt. Bevor das Betriebsgerät eingeschaltet wird, drehen Sie alle vorhandenen Regler in

Abbildung F.3 – Schaltskizze für die Hg-Röhre am Oszilloskop

die Startposition. Zum Darstellen des Signals auf dem Oszilloskop muss das Betriebsgerät auf Rampenbetrieb gestellt werden (Schalter unter U_B -Regler) und das Oszilloskop auf xy-Betrieb. Wenn die Temperatur von ca. 200 °C erreicht ist, schalten Sie Oszilloskop und Betriebsgerät ein. Regeln Sie dann zuerst die Gegenspannung vorsichtig auf einen geringen Wert. Drehen sie den Signalregler auf ca. 1/2 Ausschlag. Die Beschleunigungsspannung ist nun auf 3/4 Ausschlag zu drehen. Diese Angaben sind allerdings nur grobe Richtwerte. Um ein gutes Bild zu bekommen, müssen u.U. alle vier Regler (U_B , Heizung, Gegenspannung und Signal) **vorsichtig** nachjustiert werden (bei Unklarheiten wenden Sie sich an Ihren Betreuer). Wenn Sie jetzt die Heizkathode ebenfalls vorsichtig hochregeln, sollte ein Bild aufsteigender Maxima und Minima auf dem Bildschirm erkennbar werden (ca. 7 Maxima). Die Auswirkung beim Verstellen der Heizspannung macht sich immer etwas verzögert bemerkbar. Schwankungen der Röhrentemperatur von $\pm 10^{\circ}C$ sind nicht zu verhindern. Lassen Sie in jedem Fall das Bild von einem Assistenten überprüfen.

F.2.2.2 Qualitativ: Skizze der Hg-Röhrenkennline bei 200 °C

• Messung: Sofern ihr Bild als ausreichend anerkannt wird, ist es auf Millimeterpapier zu skizzieren. Beachten Sie dabei die Achsenskalierung am Oszilloskop (am Ausgang für U_B wird nur $\frac{U_B}{10}$ ausgegeben).

• Auswertung: Erläutern Sie den Kurvenverlauf. Was würde passieren, wenn man die Beschleunigungsspannung zu stark erhöht? (kurze Erklärung)

Alle Einstellungen, bis auf die der Beschleunigungsspannung, dürfen ab jetzt nicht mehr verändert werden, da teilweise die kleinsten Veränderungen zu erheblichen Änderungen im Kurvenverlauf führen werden.

F.2.2.3 Quantitativ: Messung der Hg-Röhrenkennline bei 200 $^\circ\mathrm{C}$

Jetzt soll die Kennlinie der Hg-Röhre bei 200 °C quantitativ erfasst werden. Dafür müssen Sie vorerst die folgenden Einstellungsänderungen vornehmen:

- 1. Beschleunigungsspannung auf 0 V drehen.
- 2. Betriebsgerät auf Manuellbetrieb schalten.
- 3. An die Ausgänge für U_B und U_a ist jetzt, zusätzlich zum Oszilloskop, jeweils ein Digitalmultimeter anzuschließen, welche im Gleichspannungsbereich bis 20 V arbeitet.

Ziel ist es nun die Messspannung U_a an der Auffängerelektrode in Abhängigkeit von der Beschleunigungsspannung U_B zu messen. Überprüfen Sie dazu qualitativ, ob die Multimeter bei einer Variation von U_B ihrer Skizze entsprechend reagieren. Achtung, die Spannung, die an dem U_B Ausgang gemessen wird ist nur $\frac{1}{10}$ der echten Beschleunigungsspannung!

• Messung: Nehmen Sie die Kennlinie der Hg-Röhre auf.

Tabellieren Sie dazu ihre Messwerte, vom ersten deutlichen Maximum ausgehend, dessen Lage aus Ihrer qualititativen Zeichnung entnommen werden kann, in 0,5 V-Schritten der Beschleunigungsspannung U_B (Man beachte wieder die Ausgabe von $\frac{1}{10}U_B$). Am Oszilloskop kann der Verlauf direkt beobachtet werden.

Sollte eine aufgenommene Kurve weniger als sieben Maxima aufweisen, oder das Signal in den Sättigungsbereich geraten ist die Einstellung im Rampenbetrieb neu vorzunehmen und die Messung von Anfang an zu wiederholen.

Um eine Verfälschung der Messwerte durch Temperaturschwankungen zu minimieren, sind die Messungen möglichst schnell durchzuführen.

• Auswertung: Tragen Sie alle Messwerte blattfüllend auf A4-Millimeterpapier auf. Bestimmen Sie aus dieser Kurve die Anregungsenergie von Quecksilber: Geben Sie durch Auswertung aller aufeinanderfolgender Maxima- und Minimadifferenzen die Anregungsenergie mit ihrer Unsicherheit an. (Hinweis: Versuchen Sie dabei, zwischen "echten" Extrema und solchen, die allein durch Messungenauigkeiten entstanden sind, zu unterscheiden. Zeichnen Sie hierzu per Hand eine Ausgleichskurve ein, die den Verlauf der Messpunkte gut wiedergibt. Benutzen Sie diese Kurve zur Bestimmung der Maxima und Minima.) Berechnen Sie daraus die Frequenz und Wellenlänge, der von der Quecksilberröhre abgestrahlten elektromagnetischen Welle. Die Fehlerrechnung ist obligatorisch.

F.2.2.4 Qualitativ: Skizze der Hg-Röhrenkennline bei 180°C

Wiederholen sie nun den qualitativen Teil mit einer Temperatur von ca. 180 °C. Pegeln Sie also die Temperatur der Röhre auf (180±5) °C ein und stellen Sie den Aufbau für die Darstellung am Oszilloskop her. Dabei dürfen auf keinen Fall irgendwelche Einstellungen am BG, außer U_B und dem Betriebsartschalter (Rampe/Manuell), verändert werden. Wenn Sie alles korrekt verdrahtet haben, stellen Sie die Betriebsart auf Rampe um. • *Messung:* Skizzieren Sie das entstehende Bild, nach einer Überprüfung durch den Assistenen, ebenfalls auf dasselbe Millimeterpapier.

• Auswertung: Was ist jetzt bzgl. der Maxima und Minima zu erkennen? Wie ist dies zu erklären? (Stichwort Hg-Dampfdruck)

F.2.3 Messung an der Ne-Röhre

Die Neonröhre ist eine Tetrode, welche zusätzlich zu den bei der Triode genannten Elektroden, ein weiteres Steuergitter enthält. Dieses dient hauptsächlich zur Verringerung störender Nebeneffekte, welche aufgrund des Arbeitsgases Neons und den kleinen Abmessungen der Röhre auftreten.

Abbildung F.4 – Schaltskizze für die Neonröhre

F.2.3.1 Aufbau und Inbetriebnahme der Ne-Röhre

Da Neon ein Gas ist, braucht es bei Raumtemperatur keine externe Aufheizung der Röhrenatmosphäre. An Ihrem Arbeitsplatz finden Sie ein Betriebsgerät, ein Oszilloskop, ein BNC-Kabel sowie zwei Digitalmultimeter. Alle übrigen "Bananenstecker" sind den Stirnseiten der Tischreihe zu entnehmen.

Stellen Sie alle elektrischen Geräte aus und drehen Sie alle Regler auf die Startposition.

• Aufgabe: Bauen Sie die Ne-Röhre gemäß Abbildung F.5 auf.

Abbildung F.5 – Aufbau der Ne-Röhre

F.2.3.2 Qualitativ: Skizze der Ne-Röhrenkennline bei Raumtemperatur

- 1. Verbinden Sie die Ausgangskanäl
e U_B und U_a des Betriebsgerät mit dem x- und dem y-Kanal des Oszillo
skops.
- 2. Schalten Sie das Betriebsgerät und das Oszilloskop ein.
- 3. Stellen Sie den Signalregler auf ca. 1/2 Ausschlag.
- 4. Regeln Sie die Gegenspannung auf ca. 5 V.
- 5. Regler für die Beschleunigungsspannung auf ca. 1/2 Ausschlag
- 6. Die Heizung nun langsam hochregeln, bis ein Bild entsteht.

Auch diese Einstellungen sind nur grobe Richtwerte. Um wieder ein gutes Bild zu erhalten (3 Maxima und 3 Minima), sind ebenfalls alle 4 Regler (U_B , Heizung, Gegenspannung und Signal) vorsichtig nachzuregeln.

F.2.3.3 Qualitativ: Skizze der Ne-Röhrenkennline bei Raumtemperatur

• Messung: Sofern ihr Bild als ausreichend anerkannt wird, ist es auf Millimeterpapier zu skizzieren. Beachten Sie dabei die Achsenskalierung am Oszilloskop (am Ausgang für U_B wird nur $\frac{U_B}{10}$ ausgegeben).

Alle Einstellungen, bis auf die der Beschleunigungsspannung, dürfen ab jetzt nicht mehr verändert werden, da teilweise die kleinsten Veränderungen zu erheblichen Änderungen im Kurvenverlauf führen werden.

F.2.3.4 Quantitativ: Messung der Ne-Röhrenkennline bei Raumtemperatur

Jetzt soll die Kennlinie der Ne-Röhre bei Raumtemperatur quantitativ erfasst werden. Dafür müssen Sie vorerst die folgenden Einstellungsänderungen vornehmen:

- 1. Beschleunigungsspannung auf 0 V drehen.
- 2. Betriebsgerät auf Manuellbetrieb schalten.
- 3. An die Ausgänge für U_B und U_a ist jetzt, zusätzlich zum Oszilloskop, jeweils ein Digitalmultimeter anzuschließen, welche im Gleichspannungsbereich bis 20 V arbeiten.

Ziel ist es nun die Messspannung U_a an der Auffängerelektrode in Abhängigkeit von der Beschleunigungsspannung U_B zu messen. Überprüfen Sie dazu qualitativ, ob die Multimeter bei einer Variation von U_B ihrer Skizze entsprechend reagieren. Achtung, die Spannung, die an dem U_B Ausgang gemessen wird ist nur $\frac{1}{10}$ der echten Beschleunigungsspannung!

• Messung: Nehmen Sie die Kennlinie der Ne-Röhre auf.

Tabellieren Sie dazu ihre Messwerte in 1 V-Schritten der Beschleunigungsspannung U_B , ausgehend von 0 V (Man beachte wieder die Ausgabe von $\frac{1}{10}U_B$). Auch hier kann der Verlauf am Oszilloskop beobachtet werden. Bei starken Abweichungen von der qualitativen Skizze ist das Bild wieder im Rampen-Betrieb nachzuregeln und die Messung vom Anfang an zu wiederholen. Die Messung ist zügig durchzuführen, da die Heizspannung eine kleine Drift nach unten aufweist, so dass die Messergebnisse bei hohen Werten der Beschleunigungsspannung verfälscht werden könnten.

• Auswertung: Zeichnen Sie alle Messpunkte blattfüllend auf A4-Millimeterpapier ein. Bestimmen Sie aus dieser Kurve die Anregungsenergie von Neon: Geben Sie durch Auswertung aller Maximaund Minimadifferenzen die Anregungsenergie mit ihrer Unsicherheit an und vergleichen Sie diesen Wert mit dem Termschema von Neon in Abbildung F.6. (Beachten Sie auch hier wieder die Hinweise, die bereits für die Auswertung der Messungen an der Hg-Röhre gegeben wurden.) Berechnen Sie daraus die Frequenz und Wellenlänge, der von der Neonröhre abgestrahlten elektromagnetischen Welle. Die Fehlerrechnung ist obligatorisch. Warum tritt in der Neonröhre ein orangenes Leuchten auf? Erklären Sie die Entstehung des orangenen Leuchtens anhand des Termschemas von Neon (vgl. Abbildung F.6).

