Prof. Dr. U. Motschmann Dipl.-Phys. H. Kriegel

PHYSIKALISCHE RECHENMETHODEN II

SS 2010

11. Übungsblatt

Abgabe: Mi, den 30.06.2010 bis 15.00 Uhr im Kasten vor A317

Fragen zu den Aufgaben: H. Kriegel, Raum A317, Tel.: 391-5187, h.kriegel@tu-bs.de

Stichworte: Integration von Vektorfeldern, konservative Felder, Kurvenintegrale

32. Kraftfelder (8 Punkte)

Wir betrachten die Kraftfelder

$$\underline{F}_1 = \begin{pmatrix} 4y^2 + 3z \\ 8xy - 8z^3 \\ -24yz^2 + 3x \end{pmatrix} \quad \text{und} \quad \underline{F}_2 = \begin{pmatrix} xz + 3x \\ 3yz \\ y^2 + z^4 \end{pmatrix} \quad . \tag{1}$$

- (a) Ein Vektorfeld, dessen Rotation verschwindet, nennt man konservativ. Welches dieser Kraftfelder ist konservativ?
- (b) Berechnen Sie für beide Felder das Wegintegral $\int \underline{F} \cdot d\underline{r}$ zwischen den Punkten (0,0,0) und (1,0,1), und zwar längs der Wege
 - $C_1: (0,0,0) \to (1,0,0) \to (1,0,1)$,
 - $C_2: (0,0,0) \to (1,0,1) \text{ mit } z = x$,
 - $C_3: (0,0,0) \to (1,0,1) \text{ mit } z = x^2$

Bevor wir uns weiter mit diesem Beispiel beschäftigen, wollen wir in den folgenden Aufgabenteilen einige allgemeine Eigenschaften konservativer Felder kennenlernen:

- (c) Zeigen Sie allgemein, dass für ein konservatives Vektorfeld \underline{V} stets eine skalare Funktion $\Phi: \mathbb{R}^3 \to \mathbb{R}$ mit der Eigenschaft $\underline{V} = \nabla \Phi$ existiert. Die Funktion Φ ist ein *Potential* des Vektorfeldes \underline{V} .
- (d) Wir betrachten wiederum ein konservatives Vektorfeld \underline{V} und eine beliebige Kurve $\gamma: \mathbb{R} \to \mathbb{R}^3$ mit Startpunkt \underline{r}_1 und Endpunkt \underline{r}_2 . Zeigen Sie:

$$\int_{\gamma} \underline{V} \cdot d\underline{r} = \Phi(\underline{r}_2) - \Phi(\underline{r}_1) \quad . \tag{2}$$

Das Potential Φ wurde in Teil (b) definiert.

Was folgt aus Gl. (2) für eine geschlossene Kurve ($\underline{r}_1 = \underline{r}_2$)?

Nun wollen wir die Ergebnisse von Teil (c) und (d) auf das konkrete Beispiel anwenden:

(e) Bestimmen Sie für das Vektorfeld $\underline{F_1}$ ein geeignetes Potential Φ . Bestätigen Sie damit Gl. (2) für die in Teil (b) angegebenen Kurvenintegrale.

Bitte wenden \longrightarrow

33. Integralsatz von Stokes

(7 Punkte)

Anhand einiger Beispiele soll die Anwendung dieses Satzes geübt werden:

(a) Berechnen Sie das Wegintegral des Vektorfeldes

$$\underline{F}_3 = \begin{pmatrix} 2y + 2xz \\ 3x \\ x^2 + z^3 \end{pmatrix} \tag{3}$$

entlang des Einheitskreises in der (x, y)-Ebene unter Benutzung des Satzes von Stokes.

(b) Verifizieren Sie den Satz von Stokes für das Vektorfeld

$$\underline{F}_4 = \begin{pmatrix} xz + 3xy \\ 3yz - x^3y \\ y^2 + z^2 \end{pmatrix} \tag{4}$$

und die durch

$$\mathcal{F} = \left\{ \underline{r} \in \mathbb{R}^3 \,\middle|\, \left(\frac{x}{3}\right)^2 + \left(\frac{y}{2}\right)^2 \le 1 \quad ; \quad z = 0 \quad ; \quad y \ge 0 \right\} \tag{5}$$

definierte Fläche.