Prof. Dr. W. Brenig Dr. A. Honecker

QUANTENMECHANIK

WS 2004/2005

10. Übungsblatt

Abgabe der **Hausaufgaben** am 25. Januar 2005 bis 14:00

Dieses Aufgabenblatt beschäftigt sich mit zeitunabhängiger Störungstheorie für

$$H = H_0 + W. (1)$$

Ist $|\psi_0\rangle$ ein <u>normierter</u> Eigenzustand von H_0 zu Energie $E^{(0)}$, so gilt:

1. Für den Eigenzustand $|\psi\rangle$ von H gilt bis zu erster Ordnung in W

$$|\psi\rangle = |\psi_0\rangle + Q(E^{(0)} - H_0)^{-1}W|\psi_0\rangle + \mathcal{O}(W^2).$$
 (2)

Hierbei ist $Q = \mathbb{1} - P$ und P der Projektor auf die Eigenzustände von H_0 mit Energie $E^{(0)}$.

2. Für die Energie gilt bis zu zweiter Ordnung in W

$$E = \frac{\langle \psi \mid H \mid \psi \rangle}{\langle \psi \mid \psi \rangle} = E^{(0)} + E^{(1)} + E^{(2)} + \mathcal{O}(W^3)$$
 (3)

mit

$$E^{(1)} = \langle \psi_0 | W | \psi_0 \rangle , \qquad E^{(2)} = \langle \psi_0 | W \frac{Q}{E^{(0)} - H_0} W | \psi_0 \rangle .$$
 (4)

Gibt es mehr als einen Eigenzustand von H_0 zu Energie $E^{(0)}$ (entarteter Fall), so ist $|\psi_0\rangle$ nicht nur als Eigenzustand von H_0 , sondern auch von PWP zu wählen.

Anwesenheitsübung (keine Abgabe)

A1. Als Beispiel betrachten wir eine 3×3 Matrix $H = H_0 + W$ ($\lambda \in \mathbb{R}$):

$$H_0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \qquad W = \begin{pmatrix} 0 & \lambda & 0 \\ \lambda & 0 & \lambda \\ 0 & \lambda & 0 \end{pmatrix}.$$

- (a) Berechnen Sie die Eigenwerte von $H=H_0+W$ mit Hilfe der störungstheoretischen Formeln (4) bis zur zweiten Ordnung in λ !
- (b) Berechnen Sie das charakteristische Polynom von H! Setzen Sie die Ergebnisse aus (a) ein und prüfen Sie, daß die Terme bis einschließlich der Ordnung λ^2 verschwinden !

Hausaufgaben

H1. Der Hamilton-Operator $H = H_0 + W$ des eindimensionalen anharmonischen Oszillators ist gegeben durch

$$H_0 = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 r^2, \qquad W = \alpha \frac{m^2\omega^2}{\hbar} r^4$$

mit $\alpha > 0$.

- (a) Drücken Sie H_0 und W durch a^{\dagger} und a aus!
- (b) Betrachten Sie W als kleine Störung von H_0 und berechnen Sie die Korrektur erster Ordnung $E_n^{(1)}$ zum nten Eigenzustand von H_0 !

4 Punkte

H2. Wir betrachten die Bewegung eines Teilchens der Masse m in einem eindimensionalen periodischen Potential W(x):

$$W(x+a) = W(x).$$

Das Problem soll hier unter Betrachtung von W(x) als Störung zu

$$H_0 = \frac{p^2}{2m}$$

behandelt werden.

(a) Geben Sie die ungestörten Energien $E_0(k)$ und Eigenfunktionen $\psi_k(x)$ von H_0 an! Welche Werte für k sind in in einem Volumen L=Na mit periodischen Randbedingungen

$$\psi_k(x + Na) = \psi_k(x)$$

zugelassen ? Normieren Sie die Wellenfunktionen in diesem endlichen Volumen der Länge L !

- (b) Wie oft ist jeder ungestörter Energieeigenwert $E_0(k)$ entartet? (Achten Sie auch auf Spezialfälle für k!)
 Welche Wellenzahlen K treten in der Fourier-Zerlegung von W(x) auf?
- (c) Leiten Sie eine notwendige Bedingung an k und k' her dafür, daß

$$\langle \psi_k | W | \psi_{k'} \rangle \neq 0.$$

Unter welcher Bedingung haben $|\psi_k\rangle$ und $|\psi_{k'}\rangle$ außerdem dieselbe Energie bezüglich H_0 ? Geben Sie für den Fall der Entartung eine Beziehung zwischen k und K an!

(d) Berechnen Sie die Korrekturen $E_k^{(1)}$ erster Ordnung zur Energie! Führen Sie dabei eine Fallunterscheidung unter Beachtung der Entartung durch! Wann ist die Entartung unproblematisch und wann müssen Sie geeignete Kombinationen von $|\psi_k\rangle$ und $|\psi_{k'}\rangle$ als Ausgangspunkt der Rechnung wählen (Zustände angeben!)?

Bemerkung: Oben wird ein allgemeines (eindimensionales) Bandmodell für Fest-körper diskutiert (vgl. das Kronig-Penney-Modell – H4.2): Durch Kopplung bestimmter k-Punkte über das Potential W ergeben sich dort Lücken und man erhält verschiedene Bänder.

8 Punkte

H3. Zusatzaufgabe (Bearbeitung freiwillig)

Setzten Sie (2) in (3) ein und zeigen Sie, daß hieraus die störungstheoretischen Formeln (4) zweiter Ordnung für die Energie folgen!

4 Zusatzpunkte