Abbildung F.6 – Auszug aus dem Termschema von Neon

Abbildung F.7 – Veruchsaufbau für den Photoelektrischen Effekt

F.2.4 Messungen zum photoelektrischen Effekt

F.2.4.1 Vorbemerkungen und Aufbau

Der Messaufbau besteht aus einer Quecksilberdampflampe, dem zugehörigen Netzteil, einer Vakuumphotozelle, einem Satz Interferenzfilter mit unterschiedlichen Wellenlängen, einem Messverstärker und einem Digitalmultimeter. Folgende Dinge sind unbedingt bei der Versuchsdurchführung zu beachten:

- Hg-Lampe nur einschalten, wenn Photozelle, Filter und Lampensockel angeschlossen sind. (UV-Gefahr)!
- Die Quecksilberdampflampe wird **sehr heiß**! Beim Filterwechsel ist sie daher nur vorsichtig am Sockel anzufassen.
- Die Filter sind **sehr empfindlich** gegen Kratzer oder Fingerabdrücke. Sie sind **ausschließlich** an den roten Aufsteckvorrichtungen anzufassen.
- Die Filter passen nur in einer Richtung auf die Lampe und die Photozelle (siehe Beschriftung)!
- Wenn kein Filter aufgesteckt ist und während des Filterwechsels ist der Schieber der Photozelle zu schließen.

Die Bauteile werden nun wie in Abb. F.7 dargestellt verkabelt. Nun schaltet man das Netzgerät der Quecksilberdampflampe und das Digitalmultimeter ein. Das Multimeter sollte auf DC und einem Messbereich von 20V (kann evtl auf 2V reduziert werden...) stehen.

F.2.4.2 Messungen

Nun steckt man einen der Filter zwischen die Lampe und die Photozelle und öffnet den Schieber an der Photozelle. Nach einer kurzen Aufladungsphase wird eine konstante Spannung am Multimeter angezeigt. Diese wird zusammen mit der Wellenlänge des Filters (siehe Beschriftung) notiert. Nach dem Ablesen wird der Schieber der Photozelle geschlossen. Diese Messung ist nacheinander mit allen Filtern durchzuführen.

Die bei der Bestrahlung der Kathode mit Lichtquanten der Energie $h\nu$ herausgelösten Elektronen mit der kinetischen Energie $E_{kin} = \frac{1}{2}mv^2 = h\nu - W_A$ (vgl Gl. F.5) treffen auf die Anode der

Photozelle und laden diese elektrisch auf. Durch diese Aufladung entsteht zwischen Anode und Kathode eine Spannung U_G , die ein elektrisches Feld erzeugt, welches am Digitalmultimeter angezeigt wird. Dieses wächst, bis die Elektronen ihre gesamte kinetische Energie benötigen um das Feld zu überwinden.

$$E_{kin} = eU_G \tag{F.6}$$

Die Kombination von Gl. F.5 und Gl. F.6 liefert nun einen linearen Zusammenhang zwischen der angezeigten Spannung und der Frequenz des eingestrahlten Lichtes.

$$U_G = \frac{h\nu}{e} - \frac{W_A}{e} \tag{F.7}$$

Trägt man die bei den verschiedenen Filtern gemessenen Spannungen gegen die Frequenz des durchgelassenen Lichtes auf, erhält man eine Gerade aus deren Steigung man mithilfe von Gl. F.7 das Plancksche Wirkungsquantum h bestimmen kann. Den erhaltenen Wert vergleiche man mit dem Literaturwert und diskutiere die Fehler die bei der Messung aufgetreten sein können.

88 VERSUCH F. FRANCK-HERTZ-VERSUCH UND PHOTOELEKTRISCHER EFFEKT

Versuch O

Geometrische Optik und Mikroskop

Ziel des Versuches

Die optische Abbildung wird an einfachen Beispielen untersucht. Die Vergrößerung eines Fernrohrs und die eines Mikroskops werden bestimmt. Beim Mikroskop soll die Funktionsweise verstanden werden. Dazu werden wellenoptische Aspekte, vor allem die Grenze des Auflösungsvermögens betrachtet. Die Theorie von Abbe zur Bildentstehung im Mikroskop wird durch Manipulationen des primären Bildes geprüft.

Vorkenntnisse

Wirkungsweise einer Linse: Reflexion, Brechung, Brechungsgesetz, Brechzahl, Fermatsches Prinzip, Linsenarten, dünne Linsen, dicke Linsen, Linsenformel 1/g + 1/b = 1/f, Newtonsche Linsenformel $x \cdot x' = f^2$, Bildkonstruktion mit ausgezeichneten und nicht ausgezeichneten (schräg einfallenden) Strahlen, Linsenfehler. **Optische Geräte:** Funktionsweise von Kollimator, Lupe, Fernrohr (Keplersches, Galileisches) und Mikroskop. **Mikroskop:** Strahlenverlauf, Beugung (am Doppel-/Einzelspalt und Gitter), Huygenssches Prinzip, Interferenz, Kohärenz, Bild als Interferenzerscheinung, Dispersion, Dunkelfeldverfahren, Auflösungsvermögen, Abbesche und Helmholtzsche Theorie des Auflösungsvermögens, primäres und sekundäres Bild und deren gegenseitige Abhängigkeit.

Bearbeiten Sie auch die versuchsvorbereitenden Aufgaben am Ende des Grundlagenkapitels! Diese sind dem Betreuer am Praktikumstag vorzulegen.

O.1 Grundlagen

O.1.1 Geometrische Optik

Die Wellenoptik stellt die Ausbreitung elektromagnetischer Strahlung durch Wellenflächen dar und erfasst damit neben Reflektion und Brechung auch Beugung an räumlichen Hindernissen. Die geometrische Optik beschränkt sich nur auf die aus den geometrischen Verhältnissen bei Reflektion und Brechung folgende Lichtausbreitung und ist als in der Wellenoptik enthaltener Grenzfall aufzufassen $(\lambda \to 0)$: Bei gleichbleibenden Abmessungen der Öffnungen usw. prägt sich Beugung mit kleiner werdender Wellenlänge immer weniger aus, bis sie (theoretisch) für $\lambda = 0$ ganz verschwindet.

O.1.1.1 Brechung und Reflektion

Eine ebene elektromagnetische Welle wird an der Grenzfläche zwischen zwei Medien unterschiedlicher Brechungsindizes n_i nach dem Snelliusschen Brechungsgesetz gebrochen (analog zur Wasserwelle). Mit der Ausbreitungsgeschwindigkeit c_i und dem Winkel α_i zwischen Strahl und Lot im jeweiligen Medium i = 1, 2 lässt sich demnach für den transmittierten Teil der Welle aus dem Fermatschen Prinzip das Snelliussche Brechungsgesetz ableiten

$$\frac{\sin(\alpha_1)}{\sin(\alpha_2)} = \frac{c_1}{c_2} = \frac{n_2}{n_1}.$$
(O.1)

Ebenso tritt im Medium der einfallenden Welle Reflektion auf mit $\alpha_i = \alpha'_i$, dies ist hier aber nicht weiter von Interesse.

Hinweis: Die Ableitung dieser Formel und das Fermatsche Prinzip werden als bekannt vorausgesetzt.

Abbildung O.1 – Brechung an einer Grenzfläche zwischen zwei Medien mit $n_1 < n_2$

Die Abbildung O.1 illustriert das Snelliussche Brechungsgesetz für $n_1 < n_2$. Demnach wird die ebene Welle im Medium 2 zum Lot hin gebrochen.

Im Folgenden wird neben der "ebenen elektromagnetischen Welle", weniger verallgemeinert der Ausdruck "Lichtstrahl" verwendet werden.

O.1.1.2 Linsen

Ist die Grenzfläche zwischen zwei Medien gekrümmt, so bleiben zueinander parallel einfallende Lichtstrahlen nicht parallel.

Linsen werden i.a. von Ausschnitten zweier Kugeloberflächen begrenzt. Entlang der Verbindungslinie der beiden Kugelmittelpunkte verläuft die optische Achse. Die Schnittpunkte der optischen Achse mit den Linsenoberflächen legen die Dicke der Linse fest. Ist die Linse an der optischen Achse dicker als außerhalb, nennt man sie konvex – ansonsten konkav.

Hat das Linsenmaterial einen größeren Brechungsindex n als das sie umgebende Medium, so bündeln Konvexlinsen aus großer Entfernung einfallende Strahlen (Sammellinse), während Konkavlinsen das Licht streuen (Streulinse).

Hinweis: Man verschaffe sich einen groben Überblick über die Größenordnung von Brechungsindizes verschiedener Materialien.

Seien $r_{1,2}$ die Krümmungsradien der Linsenoberflächen und n_1 der Brechungsindex der Umgebung sowie n_2 der des Linsenmaterials, so erhält man die Brechkraft einer Linse als

$$D = \left(\frac{n_2}{n_1} - 1\right) \cdot \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \tag{O.2}$$

mit der Einheit 1 m⁻¹= 1 Dioptrie. Es sei angemerkt, dass je nach Oberflächenkombination (bikonkav, bikonvex) zwar die Kümmungsradien $r_{1,2}$ vom Betrag her gleich sein können, sich dennoch, abhängig von deren Ursprungslage bezogen auf die Linsenmitte, unter Umständen unterschiedliche Vorzeichen ergeben können.

Parallel zur optischen Achse einfallende Lichtstrahlen werden hinter einer Sammellinse in einem Punkt im Abstand f von der Linse fokussiert. Bei Streulinsen ergibt sich dieser Abstand, durch virtuelle Konstruktion (vgl. nächsten Abschnitt), auf der Einfallsseite. Dieser Abstand wird i.a. als Brennweite bezeichnet. Allgemein hat jede Oberfläche eine eigene Brennweite. Sind jedoch r_1 und r_2 vom Betrag her gleich, so ist durch die Brechkraft gleichzeitig eine gemeinsame Brennweite fdurch $D = f^{-1}$ definiert.

Für $n_1 < n_2$ haben bikonvexe Sammellinsen mit $r_1 > 0$ und $r_2 < 0$ demnach positive Brechkraft sowie Brennweite; bikonkave Zerstreuungslinsen mit $r_1 < 0$ und $r_2 > 0$ dagegen jeweils eine negative. Brechkräfte innerhalb eines Linsensystems addieren sich.

Hinweis: Machen sie sich klar, wie sich die Brennweite verhält, wenn anstelle zweier gekrümmter Oberflächen, zwei planparallele Oberflächen das dispergierende Medium begrenzen $(|r_{1,2}| \rightarrow \infty)$.

O.1.1.3 Konstruktion von Bildern an dünnen Linsen

Das auf eine Linse fallende Licht wird beim Durchgang an den zwei Grenzflächen gebrochen. Ist die Dicke der Linse klein gegen die Krümmungsradien, so spricht man allgemein von einer dünnen Linse. Bei dünnen Linsen wird die zweifache Brechung an den Grenzflächen durch eine Brechung an der Hauptebene der Linse ersetzt. Die Hauptebene liegt im einfachsten Fall $(|r_1| = |r_2|)$ in der Linsenmitte. Mit zunehmender Dicke der Linse wird diese Vereinfachung zunehmend inkonsistent.

Das Bild eines Gegenstandes, durch eine dünne Linse erzeugt, wird mit Hilfe ausgewählter Strahlen konstruiert. Dazu werden sowohl für die Sammellinse, als auch für die Streulinse folgende Regeln benutzt.

- 1. Der Mittelpunktstrahl geht ungebrochen durch die Linse.
- 2. Strahlen, die parallel zur optischen Achse einfallen, werden so gebrochen, dass sie durch den Brennpunkt gehen.
- 3. Strahlen, die durch den Brennpunkt in die Linse einfallen, werden so gebrochen, dass sie parallel zur optischen Achse ausfallen.
- 4. Allgemeiner Fall: Beliebig einfallende Strahlen (nicht ausgezeichnete Strahlen) werden so gebrochen, dass sie in der Brennebene durch denselben Punkt gehen, wie dessen Parallelverschiebung durch den Mittelpunkt der Linse.

Abbildung O.2 – Abbildung eines Gegenstandes G durch eine dünne Linse. Mit G=Gegenstandsgröße, B=Bildgröße, b=Bildweite, g=Gegenstandsweite, f=Brennweite der Linse und F=gegenstandsseitigem sowie F'=bildseitigem Brennpunkt. (1.-4., siehe Konstruktionsregel)

Gehen von einem außerhalb der Brennweite einer Sammellinse postierten Gegenstand bzw. dessen Kontur Lichtstrahlen aus, so werden diese hinter der Linse in der Bildebene fokussiert. Durch Positionieren eines Abbildungsschirms in dieser Ebene lässt sich die Abbildung des Gegenstandes aus einer beliebigen Richtung betrachten – bei Verwendung einer geeigneten Mattscheibe als Bildschirm, sogar von deren Rückseite. Anhand der Definition des Abbildungsmaßstabes $\Gamma = -\frac{b}{g}$ lässt sich aus Abbildung O.2 ableiten, dass gilt

$$\frac{B}{G} = \frac{b-f}{f},\tag{O.3}$$

wodurch die Größe G des Gegenstands bei bekannter Bildweite b, Brennweite f und Bildgröße B gegeben ist. Bestimmt man für zwei unterschiedliche Bildweiten $b_{1,2}$ die Bildgrößen $B_{1,2}$, so kann nach

$$f = \frac{b_1 \cdot B_2 - b_2 \cdot B_1}{B_2 - B_1},\tag{O.4}$$

eine unbekannte Brennweite f berechnet werden.

O.1.1.4 Optische Instrumente

Die in diesem Versuch relevanten Instrumente – Lupe, Fernrohr und Mikroskop – werden hier in ihren Eigenschaften grob skizziert. Der geneigte Leser sei zur Vertiefung auf entsprechende Fachliteratur verwiesen.

Lupe

Eine Lupe dient dazu, den Sehwinkel zu vergrößern, unter dem Gegenstände geringer Ausdehnung ohne Linse erscheinen. Die Vergrößerung der Lupe ist also gegeben durch das Verhältnis

$$V = \frac{\text{Sehwinkel mit Instrument}}{\text{Sehwinkel ohne Instrument}} = \frac{w_m}{w_o},\tag{O.5}$$

und gibt an, um wieviel mal das Netzhautbild durch die Lupe vergrößert wurde. Tatsächlich hängt die Vergrößerung allerdings davon ab, wie wir akkomodieren, d. h. in welcher Ebene wir das Bild

Abbildung O.3 – Zur Schwinkelvergrößerung (vgl. Text).

betrachten, denn die Brechkraft der Augenlinse ist in gewissen Grenzen steuerbar. Liegt der i. Allg. kleine Gegenstand der Größe G in der sogenannten deutlichen Schweite S_d von ca. 250 mm, so ist er unter dem Winkel w_o gerade noch scharf zu erkennen (vgl. Abb. O.3).

Mit Hilfe der Lupenlinse wird derselbe, in deren Brennweite befindliche Gegenstand mit entspanntem Auge unter dem Winkel w_m auf der Netzhaut vergrößert dargestellt (vgl. ebenfalls Abb. O.3). In der Näherung kleiner Winkel ist dann

$$V_{Lupe} = \frac{\tan w_m}{\tan w_o} = \frac{S_d}{f_L},\tag{O.6}$$

wenn der Abstand zwischen Lupen- und Augenlinse vernachlässigt wird.

Fernrohr

Zwei Linsen oder Linsensysteme L_1 (Objektiv) und L_2 (Okular), die so hintereinander angeordnet sind, dass bildseitige Brennebene F_1 und gegenstandsseitige Brennebene F_2 zusammenfallen, bilden ein auf unendlich eingestelltes Fernrohr. Fernrohrobjektive sind Sammellinsen großer Brennweite. Besteht auch das Okular aus einer Sammellinse, so hat man das astronomische (auch: Keplersche) Fernrohr. Besteht das Okular aus einer Zerstreuungslinse, so erhält man das Galileische Fernrohr. Gelangen parallele Lichtstrahlen durch das Objektiv, so werden diese in dessen Brennebene fokussiert. Das damit entstehende umgekehrte reelle Zwischenbild wird dann mit dem Okular, wie durch eine Lupe betrachtet.

Wie schon bei der Lupe, ist die Vergrößerung eines Fernrohrs durch das Verhältnis vom Schwinkel w_o ohne bzw. w_m mit Instrument gegeben. Aus geometrischen Betrachtungen erhält man dann:

$$V_{fern} = \frac{\tan w_m}{\tan w_o} = \frac{f_{ob}}{f_{ok}}.$$
(O.7)

Mikroskop

Der geometrisch-optische Aufbau eines Mikroskops ist in der folgenden Abbildung O.4 wiedergegeben. Das Mikroskop dient ebenfalls dazu, den Sehwinkel zu vergrößern. Für die Vergrößerung eines Mikroskops erhält man unter der Voraussetzung, dass das reelle Zwischenbild näherungsweise in der gegenstandsseitigen Brennebene des Okulars (diese wird wieder als Lupe eingesetzt) liegt, die Beziehung:

$$V_{mikr} = V_{ob} \cdot V_{ok} = \frac{T \cdot S_d}{f_{Ob} \cdot f_{Ok}} \tag{O.8}$$

mit T: optische Tubuslänge und S_d : deutliche Schweite. Die Vergrößerung des Mikroskops ist um so größer, je kürzer die Brennweiten von Objektiv und Okular und je länger die optische Tubuslänge ist.

Abbildung O.4 – Strahlenverlauf in einem Mikroskop

0.1.1.5 Helmholtzsche Theorie des Auflösungsvermögens (Selbstleuchter)

Von einem unendlich kleinen selbstleuchtenden Punkt aus, der sich im Unendlichen befinde (z. B. einem Stern), falle paralleles Licht auf eine Sammellinse. Als Bild erwarten wir nach der geometrischen Optik einen hellen, unendlich kleinen Punkt im Brennpunkt der Linse.

Bei kreisrunden Linsen mit endlichem Radius finden wir stattdessen prinzipiell im Brennpunkt ein helles Scheibchen, das von Lichtringen umgeben ist, deren Intensität nach außen hin abnimmt (Abbildung O.5). Zum anschaulichen Verständnis dieser grundlegenden Erscheinung kann man an-

Abbildung O.5 – Zur Entstehung der Beugunsscheibchen

nehmen, dass der Linsenrand als Blende wirkt. Zum leichteren Verständnis teilt man die Fokussierungswirkung und die Blendenwirkung der Linse voneinander (vgl. Abbildung O.5) und benutzt die Begriffe Linse und Blende, obwohl insgesamt die Linse gemeint ist, an deren Rand das Licht, wie an einer Blende gebeugt wird. An der endlich großen Lochblende findet Beugung statt (analog zur Beugung am Einzelspalt): Die ebene Welle trifft im Raumgebiet der Lochblende ein. Nach dem Huygensschen Prinzip ist dann jedes unendlich kleine Raumelement in der Blendenöffnung als Ausgangspunkt einer neuen sekundären Kugelwelle zu betrachten. Die einzelnen Kugelwellen breiten sich dann hinter der Blendenöffnung weiter aus, wobei die gegenseitige Überlagerung (Interferenz) dieser Kugelwellen im Unendlichen stattfindet. Die Linse fokussiert das Beugungsbild in der Brennweite. Die Intensitätsverteilung in der Brennebene hängt aufgrund der Beugungsbedingung vom Beobachtungswinkel ab. Zusätzlich zum Hauptlichtbündel in "Vorwärtsrichtung", der nullten Beugungsordnung (BO), treten noch weitere Lichtbündel geringerer Intensität (höhere Beugungsordnungen) geneigt zur optischen Achse auf. Für das Auflösungsvermögen selbstleuchtender Gegenstände liefert diese Theorie der Beugung an einer kreisförmigen Linsenfassung vom Radius R für den gerade noch aufgelösten Abstand d zweier Punkte:

$$d = 1,22 \cdot \frac{\lambda \cdot f}{R} \tag{O.9}$$

mit λ = Wellenlänge des Lichtes, f = Brennweite der Linse, R/f = halbes Öffnungsverhältnis. Das wesentliche Ergebnis der Helmholtzschen Betrachtungen ist damit:

Das Auflösungsvermögen ist um so größer, d. h. es können um so kleinere Abstände getrennt werden, je kleiner die Wellenlänge des zur Abbildung verwendeten Lichtes und je größer das Öffnungsverhältnis der Linse (des Linsensystems) ist!

Je größer also der Linsenradius wird, um so kleiner wird der Durchmesser von Scheibchen und Ringsystem und die Abbildung erscheint ungestörter.

0.1.1.6 Abbesche Theorie des Auflösungsvermögens (Nichtselbstleuchter)

Abbildung O.6 – Zur Abbeschen Theorie der Bildentstehung (vgl. Text). Die eingezeichnete Blende innerhalb des Primärbildes, soll die Möglichkeit der Bildmanipulation andeuten.

Die folgenden Betrachtungen gelten für Nichtselbstleuchter. Das mit dem Mikroskop zu untersuchende Objekt sei z.B. ein Strichgitter der Gitterkonstanten g, welches mit einer punktförmigen Lichtquelle aus unendlicher Entfernung beleuchtet wird. Zur weiteren Vereinfachung sei das verwendete Licht monochromatisch (es besitzt eine Wellenlänge λ). Das in der Objektebene eintreffende, nahezu parallele Lichtbündel wird am Gitter gebeugt. Von der Grundidee her ist die Entstehung der Abbildung hinter der Linse auf zwei Interferenzvorgänge zurückzuführen (vgl. Abbildung O.6).

- 1. Zueinander parallele Strahlen, charakterisiert durch gleiche Beugungswinkel α_m , werden hinter der Linse in der Brennebene in die Punkte P_m fokussiert und interferieren dort zum Primärbild.
- 2. Das vergrößerte Bild des Strichgitters, das Sekundärbild, entsteht durch weitere Interferenz der Elementarwellen, die von den verschiedenen Punkten P_m ausgehen.

Zur Abbildung eines Gitterpunktes in der Ebene des Sekundärbildes tragen also jeweils mehrere Beugungsordnungen bei. Die Winkel α_m sind gegeben durch die Beugungsbedingung

$$m \cdot \lambda = g \cdot \sin \alpha_m$$
 $m = 0, \pm 1, \pm 2, \dots$ (O.10)

mit m = Beugungsordnung, g = Gitterkonstante, α_m = Beugungswinkel.

Die Fassung des Objektivs lässt ab einem gewissen Öffnungsverhältnis, ausgedrückt durch den halben Öffnungswinkel β , nicht mehr alle, den einzelnen Beugungsordnungen entsprechenden, Lichtbündel in das Objektiv treten und damit an der Interferenz, der vom primären Bild ausgehenden Lichtwellen, in der Bildebene teilnehmen. Auf dieser Tatsache beruht die Abbesche Theorie des Auflösungsvermögens eines Mikroskops, die aussagt:

- Das Bild ist eine Interferenzerscheinung. Es interferiert das am Gegenstand ungebeugte Licht (0-te Ordnung) mit dem am Gegenstand gebeugten Licht (±1-te, ±2-te ... Ordnungen).
- Mit nur einer Beugungsordnung kann kein Bild entstehen, da so keine Interferenz stattfindet.
- Zur Bildentstehung sind mindestens zwei miteinander interferierende Bündel unterschiedlicher BO nötig, d.h. zwei unterschiedliche Beugungsordnungen müssen in das Objektiv eintreten können.
- Das Bild wird um so getreuer, je mehr Beugungsordnungen an der Interferenz in der Bildebene beteiligt sind. Da die Beugungsordnungen mit wachsender Ordnungszahl an Intensität verlieren, sind die 0-te und die ±1-te die wichtigsten für die Bildentstehung.
- Für den kleinsten noch auflösbaren Abstand g_{min} zweier benachbarter Gitterstriche muss der halbe Öffnungswinkel β größer als $\alpha_{\pm 1}$ sein. Da dann $m = \pm 1$ ist ergibt sich

$$\beta > \alpha_{\pm 1} \qquad \Rightarrow \qquad g_{min} > \frac{\lambda}{\sin \beta}.$$
 (0.11)

Man nennt den Sinus des halben Öffnungswinkels β die Apertur des Objektivs.

Das Auflösungsvermögen ist groß, wenn die Apertur großund die Wellenlänge des zur Abbildung verwendeten Lichtes klein ist. Die Ergebnisse der Helmholtzschen und der Abbeschen Theorie stimmen in der qualitativen Aussage überein! Welche Theorie findet in diesem Versuch Anwendung?

0.1.1.7 Versuchsvorbereitende Aufgaben

- Leiten sie die Gleichung O.4 unter Verwendung von Gleichung O.3 her. Nutzen Sie dazu die Tatsache aus, dass unabhängig von der Variation der Bildweite, die Gegenstandsgröße konstant bleibt.
- Das Ergebnis der rechten Seite in der Gleichungsfolge O.8 ist in der Versuchsvorbereitung herzuleiten.

Benutzen Sie hierbei den Strahlengang für den Fall, dass das reelle Zwischenbild B in der gegenstandsseitigen Brennebene des Okulars liegt (skizzieren).

Mit den bisherigen Überlegungen zu Mikroskop und Lupe sollten Sie relativ leicht auf den geforderten Zusammenhang kommen.

Erklären Sie außerdem, warum diese Beziehung nicht angewandt werden darf, wenn die Abmessungen der mit dem Mikroskop betrachteten Gegenstände nicht mehr groß gegen die Wellenlänge des zur Abbildung verwendeten Lichtes sind.

• Es ist eine maßstäbliche Zeichnung (x-Achse: 1:10, y-Achse: 10:1) des Strahlengangs aus dem Fernrohr-Versuchsteil (vgl. Aschnitt O.2.1.2) mit eingebautem Fernrohr anzufertigen. Gemeint ist damit der Strahlengang in einem optischen System bestehend aus:

Objekt ($G = 1 \,\mathrm{mm}$),

Kollimatorlinse ($f_K = 120 \,\mathrm{mm}$),

Fernrohrlinsen ($f_{Obj} = 400 \,\mathrm{mm}$ sowie $f_{Ok} = +50 \,\mathrm{mm}$) und letztlich

Abbildungslinse $(f_A = 150 \text{ mm}).$

Hinweise: Bedenken Sie dabei 1) die Funktionsweise einer Kollimatorlinse, 2) das Fernrohr sei auf ∞ eingestellt und 3) ein Fernrohr wird optimalerweise direkt vor dem Auge platziert. Zeichne das Auge und das Objektive in die Brennweiten von Okular bzw. Kollimator. Verwende zur Vereinfachung ab dem Zwischenbild neue gezeichnete Strahlen. (also: Bild B ist neuer Abbildungsgegenstand für das Okular.)

Vergleichen Sie ergänzend die Angaben in der Versuchsaufgabe. Es reicht vollkommen aus einen Gegenstandspunkt mit Hilfe zweier unterschiedlicher Strahlen (z.B. Mittelpunkts- und Parallelstrahl) zur Konstruktion zu benutzen. Erläutern Sie kurz die Funktionsweise der einzelnen Linsen in diesem Aufbau.

Leiten Sie eine Formel für die Gesamtvergrößerung des Systems ab und berechnen Sie diese mit den angegebenen Brennweiten. (Tipp: Vergrößerung = Bildgröße / Gegenstandsgröße)

Bestimmen Sie anhand der Zeichnung die Gesamtvergrößerung des optischen Systems und berechnen Sie damit die Fernrohrvergrößerung (vgl. Gleichung O.7).

O.2 Messungen

Für jede Versuchsaufgabe empfiehlt es sich, die Aufgabenteile zuerst sorgfältig durchzulesen und die Durchführung, sowie besondere Hinweise nachzuvollziehen. Im Besonderen sollte Wert darauf gelegt werden, welche Messunsicherheiten sich durch die jeweiligen Messmethoden ergeben. D.h. Überlegen Sie bei der Aufnahme der Messwerte, wie genau Sie diese bestimmt haben und geben Sie demnach sinnvoll begründete Unsicherheiten an. Eine Fehlerrechnung ist (wie immer!) die Grundlage für die Analyse der Genauigkeit ihrer Ergebnisse.

Hinweis: Nachdem Sie alle Versuche durchgeführt haben, stellen Sie bitte mindestens wieder die zu Beginn des Versuchstages vorgefundene Ordnung her.

O.2.1 Geometrische Optik

Zur Durchführung dieses Versuchsteils benötigen Sie

- 1 optische Bank mit Millimeterskala (1500mm)
- 1 Lampe mit Netzteil (Vorsicht! Die Lampe wird heiß.)
- 1 Schirm (Vorderseite: mm-Papier, Rückseite: weiß)
- je 1 Linse der Brennweite f[mm] = +50, -50, 120, 150, 400
- 1 Hilfsfernrohr
- 1 Diahalter incl. Dia (Motiv: 0,5mm-Skala)
- 1 Irisblende
- 1 Justiernadel (für die optische Achse)
- 1 Messschieber

Überprüfen Sie die Vollständigkeit und Funktionsfähigkeit dieser Gegenstände am Arbeitsplatz.

Denken Sie beim hinzufügen zusätzlicher optischer Elemente in den Strahlengang stets daran, die optische Achse mit der Justiernadel anzugleichen.

O.2.1.1 Messung der Brennweite einer Sammellinse und des Durchmessers einer Lampenwendel.

Der wendelförmige Glühdraht einer Glühlampe, dessen Größe G sich bei ausgeschalteter Lampe abschätzen lässt, soll mittels der Linse L der Brennweite $f_L = 120 \text{ mm}$ auf dem Abbildungsschirm vergrößert abgebildet werden. Dazu fixiere man die Lampe an einem Ende der optischen Bank und den Schirm S am Gegenüberliegenen. Stellen Sie nun durch Verschieben der Linse ein scharfes Bild der Glühwendel auf dem Schirm ein. Dabei ist darauf zu achten, dass die Gegenstandsweite kleiner ist als die Bildweite. Sollte das Bild zu hell zur Ablesung der Bildgröße erscheinen, kann dies durch die Verwendung einer Irisblende zwischen Gegenstand und Linse optimiert werden.

Um nun nach Gleichung (O.4) die Brennweite f der Linse zu berechnen, müssen bei zwei un-

Abbildung O.7 – Aufbau zur Bestimmung einer unbekannten Brennweite f und der Bestimmung des Durchmessers der Grühwendel

terschiedlichen Bildweiten $b_{1,2}$ die dazugehörigen Bildgrößen $B_{1,2}$ bestimmt werden (vgl. Kapitel O.1.1.3).

Zur Messung der Bildweite b werden die Schirm- und Linsenkoordinate auf der optischen Bank benötigt. Die Schirmkoordinate x_S entspricht in etwa der Reitermitte und kann direkt abgelesen werden. Da die Koordinate der Linsenmitte x_L dagegen nicht direkt ablesbar ist, wird sie über einen Umweg bestimmt:

Notieren Sie, bei scharf gestelltem Bild, die Koordinate x_{L1} der rechten Kante des Reiters. Dann drehen Sie die Linse mitsamt dem Reiter um, stellen das Bild wieder scharf, und lesen jetzt an der linken Kante des Reiters die Koordinate x_{L2} ab. Die Linsenmitte x_L ist nun anhand über $x_L = \frac{1}{2} \cdot (x_{L1} + x_{L2})$ ermittelbar.

• Messung: Führen Sie die Messung von b und B einmal in der oben beschriebenen Ausgangsposition durch und ein zweites Mal bei einem um mindestens ca. 500 mm verringerten Schirm-Lampe Abstand durch, benutzen Sie zur Messung von B einen Messschieber. Beachten Sie: Zu jedem Messwert gehört die Angabe einer Messunsicherheit (mit ihrer Begründung).

• Auswertung: Bestimmen Sie aus den beiden Messungen die Brennweite f der Linse und berechnen Sie daraus die Gegenstandsgröße der Glühwendel. Vergleichen Sie diese Größen mit den tatsächlichen bzw. geschätzten Werten und geben Sie mögliche Fehlerquellen an.

O.2.1.2 Vergrößerung eines Fernrohrs

Um die Vergrößerung eines weit entfernten Gegenstandes mittels eines Fernrohres zu bestimmen, muss einerseits ein Gegenstand bekannter Größe so weit entfernt sein, dass die von einem Objektpunkt ausgehenden Strahelen nahezu parallel sind (unendliche Entfernung) und andererseits die Möglichkeit der Ausmessung des Netzhautbildes im Auge hergestellt werden.

Herstellung von Objekt und Abbildungsschirm

Wie in Abbildung O.8 dargestellt, wird an einem Ende der optischen Bank das fixierte Dia mit der Lampe aus ca. 10 cm Entfernung beleuchtet (Lampe = Wärmequelle!). Die darauf folgende Linse mit $f_K = 120 \text{ mm}$ dient gemäß Abbildung O.8 als Kollimatorlinse und muss ensprechend ihrer Brennweite relativ zum Dia aufgebaut werden. Da die Position der Linsenmitte unbekannt ist (die Brennweite zählt ab der Linsenmitte), muss die Kollimatorlinse mit einem auf unendlich eingestellten Hilfsfernrohr justiert werden. Dies wird nachfolgend beschrieben.

Abbildung O.8 – Funktionsweise von Kollimatorlinse und Augenlinse. Das Dia steht in der Brennebene im Abstand f_K der Kollimatorlinse K und wird dadurch "ins Unendliche" verschoben. Die Augenlinse A bündelt die zueinander parallelen Strahlen in ihrer Brennebene im Abstand f_A . Auf dem Schirm (Netzhaut) kann das Bild dann scharf abgebildet werden. Zwischen Kollimator und Auge werden dann die Fernrohre eingebaut.

Zuerst ist das Hilfsfernrohr auf einen sehr weiten Gegenstand einzustellen. Am besten eignen sich dafür weit entfernte Baumkronen am Horizont. Mit dieser Einstellung ist das Hilfsfernrohr in den Strahlengang hinter die Kollimatorlinse zu stellen.

VORSICHT! Bevor sie durch das Hilfsfernrohr schauen, platzieren Sie unbedingt die Streuscheibe zwischen Lampe und Dia. Verletzungen der Netzhaut können sonst nicht ausgeschlossen werden.

Verschieben Sie den Kollimator und das direkt dahintergestellte Hilfs-Fernrohr solange bis ein Teil des Diamotivs, durch das Fernrohr betrachtet, scharf erkennbar ist. Fixieren Sie den Kollimator und entfernen zuerst das Hilfsfernrohr und danach die Streuscheibe aus dem Strahlengang.

Man befestige nun die Augenlinse mit $f_A = 150 \,\mathrm{mm}$ im Abstand von etwa 650 mm vom Kollimator entfernt auf der optischen Bank. Danach ist der Schirm mit der weißen Seite in Richtung des Gegenstandes hinter der Augenlinse so zu platzieren, dass die Bildmitte des Dias scharf auf dem Schirm erkennbar ist. Ziehen Sie nun den Schirm ebenfalls fest.

• *Notiz:* Machen Sie sich Notizen zur Qualität der Abbildung und erläutern Sie falls nötig bei der Auswertung die auftretenden Abbildungsfehler.

• *Messung:* Messen Sie die Bildgröße mit dem Messschieber aus. Benutzen Sie dazu den scharfgestellten Teil der 0,5 mm-Skala in der Mitte der Abbildung. Beachten Sie dabei, dass die Verzerrung des Bildes die Messwerte nicht zu stark beeinflusst. Messgenauigkeiten sind begründet zu notieren!

• Auswertung: Bestimmen Sie die Vergrößerung dieses Linsensystems.

Einbau der Fernrohre

Zwischen Kollimator und Augenlinse werden im folgenden nun der Reihe nach teleskopische Folgen (Fernrohre) eingebracht. Je nach Fernrohrtyp wird zuerst die Okularlinse $f_{Ok} = +50 \text{ mm}$ bzw. $f_{Ok} = -50 \text{ mm}$ direkt vor die Augenlinse gestellt. Für beide Fernrohrkombinationen nehme man dann als Objektiv die Linse $f_{Ob} = +400 \text{ mm}$ und verschiebe sie so, dass ein scharfes Bild der 0,1 mm-Skala, welche sich mittig unter der bisher verwendeten 0,5 mm-Skala des Diamotivs befindet, zentriert im Gesichtsfeld der Augenlinse auf dem Schirm erkennbar ist.

Hinweis: Wichtig ist, dass unabhängig von Unreinheiten in der Diaoberfläche das Bild wirklich scharf ist!

• *Messung:* Messen Sie die Bildgrößen auf dem Abbildungsschirm für beide Fernrohrsysteme mit dem Messschieber aus.

• Auswertung: Bestimmen Sie nun aus den hier gemessenen Bildgrößen die Vergrößerungen beider Fernrohre (Fehlerrechnung). Vergleichen Sie diese mit den theoretisch erwarteten Werten und gehen Sie auf das Zustandekommen von Abweichungen ein. Berücksichtigen und erklären Sie außerdem die Auswirkung der unterschiedlichen Kollimator- und Augenlinsenbrennweite.

O.2.2 Mikroskop

Zur Durchführung dieses Versuchsteils benötigen Sie

- 1 Mikroskopstativ (Tubuslänge fixiert) mit angebautem Umlenkspiegel (2 Seiten: gekrümmt und planar) und Objekttisch
- 1 Lampe mit Irisblende
- 1 Diffraktionstrichter mit Schieber
- 1 Objektiv mit 6,3-fach Vergrößerung
- je 1 Blende mit Einzelspalt, Dreifachspalt, 1mm-Loch, 1,6mm-Loch, Stegblende
- 1 Hilfsmikroskop (Tubuslänge variabel)
- 2 Okulare 5-fach, 16-fach (bzw. 12-fach) Vergrößerung
- 1 Abbesche Diffraktionsplatte
- 1 Objektplättchen (Motiv: gestauchtes 300mm-Lineal)
- 1 separater Umlenkspiegel (für Okularaufsatz)
- 1 400mm-Holzlineal
- 2 Farbfilter für die Lampe (grün, rot)

Überprüfen Sie die Vollständigkeit und, soweit möglich, die Funktionsfähigkeit dieser Gegenstände am Arbeitsplatz.

• *Aufgabe:* Bauen Sie ein Mikroskop, bestehend aus Stativ, Lampe, Objektiv und einem Okular ihrer Wahl auf.

Hinweis: Gehen sie äußerst vorsichtig mit den optischen Elementen und vermeiden Sie direkte Berührungen der Linsen.

O.2.2.1 Vergrößerung eines Mikroskops

In diesem Versuchsteil wird aus der Messung der Gesamt- sowie der Objektivvergrößerung die Okularvergrößerung eines Mikroskops bestimmt. Ein "Mikrometermaßstab" dient hier als Motiv.

• *Messung:* Schätzen Sie die Größe einer Skaleneinheit dieses Mikrometermaßstabes ab. *Hinweis:* Dazu ist es ratsam zu wissen, um was für ein Motiv es sich handelt.

Messung zur Objektivvergrößerung V_{Ob}

Das Mikroskop ist zuerst mit einem frei wählbaren Okular auf den gestauchten Mikrometermaßstab scharf einzustellen. Tauschen Sie nun das Okular gegen den Mattscheibeneinsatz aus und verschieben Sie diesen im Tubus des Mikroskops, bis das Zwischenbild auf der Mattscheibe aus deutlicher Sehweite ($\approx 25 \,\mathrm{cm}$) ebenfalls scharf zu sehen ist.

Hinweis: Verstellen Sie dabei nicht die Höhe des Tubus über dem Objekt!

• *Messung:* Bestimmen Sie anhand der Mattscheibenabmessung die Größe des vergrößerten Zwischenbildes.

Messungen zur Gesamtvergrößerung V_{ges}

Anstelle des Mattscheibenaufsatzes werden nun die Okulare verwendet. Bringen Sie das Holzlineal an der Ablagenkante des Tisches an und stellen Sie das Mikroskop so auf, dass das Objektiv eine deutliche Sehweite ($\approx 25 \text{ cm}$) Abstand zum Holzlineal hat. Beginnen Sie mit einem Okular ihrer Wahl und betrachten Sie das vergrößerte Zwischenbild des Objektmikrometers. Über den Spiege-laufsatz, welcher zusätzlich auf den Tubus zu stecken ist, kann das Bild nun mit einem Auge von der Seite des Mikroskops betrachtet werden. Mit dem anderen Auge betrachten Sie das Holzlineal.

• *Messung:* Schätzen Sie für jedes Okular (jeweils die verwendete Okularvergrößerung notieren) durch Überlagern beider Netzhautbilder die Größe der vergrößerten Abbildung ab. *Hinweis:* Halten Sie den Kopf bei der gesamten Ablesung still, so vermeiden Sie eine starke Verschlechterung der Abschätzung!

• Auswertung: Man errechne aus den Messungen der Bildgrößen die Gesamtvergrößerungen V_{ges1} und V_{ges2} und die Objektivvergrößerung V_{Ob} und bestimme daraus die jeweilige Okularvergrößerung V_{Ok1} und V_{Ok2} . Vergleichen Sie Ihre Ergebnisse mit den angegebenen Vergrößerungen. Schätzen Sie die Messunsicherheiten ab (Fehlerrechnung) und vergleichen Sie kurz anhand der Güte die Messmethoden.

O.2.2.2 Bildentstehung und Auflösungsvermögen

Zur Untersuchung der Bildentstehung im Mikroskop und dessen Auflösungsvermögens wird die Abbesche Diffraktionsplatte herangezogen (vgl. Abbildung O.9). Einige der darauf abgebildeten Motive werden im folgenden als Untersuchungsobjekte dienen. Das Prinzip der Untersuchungsmethode:

- 1. "Reines" Sekundärbild (= reelles Zwischenbild) eines Motivs mit einem Okular betrachten.
- 2. Primärbild (\approx Objektivbrennebene) mit dem Hilfsmikroskop (anstelle Okular) betrachten.
- 3. Manipulation: Ausblenden von Primärbildelementen mittels Blenden im Diffraktionstrichter.
- 4. Veränderungen des Sekundärbildes (Okular) dokumentieren.

Aufbau des Mikroskops

Im folgenden wird beschrieben, wie zwischen Primär- und Sekundärbild relativ problemlos gewechselt werden kann. Stellen Sie zunächst sicher, dass die ebene Fläche des Umlenkspiegels genutzt wird. Falls noch nicht geschehen, ist der Diffraktionstrichter mit dem Objektiv in die Objektivfassung des Mikroskops zu schrauben.

Abbildung O.9 – Motive der Abbeschen Diffraktionsplatte (schematisch): 1) Einzel- und Doppelspalt, 2) Positivgitter $g = 16/8 \,\mu\text{m}$, 3) Negativgitter (g wie bei 2)), 4) 90°-Punktgitter, 5) 60°-Punktgitter, 6) Absorptionsgitter $g = 16 \,\mu\text{m}$, 7) Phasengitter $g = 16 \,\mu\text{m}$

• Das Sekundärbild. Fixieren Sie die Diffraktionsplatte auf der beweglichen Objekthalterung und stellen Sie, bei vollständig geöffneter Lampenblende, das Sekundärbild von Objekt 2 mit dem Okular höherer Vergrößerung scharf.

Die Mitte des Sichtfeldes sollte von einem der beiden Gitter ausgefüllt sein.

Vorsicht! Es besteht die Gefahr der Zerstörung der Diffraktionsplatte durch das Herunterfahren des Mikroskopobjektivs.

Hinweis: Achten Sie darauf, dass die Tubushöhe nach dem Scharfstellen nicht wieder verstellt wird. Im Zweifelsfall kann der Tubus beim Okularwechsel o.ä. relativ leicht herunterfahren.

• Das Primärbild. Entfernen Sie zuerst die Diffraktionsplatte, ohne dabei den Objekttisch zu verschieben. Anstelle des Okulars ist jetzt das Hilfsmikroskop zu verwenden.

Die Lampe wird in ca. 60 cm Entfernung zum Umlenkspiegel aufgestellt und deren Blende auf $\emptyset \approx 5 \,\mathrm{mm}$ fast zugezogen. Stellen Sie nun das Hilfsmikroskop auf die Brennebene des Mikroskopobjektivs ein. Das von der Lampenblende ausgehende Lichtbündel muss scharf erkennbar sein und mittels des Umlenkspiegels im Strahlengang zentriert werden. Störende Reflektionen auf der Tischplatte und fremde Lichtquellen sind nötigenfalls zu unterbinden.

Nachdem die Diffraktionsplatte wieder vorsichtig auf dem Objekttisch in ihre Ausgangsposition (Objekt 2) gebracht ist, sollte schließlich das Primärbild ihres gewählten Gitters von Objekt 2 durch das Hilfsmikroskop erkennbar sein.

Abbildung O.10 – Primärbild und Sekundärbild beider Gitter (Objekt 2, schematisch)

Hinweis: Vollziehen Sie den Wechsel der beiden Primärbilder des Objekts 2 (zwei Gitter) beim Verschieben des Objekttisches nach.

Weiterer Hinweis: Um im weiteren Verlauf die Tubuslänge des Hilfsmikroskops möglichst konstant zu halten, ist es beim Austausch gegen das Okular am unteren Teil anzufassen.

Durchführung und Aufgaben Mit Hilfe eines Schiebers können nun unterschiedliche Blenden in die dafür vorgesehenen Öffnung im Diffraktionstrichter in den Strahlengang eingebracht werden.

Somit sind Eingriffe in das primäre Bild gestattet, da dieses sich in etwa an genau dieser Stelle befindet (\approx bildseitige Brennebene der Objektivlinse).

Die verschiedenen Auswirkungen dieser Manipulation auf das sekundäre Bild sind qualitativ zu untersuchen.

Hinweis: Ihre Auswertung basiert auf den Beschreibungen von Primär- und Sekundärbildern. Zweckmäßigerweise sollen diese möglichst genau nachvollziehbar beschrieben werden. Am vorteilhaftesten sind jedoch farbige Skizzen.

1. Beschreibung von Primärbildern

Man betrachte das Aussehen des primären Bildes (Beugungsbild der Lampenblende) für die folgenden Motive der Diffraktionsplatte: Objekt 2 (grobes sowie feines Gitter) und Objekt 1 (Einzel- sowie Doppelspalt). Um die Erscheinung klarer zum Ausdruck zu bringen, können die Farbfilter verwendet werden.

• *Auswertung:* Beschreiben Sie jedes der vier Primärbilder und erklären Sie deren Zustandekommen möglichst ausführlich.

2. Auflösung des Sekundärbildes

(a) Stellen Sie das Sekundärbild des groben Gitters von Objekt 2 scharf ein. Manipulieren Sie mit der 1 mm-Spaltblende das Primärbild so, dass nur die 0. Beugungsordnung (vgl. Abbildung O.11 links) des groben Gitters durchgelassen wird (Spalt parallel zu Sekundärbild!).

• *Auswertung:* Beschreiben Sie das manipulierte Sekundärbild des groben Gitters und erklären Sie dessen Zustandekommen möglichst ausführlich.

(b) Das Sekundärbild von Objekt 2 ist so einzustellen, dass beide Gitter im sekundären Bild zentriert sichtbar sind. Die Primärbilder beider Gitter überlagern sich jetzt. Bringen Sie nun die 1,6 mm-Lochblende so in den Diffraktionstrichter ein, dass gerade die Maxima 0. und ± 1 . Ordnung des groben Gitters bzw. nur das Maximum 0. Ordnung des feinen Gitters durchgelassen wird (ähnlich Abbildung O.11 mitte).

• *Auswertung:* Beschreibung und Begründung der manipulierten Sekundärbilder beider Gitter.

3. Konstruktion eines Sekundärbildes

(a) Das Sekundärbild von Objekt 2 ist so einzustellen, dass beide Gitter im sekundären Bild zentriert sichtbar sind. In den Diffraktionstrichter wird dieses mal die 3-fach-Spaltblende eingeschoben (Spalte parallel zu Sekundärbild). Justieren Sie den mittleren Spalt so, dass das Maximum 0. Ordnung durchgelassen wird (vgl. Abbildung O.11 rechts). Damit sollten von den Seitenspalten vom groben Gitter die ±2. Ordnung und vom feinen Gitter die ±1. Ordnung durchgelassen werden (evtl. Blende etwas drehen).

• *Auswertung:* Beschreiben und erklären Sie die manipulierten Sekundärbilder beider Gitter.

- (b) Verwenden Sie das 90°-Punktgitter (Objekt 4). Zentrieren Sie im Primärbild die 0. Beugungsordnung über den Umlenkspiegel. Benutzen Sie die Einfachspaltblende, um im Primärbild nur die horizontale Reihe von Beugungsordnungen durchzulassen, welche die 0. Beugungsordnung enthält.
 - Auswertung: Beschreiben und erklären Sie das manipulierte Sekundärbild.

4. Kontrastveränderung – Prinzip des Dunkelfeldverfahrens

Stellen Sie das Sekundärbild des groben Gitter von Objekt 3 mit dem Okular höherer Vergrößerung scharf. Betrachten Sie nun dessen Primärbild. Benutzen Sie die Stegblende um die 0. Beugungsordnung auszublenden.

Betrachten Sie das neue sekundäre Bild und achten Sie besonders auf den Kontrast und die Anzahl der Striche.

Hinweis: Um die Veränderung zu verdeutlichen entfernen Sie die Stegblende während Sie das Sekundärbild betrachten und fügen Sie sie wieder ein.

• Auswertung: Beschreiben und begründen Sie das manipulierte Sekundärbild.

Es handelt sich hier nicht wirklich um das Dunkelfeldverfahren, jedoch hilft das Verständnis des Dunkelfeldverfahrens hier weiter. *Hinweis:* Wodurch könnte sich die Anzahl der Gitterstriche ändern? (vgl. Dreifachspaltblende)

Abbildung O.11 – Skizzen zu einigen Versuchsteilen. links) Versuchsteil 2a, mitte) Versuchteil 2b, rechts) Versuchsteil 3a. Oben und unten: Primärbilder, dazwischen: Sekundärbilder.

Lesen Sie die Eingangshinweise in Kapitel O.2 nocheinmal durch, bevor Sie ihren Messplatz verlassen!
Versuch R

Messungen zur Radioaktivität

Ziel des Versuches

Es sollen grundlegende Kenntnisse über radioaktive Strahlung, ihre Wirkung und die wichtigsten physikalischen Größen der Radioaktivität vermittelt werden. Ionisation und Absorption/Abschirmung werden demonstriert. Aufbau und Wirkungsweise von Nachweisgeräten für radioaktive Strahlung – insbesondere des Geiger-Müller-Zählrohrs – sollen verstanden werden. Es wird die Aktivität einer γ -Quelle gemessen.

Vorkenntnisse

Atomkern (Radius, Kernkraft, Kernmasse, Bindungsenergie, relative Atommasse), α -, β -, γ -Strahlung, radioaktives Zerfallsgesetz (Herleitung!), Zerfallskonstante, mittlere Lebensdauer, Aktivität, Nachweis radioaktiver Strahlung, (selbstlöschendes) Zählrohr, Zählrohrkennlinie, Poissonprozess, α -, β -, γ -Zerfall, Spektren, natürliche Zerfallsreihen, Absorptionsgesetz und -koeffizient, Wechselwirkung ionisierender Strahlung mit Materie (Photoeffekt, Comptonstreuung und Paarbildung), Dosimetrie (Ionen-, Energie- und äquivalentdosis), natürliche und künstliche Radioaktivität.

R.1 Grundlagen

R.1.1 Arten ionisierender Strahlung

Instabile Atomkerne können sich auf verschiedene Arten in andere Kerne umwandeln. Beim α -Zerfall wird von dem Atomkern ein Heliumkern emittiert. Aus dem ursprünglichen Atomkern mit Z Protonen und der relativen Atommasse A entsteht ein Kern mit Z – 2 Protonen und der relativen Atommasse A - 4. Alphastrahlung hat ein diskretes Energiespektrum.

Als β -Zerfall bezeichnet man die Umwandlung eines Atomkerns durch Emission eines negativen oder positiven Elektrons (β^- -, β^+ -Strahlung). In beiden Fällen wird gleichzeitig ein Anti- bzw. Neutrino emittiert. Die β -Strahlen haben eine kontinuierliche Energieverteilung. Entsteht bei einer radioaktiven α - oder β -Umwandlung oder einer anderen Kernreaktion ein Atomkern im angeregten Zustand, so geht er im allgemeinen durch Emission eines oder mehrerer γ -Quanten (elektromagnetische Wellen sehr kurzer Wellenlänge) in den Grundzustand über. Die γ -Strahlen haben diskrete Energiewerte.

Die Menge N einer isolierten radioaktiven Substanz nimmt mit der Zeit nach einem Exponentialgesetz ab:

$$N(t) = N_0 \cdot e^{-\lambda t} \tag{R.1}$$

N = Anzahl der Atome des radioaktiven Präparats $N_0 =$ Anzahl der Atome des radioaktiven Präparats bei t = 0 $\lambda =$ die für die radioaktive Substanz charakteristische Zerfallskonstante

Die Zahl der in der Zeiteinheit zerfallenden Atome heißt Aktivität oder Zerfallsrate:

$$A = -\frac{dN}{dt} = \lambda N \tag{R.2}$$

A = Aktivität N = Anzahl der zerfallenden Atome

Neben der charakteristischen Zerfallskonstante λ gibt es noch zwei weitere Größen, die mit ihr in direktem Zusammenhang stehen: die mittlere Lebensdauer τ und die Halbwertszeit $T_{\frac{1}{2}}$. In der Halbwertszeit zerfällt die Hälfte der anfänglich vorhandenen Substanz. Die mittlere Lebensdauer

$$\tau = \frac{1}{N_0} \int_0^\infty N_0 \cdot e^{-\lambda t} dt = \frac{1}{\lambda}$$
(R.3)

ist die Zeit, welche ein Kern im Mittel existiert, bis er zerfällt. Es gilt der Zusammenhang:

$$T_{\frac{1}{2}} = \tau \ln(2) = \frac{\ln(2)}{\lambda}$$
 (R.4)

Die oben aufgeführten Strahlungsarten können z.B. durch ihre Ablenkung im Magnetfeld unterschieden werden.

R.1.2 Nachweis ionisierender Strahlung

Aufgrund der Höhenstrahlung, radioaktiver Strahlung der Erde und radioaktiver gasförmiger Stoffe in unserer Luft kann man an jedem Ort mehr oder weniger viel Radioaktivität nachweisen. Dies geschieht z.B. durch Impulszählung mit einem *Geiger-Müller-Zählrohr*.

Grundsätzlich ist das Geiger-Müller-Zählrohr zum Nachweis von α -, β - und γ -Strahlung geeignet. Seine Arbeitsweise beruht darauf, dass radioaktive Strahlung eine ionisierende Wirkung besitzt. Die Strahlung erzeugt längs ihrer Bahn durch Stoßprozesse mit den umgebenden Molekülen Ionen-Elektronenpaare. Das Zählrohr besitzt in der Symmetrieachse einen Draht, an dem eine Spannung

Abbildung R.1 – Prinzipschaltung eines Zählrohrs

Abbildung R.2 – Charakteristik eines Zählrohrs

von einigen 100V anliegt. Das daraus resultierende elektrische Feld beschleunigt die elektrisch geladenen Teilchen im Zählrohr. Die leicht beweglichen Elektronen nehmen in dem elektrischen Feld soviel kinetische Energie auf, dass sie durch Stoß mit Gasmolekülen weitere Ionen-Elektronenpaare erzeugen. Auf diese Weise entsteht innerhalb kürzester Zeit lawinenartig ein elektrischer Entladungsstoß, der den Zusammenbruch der Zählrohrspannung zur Folge hat. Bei diesem Vorgang liefert der Geiger-Müller-Zähler einen Impuls. Wenn der Zählrohrdraht wieder über einen definierten Ladewiderstand elektrisch geladen ist, kann ein neuer Impuls registriert werden. Die Zeit des Ladevorgangs nennt man die Totzeit τ des Zählrohrs.

Eine Berücksichtigung der Totzeit τ (bei unseren Zählrohren ca. $10^{-4}s)$ ist durch folgende Korrekturformel möglich:

$$\dot{N}_w = g_\tau \cdot \dot{N}$$
; $g_\tau = \frac{1}{1 - \dot{N} \cdot \tau}$ (R.5)

 \dot{N}_w = wahre Zählrate \dot{N} = gemessene Zählrate Ein Geiger-Müller-Zählrohr besitzt für die unterschiedlichen Strahlungsarten unterschiedliche Ansprechwahrscheinlichkeiten. Für γ -Strahlung, die nicht direkt ionisiert (vgl. unten), beträgt sie etwa 10%; außerdem ist diese Nachweiswahrscheinlichkeit noch energieabhängig.

Abbildung R.3 – Versuchsaufbauten: Präparathalter mit Präparatstift und Zählrohrhalter mit Zählrohr

R.1.3 Poissonverteilung

Es gelten folgende Annahmen:

- Keine zwei Ereignisse werden gleichzeitig detektiert
- Die Wahrscheinlichkeit eines Ereignisses ist unabhängig vom Zeitpunkt während der Messung.
- Die Zeitpunkte, wann ein Ereignis eintritt, sind voneinander unabhängig.

Da das Geiger-Müller-Zählrohr nur detektiert ob eine Ionisation stattgefunden hat oder nicht, muss die Anzahl an Detektionen $k \in \mathbb{N}_0$ sein. Statistisch lässt sich dann das ganze als Poissonprozess behandeln. Die Wahrscheinlichkeit, dass k Ereignisse im Zeitraum t eintreten ergibt sich zu:

$$P(k,t,\lambda) = \frac{(\lambda \cdot t)^k}{k!} \cdot e^{-(\lambda \cdot t)}$$
(R.6)

wobei λ die durchschnittliche Zählrate ist. Damit ist $\lambda \cdot t$ die durchschnittliche Anzahl an Ereignissen \bar{k} im Zeitintervall t, was auch der Erwartungswert dieser Verteilung ist. Die Unsicherheit der Anzahl an Ereignissen ist die Wurzel der Varianz zu $\sigma = \sqrt{\bar{k}}$. Für große \bar{k} nähert sich diese Verteilung einer Gaussverteilung an.

R.1.4 Wechselwirkung ionisierender Strahlung mit Materie

 α -Strahlung ist aufgrund des hohen Ionisationsvermögens sehr kurzreichweitig. Die mittlere Reichweite in Luft lässt sich mit folgender empirischer Formel berechnen:

$$R_m = 0.32 \cdot E^{\frac{3}{2}} \tag{R.7}$$

 R_m = mittlere Reichweite (in cm) E = Energie der α -Strahlung (in MeV)

Dieser Wert ist gibt die Strecke an, den die Teilchen im Mittel "in Luft" anhand ihrer Energie zurücklegen können; durchquert die Strahlung andere Materialien, so wird die Energie um einen Energiebetrag abgeschwächt, der in Längeneinheiten als das sogenannte "Luftäquivalent" angegeben wird. Eine gemessene mittlere Reichweite muss natürlich um diese und versuchsbedingte Anteile korrigiert werden.

 β -Teilchen haben in Luft eine größere Reichweite als α -Teilchen, da ihre Wechselwirkung mit dem Absorbermaterial z.B. durch Stoß, Streuung oder Ionisation des Absorbermaterials geringer ist.

Für den Durchgang von monoenergetischer γ -Strahlung durch Materie gilt ein exponentielles Schwächungsgesetz:

$$\dot{N} = \dot{N}_0 \cdot e^{-\mu d} = \dot{N}_0 \cdot e^{-\mu' b} \tag{R.8}$$

$$\mu' = \frac{\mu}{\rho} \tag{R.9}$$

$$b = \rho \cdot d \tag{R.10}$$

$$\begin{split} \dot{N} &= \text{Z\"ahlrate f\"ur } d > 0 \\ \dot{N}_0 &= \text{Z\"ahlrate f\"ur } d = 0 \\ d &= \text{Absorberdicke} \\ \mu' &= \text{material- und strahlungsabhängiger Absorptions- oder Schwächungskoeffizient} \\ \rho &= \text{Absorberdichte} \end{split}$$

Dieses Absorptionsgesetz ist in der Praxis für γ -Strahlung sehr wichtig, weil sie ungeladen ist und nicht direkt ionisiert. Die Absorption erfolgt vielmehr durch drei Effekte: *Photoelektrischer Effekt*, *Comptoneffekt* und *Paarbildung* (s. Abb. R.4).

Abbildung R.4 – Energieabhängigkeit der einzelnen Absorptionskoeffizienten

Die für ein bestimmtes Präparat gemessene Zählrate N hängt nicht nur von dessen Aktivität ab, sondern in der Regel auch vom Abstand r des Detektors von der Strahlungsquelle. Für punktförmige Quellen gilt das $\frac{1}{r^2}$ -Gesetz:

$$\dot{N}(r) = \dot{N}(r_0) \cdot \frac{r_0^2}{r^2} \sim \frac{1}{r^2}$$
(R.11)

 $\dot{N}(r_0) = Z$ ählrate im Abstand r_0 von der Quelle $\dot{N}(r) = Z$ ählrate im Abstand r von der Quelle

R.2 Messungen

Es werden radioaktive Substanzen vermessen. Diese werden in einem Schutzschrank aus Blei aufbewahrt und sind nur vom Assistenen auszuhändigen. Es gibt einen Präparatsatz bestehend aus Americium (^{241}Am), Strontium (^{90}Sr) und Natrium (^{22}Na) und Kobalt (^{60}Co). Notieren Sie, welchen Präparatssatz sie verwenden.

Nachdem Sie einen Präparatcontainer erhalten haben, stellen sie diesen möglichst weit entfernt vom Geiger-Müller-Zählrohr in den mit Blei abgeschirmten Messraum an ihrem Arbeitsplatz.

Weiterhin finden Sie ein Zählrohr an jedem Arbeitsplatz. Diese sind gegen mechanische Einwirkungen sehr sensitiv und könnten bei grobem Umgang zerstört werden. Gehen Sie damit besonders vorsichtig um.

Die schwarze Schutzkappe auf dem Zählrohr darf <u>niemals</u> entfernt werden!

Diese Kappe soll der Zerstörung des sehr dünnen Zählrohrfensters vorbeugen. Stecken Sie niemals spitze Gegenstände durch die Öffnung der Schutzkappe.

R.2.1 Radioaktivität in der Umgebung

Für diesen Versuchsteil werden das Zählrohr, der Digitalzähler und die Stoppuhr benötigt. Mit dem Geiger-Müller-Zählrohr wird die Radioaktivität in der Umgebung nachgewiesen (Hierfür sollten die radioaktiven Präparate noch im Schrank verbleiben) und die Nullrate in der Einheit *Ereignisse pro Sekunde* bestimmt.

• Messung: Man messe 5 mal je 40s lang die Anzahl an Ereignissen Z.

• Auswertung: Berechnen Sie die Rate der Umgebungsstrahlung (Einheit $\frac{1}{s} = 1Bq$) einmal, indem sie den Mittelwert von Z mit Standardabweichung bilden und durch die Messdauer (40s) teilen, und einmal indem sie die 5 Einzelmessungen als eine lange Messung über 200s betrachten und die Summe über alle Z durch 200s teilen mit der Unsicherheit $\frac{\sqrt{Z}}{200s}$. Vergleichen Sie auch mit den Ergebnissen der Einzelmessungen, wenn Sie die jeweilige Unsicherheit über $\sigma = \frac{\sqrt{Z}}{40s}$ berechnen.

Zeigen Sie außerdem anhand Formel R.5 ab welcher gemessenen Zählrate \dot{N} die Berücksichtigung der Totzeit $\tau = 10^{-4}s$ eine Abweichung von mehr als 1% zwischen gemessener \dot{N} und wahrer Zählrate \dot{N}_w auftritt (Lösung: $\dot{N} \gtrsim 100$ Bq).

Dieses Ergebnis ist bei der gesamten Auswertung zu berücksichtigen, unterhalb von $N \gtrsim 100 \,\text{Bq}$ ist demnach hier die Totzeitkorrektur nicht nötig.

Nun benötigen Sie für den weiteren Versuchsablauf die radioaktiven Präparate. Diese werden Ihnen von dem Betreuenden Assistenten zur Verfügung gestellt.

• Aufgabe: Während des Kolloquiums können Sie ohne zusätzlichen Zeitaufwand über eine lange Zeit eine Nullratenmessung durchführen. Stecken sie daher vor dem Kolloquium die Präparate wieder in den Behälter, und starten sie eine Messung. Diese hat eine dem Kolloquium entsprechende, mittels Stoppuhr zu bestimmende Dauer. Diese Nullrate ist von den Ergebnissen folgender Messungen während der Auswertung abzuziehen.

Dieser Aufgabenteil dient zusammen mit der Messung der Umgebungsstrahlung dazu eine Einschätzung für die Statistik eines Strahlungsprozesses zu bekommen. Befestigen Sie den β^- -Strahler in 3cm vor dem Zählrohr.

• Messung: Man messe 5 mal je 40s lang die Anzahl an Ereignissen Z.

• Auswertung: Berechnen Sie die Rate des β^- -Strahlers auf den 3 in der ersten Aufgabe erklärten Wegen. Vergleichen sie die Ergebnisse der Umgebungsmessung mit dieser Messung vorallem in Bezug auf die auf unterschiedlichen Wegen berechneten Unsicherheiten. Überprüfen Sie, ob die Standardabweichung von Z mit \sqrt{Z} abgeschätzt werden kann! Sind kurze Messungen ausreichend um einen Schätzwert für die Durchschnittsrate zu bekommen?

R.2.2 Unterscheidung von ionisierender Strahlung durch Absorption

R.2.2.1 Abstandsgesetz und Reichweite von α -Strahlung in Luft

• Messung: Messen Sie mit dem α -Strahler die Zählrate bei den Abständen d = 0 - 22mm in Schritten von 1mm für eine Messzeit von je 40s. Der Abstand 0mm bedeutet, dass Zählrohr und Präparat sich berühren.

• Auswertung: Die mittlere Reichweite R_m der α -Strahlen in Luft ist für E = 5,638 MeV nach Gleichung R.7 zu berechnen. Schauen Sie sich Abbildung R.5 an. Das Luftäquivalent des Zählrohrfensters beträgt $D_z = 10mm$, der Abstand vom Zählrohrfenster bis zur Vorderkante der Schutzkappe ist $d_k \approx 2mm$, die Quelle hat von der Vorderkante des Präparatstiftes einen Abstand von $d_p = 4mm$. Da die Quelle nicht punktförmig ist ergibt sich eine Flächenquellenkorrektur von $\tilde{d}_Q \approx 9mm$. Zu jedem eingestellten Abstand d ist daher sowohl \tilde{d}_Q , also auch d_p und d_k hinzuzuaddieren. Tragen Sie die gemessenen Zählraten auf doppeltlogarithmischer Skala gegen den korrigierten Abstand $(d' = d + \tilde{d}_Q + d_p + d_k)$ auf. Die Kurve sollte sich in drei klar trennbare Bereiche unterschiedlicher Steigung aufteilen lassen.

Legen sie durch jeden Teil eine Gerade.

• Auswertung: Bestimmen Sie die Steigung der Geraden im ersten Teil der Kurve und erläutern Sie ihren Wert (Was erwartet man und wieso?). Zum Umgang mit einfach- und doppeltlogarithmischen Skalierungen sei an dieser Stelle auf den Abschnitt 2.3 im Kapitel "Grundlagen" verwiesen.

Abbildung R.5 – Zur Reichweite von α -Teilchen in Luft

Der mittlere Kurvenverlauf ist nicht gerade, jedoch so steil, dass er sich durch eine Gerade nähern lässt. Der Dritte Teil ist für die Auswertung nicht relevant. Um einen Wert für die gemessene mittlere Reichweite R'_m der α -Teilchen in Luft zu erhalten, wird hier kurz ein näherungsverfahren erläutert:

Der Schnittpunkt der ersten beiden Geraden (Knick) markiert die Entfernung d'_0 , bis zu der die Zählrate \dot{N} allein durch geometrische Effekte des Strahlbündels abnimmt, dort sei $\dot{N}(d'_0) = \dot{N}_0$.

• Auswertung: Bestimmen Sie in der Grafik im zweiten Teil der Kurve (nach dem Knick) für $N_0/2$ den Wert d'. Dies ist dann der Wert für die gemessene mittlere Reichweite R'_m korrigiert um die Flächenquellenkorrektur. Wenn sie nur 2 Bereiche in Ihrer Grafik sehen, so schätzen Sie diese Reichweite in Form einer kleiner-gleich-Beziehung ab. Da es sich bei der Flächenquellkorrektur nur um eine "scheinbare Länge" handelt, muss diese zur Bestimmung des Luftäquivalents der Präparatabdeckung wieder rückgängig gemacht werden. Die so erhaltene mittlere Reichweite ist aufgrund der stärkeren Absorption der α -Teilchen in den Abdeckungen des Präparats und des Zählrohrs kleiner als der aus Gl.R.7 bestimmte Wert. Durch Vergleich dieser Werte ist das Luftäquivalent der Präparatsabdeckung D_{pf} zu bestimmen.

R.2.2.2 Absorption / Abschirmung von α -Strahlung

• *Messung:* Messen Sie die Zählrate beim Abstand Null mit Kleenexpapier zwischen Präparat und Zählrohr einmal 40s. Wiederholen Sie die Messung mit Transparentpapier.

• Auswertung: Diskutieren Sie das Ergebnis.

R.2.2.3 Abstandsgesetz und Reichweite von β -Strahlung

Nehmen Sie die Reichweitekurve von β^- - und β^+ -Strahlung auf.

• Messung: Nehmen Sie mit dem β^- Präparat im Bereich von 1cm bis 15cm in Abständen von jeweils 1cm jeweils einmal 40s eine Abstandskurve auf. Für das β^+ -Präpart reiche eine entsprechende Messung bis 5cm

• Auswertung: Tragen Sie das Ergebnis ebenfalls doppeltlogarithmisch auf. Die Gesamtkorrektur beträgt hier 0, 9cm. Überprüfen Sie auch hier das Abstandsgesetz anhand der Steigung (vgl. Kap. 2.3).

R.2.2.4 Absorption / Abschirmung von β^- -Strahlung

Stellen Sie einen Festabstand von 2cm zwischen Präparat und Zählrohr ein.

• Messung: Messen Sie die Zählrate für das β^- Präparat bei 6 unterschiedlichen Absorberdicken zwischen 0mm und 0, 3mm Dicke (jeweils t = 40s). Als Absorber dienen Aluminiumplättchen/-folien. Nehmen Sie für zwei unterschiedliche Aluminiumdicken die Zählrate des β^+ Präparates bei jeweils 40s auf.

Vergleichen Sie durch je eine weiteren Stichprobe die Absorberwirkung von Plexiglas und Hartplastik mit der vorangegangenen Messung.

• Auswertung: Tragen sie für die β - Strahler die gemessenen Zählraten auf einfach logarithmisches Papier über den Absorberdicken auf. Diskutieren Sie die Ergebnisse. Tragen Sie dazu alle gemessenen Werte in ein Diagramm ein. Wieso erhält man eine Gerade?

R.2.2.5 Abstandsgesetz von γ -Strahlung

• Messung: Führen Sie eine Reichweitemessung im Bereich von 1 - 20cm in Schritten von 1cm mit der Kobaltquelle durch. Die Messzeit beträgt jeweils einmal 40s.

• Auswertung: Die Gesamtkorrektur beträgt hier 1.9*cm*. Tragen Sie die Zählrate über dem korrigierten Abstand auf doppeltlogarithmischen Papier auf. Überprüfen Sie anhand der Steigung der Ausgleichsgeraden, ob das Abstandsgesetz bestätigt wird. (vgl. Kap. 2.3)

R.2.2.6 Absorption / Abschirmung von γ -Strahlung

• Messung: Messen Sie die Absorptionskurve von Blei im Bereich von 3 - 21mm Absorberdicke in Schritten von 2mm bei einem Festabstand von 5cm. Die Messzeit beträgt jeweils einmal 40s. Nehmen Sie auch Stichproben für die Absorberwirkung von Aluminium, Eisen und Plexiglas.

• Auswertung: Tragen Sie die Zählraten über der Absorberdicke in einfachlogarithmischem Papier ein. Bestimmen Sie μ' für Blei ($\rho_{Pb} = 11.35 \frac{g}{cm^3}$) anhand der Steigung der Ausgleichsgeraden (vgl. Kap. 2.3). Welche Materialien absorbieren am besten?

Lassen Sie das Dosimeter nach Beendigung des Versuches vom Assistenten ablesen! Vergessen Sie nicht sich die Hände zu waschen. Blei ist giftig.

R.2.2.7 Bestimmung der Aktivität der Kobaltquelle (aus Messung R.2.2.5)

Eine Methode zur Bestimmung der Aktivität \tilde{A} der Kobalt-Quelle die grafischen Ermittlung anhand dem Verhalten Quantenstromdichte n_{γ} bei Variation des Abstandes zwischen Quelle und Detektor. Die Quantenstromdichte ist definiert als die Anzahl der Lichtquanten Z pro bestrahlter Fläche A' in der Zeit t

$$n_{\gamma} = \frac{Z/t}{A'} = \frac{\dot{N}}{A'},\tag{R.12}$$

also der, durch das Zählrohrfenster der Fläche $A' = 6,36 \cdot 10^{-5} \text{m}^2$ gemessenen, Zählrate \dot{N} . Die Quantenstromdichte n_{γ} verhält sich mit dem Abstand r analog zum Abstandsgesetz für \dot{N} aus Gl. R.11:

$$n_{\gamma} = \frac{m\tilde{A}}{4\pi r^2} \tag{R.13}$$

wobei \tilde{A} die Aktivität der Quelle und m die Anzahl, der bei einem Zerfall emittierten γ -Quanten, sind. Für ⁶⁰Co ist m = 2, allerdings wird aufgrund der Totzeit des Zählrohrs davon nur ein γ -Quant registriert. Es folgt also

$$n_{\gamma} = \frac{\hat{A}}{4\pi} \cdot \frac{1}{r^2} = a \frac{1}{r^2}$$
(R.14)

• Auswertung: Tragen Sie mit Hilfe der obigen Messung und Gleichung R.12 n_{γ} linear über $\frac{1}{r^2}$ auf, und berechnen Sie aus der Steigung der Geraden (vgl. Kap. 2.3) anhand von Gleichung R.14 die Aktivität \tilde{A} der Quelle.

Teil III

Anhang

Anhang I

Verzeichnisse

Abkürzungsverzeichnis

- BO Beugungsordnung
- Hg Quecksilber
- Ne Neon
- O.B.d.A. Ohne Beschränkung der Allgemeinheit
- SI Système International d'Unités

Griechische Symbole

Zeichen (groß)	Zeichen (klein)	Beschreibung	
А	α	Alpha	
В	eta	Beta	
Γ	γ	Gamma	
Δ	δ	Delta	
Ε	$\epsilon,~arepsilon$	Epsilon	
Ζ	ζ	Zeta	
Н	η	Eta	
Θ	heta, artheta	Theta	
Ι	ι	Iota	
Κ	κ	Kappa	
Λ	λ	Lambda	
Μ	μ	My (sprich: "müh")	
Ν	ν	Ny (sprich: "nüh")	
Ξ	ξ	Xi	
0	0	Omicron	
Π	π	Pi	
Р	ho	Rho	
Σ	$\sigma, \ \varsigma$	Sigma	
Т	au	Tau	
Υ	v	Ypsilon	
Φ	$\phi, \; arphi$	Phi	
Х	χ	Chi	
Ψ	ψ	Psi	
Ω	ω	Omega	

 ${\bf Tabelle \ I.1- \ Klassische \ griechische \ Klein- \ und \ Großbuchstaben}$

Physikalische Größe	Name der Einheit	Einheiten- symbol	Angabe in Basiseinheiten	Angabe in abgeleiteten Einheiten
ebener Winkel	Radiant	rad	$1\mathrm{m\cdot m^{-1}}$	
Raumwinkel	Steradiant	sr	$1\mathrm{m}^2\cdot\mathrm{m}^{-2}$	
Frequenz	Hertz	Hz	$1\mathrm{s}^{-1}$	
Kraft	Newton	Ν	$1 \mathrm{kg} \cdot \mathrm{m} \cdot \mathrm{s}^{-2}$	
Druck	Pascal	Pa	$1 \mathrm{kg} \mathrm{\cdot} \mathrm{m}^{-1} \mathrm{\cdot} \mathrm{s}^{-2}$	$1\mathrm{N}\cdot\mathrm{m}^{-2}$
Energie, Arbeit, Wärmemenge	Joule	J	$1 \mathrm{kg} \cdot \mathrm{m}^2 \cdot \mathrm{s}^{-2}$	$1\mathrm{N}\cdot\mathrm{m}$
Leistung, Energiestrom	Watt	W	$1\mathrm{kg}\cdot\mathrm{m}^2\cdot\mathrm{s}^{-3}$	$1 \mathrm{J}\cdot\mathrm{s}^{-1}$
Elektrizitätsmenge, elektr. Ladung	Coulomb	\mathbf{C}	$1 \mathrm{A} \cdot \mathrm{s}$	
Elektr. Potenzial, elektr. Spannung	Volt	V	$1\mathrm{kg}\cdot\mathrm{m}^2\cdot\mathrm{A}^{-1}\cdot\mathrm{s}^{-3}$	$1\mathrm{W}\cdot\mathrm{A}^{-1}$
Elektr. Kapazität	Farad	\mathbf{F}	$1\mathrm{A}^2\cdot\mathrm{s}^4\cdot\mathrm{kg}^{-1}\cdot\mathrm{m}^{-2}$	$1\mathrm{A\cdot s\cdot V^{-1}}$
elektr. Widerstand	Ohm	Ω	$1\mathrm{kg}\cdot\mathrm{m}^2\cdot\mathrm{A}^{-2}\cdot\mathrm{s}^{-3}$	$1\mathrm{W}\cdot\mathrm{A}^{-2}$
elektr. Leitwert	Siemens	\mathbf{S}	$1 \mathrm{A}^2 \cdot \mathrm{s}^3 \cdot \mathrm{kg}^{-1} \cdot \mathrm{m}^{-2}$	$1 \mathrm{A} \cdot \mathrm{V}^{-1} {=} 1 \mathrm{F} \cdot \mathrm{s}^{-1}$
magnetischer Fluss	Weber	Wb	$1 \mathrm{kg} \cdot \mathrm{m}^2 \cdot \mathrm{A}^{-1} \cdot \mathrm{s}^{-2}$	$1\mathrm{V}\cdot\mathrm{s}$
magnetische Flussdichte	Tesla	Т	$1 \mathrm{kg} \cdot \mathrm{A}^{-1} \cdot \mathrm{s}^{-2}$	$1{\rm Wb}\cdot{\rm m}^{-2}$
Induktivität	Henry	Η	$1 \mathrm{kg} \cdot \mathrm{m}^2 \cdot \mathrm{A}^{-2} \cdot \mathrm{s}^{-2}$	$1\mathrm{V}\cdot\mathrm{s}\cdot\mathrm{A}^{-1}$
Lichtstrom	Lumen	lm	$1 \operatorname{cd} \cdot \operatorname{sr}$	
Beleuchtungsstärke	Lux	lx	$1 \mathrm{cd}\cdot\mathrm{sr}\cdot\mathrm{m}^{-2}$	
radioaktive Aktivität	Becquerel	Bq	$1\mathrm{s}^{-1}$	
Energiedosis	Gray	Gy	$1\mathrm{m}^2\cdot\mathrm{s}^{-2}$	$1{ m J}\cdot{ m kg}^{-1}$
Äquivalentdosis	Sievert	Sv	$1\mathrm{m}^2\cdot\mathrm{s}^{-2}$	$1{ m J}\cdot{ m kg}^{-1}$

 Tabelle I.2 – Abgeleitete SI-Einheiten mit besonderem Namen

Literaturverzeichnis

- [Ard90] M. v. Ardenne. Effekte der Physik und ihre Anwendungen. Verlag Harri Deutsch, 1990.
- [Bec91] J. Becker. Physikalisches Praktikum f
 ür Naturwissenschaftler und Ingenieure. VDI-Verlag GmbH, 1991.
- [Ber03] Bergmann. Bestandteile der Materie Atome, Moleküle, Atomkerne, Elementarteilchen. Walter de Gruyter, 2003.
- [Ges01] D. Geschke. *Physikalisches Praktikum*. B. G. Teubner, 2001.
- [Gra88] H. Graewe. Atom- und Kernphysik. R. Oldenbourg Verlag, 4 edition, 1988.
- [Haf94] H. Haferkorn. Optik Physikalisch-technische Grundlagen und Anwendungen. Johann Ambrosius Barth, 3 edition, 1994.
- [Har97] H. Hart. Messgenauigkeit. R. Oldenbourg Verlag, 1997.
- [Hän78] H. Hänsel. Physik Festkörper. Spektrum Akademischer Verlag, 1978.
- [Hän93] H. Hänsel. *Physik Elektrizität, Optik, Raum und Zeit.* Spektrum Akademischer Verlag, 1993.
- [Koh96a] F. Kohlrausch. Praktische Physik: Zum Gebrauch f
 ür Unterricht, Forschung und Technik, volume 3. B.G. Teubner, 1996.
- [Koh96b] F. Kohlrausch. Praktische Physik: Zum Gebrauch f
 ür Unterricht, Forschung und Technik, volume 2. B.G. Teubner, 1996.
- [Kuc01] H. Kuchling. Taschenbuch der Physik. Fachbuchverlag Leipzig im Carl Hanser Verlag, 17 edition, 2001.
- [Kun86] H.-J. Kunze. Physikalische Messmethoden : e. Einf. in Prinzipien klass. u. moderner Verfahren. B.G. Teubner, 1986.
- [Lip97] H. S. Lipson. Optik. Springer Verlag, 1997.
- [Mus95] G. Musiol. Kern- und Elementarteilchenphysik. Verlag Harri Deutsch, 1995.
- [Pap08] L. Papula. Mathematik für Ingenieure und Naturwissenschaftler, volume 3. Vieweg+Teubner Verlag, 5 edition, 2008.
- [Pet88] W. Petzold. Strahlenphysik, Dosimetrie und Strahlenschutz. B.G. Teubner, 1988.
- [Pov04] B. Povh. Teilchen und Kerne Eine Einführung in die Physikalischen Effekte. Springer Verlag, 2004.

- [Rec62] A. Recknagel. Physik Optik. VEB Verlag Technik Berlin, 1962.
- [Rie99] E. Riedel. Allgemeine und Anorganische Chemie, volume 7. Walter de Gruyter, 1999.
- [Sch07] P. Schaaf. Das Physikalische Praktikum. Univesitätsverlag Göttingen, 2007.
- [Vog97] H. Vogel. Gerthsen Physik. Springer Verlag, 19 edition, 1997.
- [Wei99] K. Weise. Messunsicherheit und Messdatenauswertung. WILEY-VCH Verlag GmbH, 1999.
- [Wel08] K. Weltner. Mathematik für Physiker 1. Springer-Verlag, 2008.
- [Zur65] R. Zurmühl. Praktische Mathematik für Ingenieure und Physiker. Springer-Verlag, 1965.