Prof. Dr. W. Brenig Dr. A. Honecker

QUANTENMECHANIK

WS 2004/2005

4. Übungsblatt

Abgabe der Hausaufgaben am 23. November bis 14:00

Anwesenheitsübung (keine Abgabe)

A1. Wir betrachten die stationäre Schrödingergleichung

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right)\psi(x) = E\psi(x) \tag{1}$$

für ein attraktives δ -Potential ($V_0 > 0$)

$$V(x) = -V_0 \,\delta(x)$$
.

In diesem Fall ist die Wellenfunktion $\psi(x)$ zwar stetig bei x=0, die Ableitung $\psi'(x)$ springt dort aber aufgrund des δ -förmigen Potentials.

(a) Berechnen Sie die Höhe des Sprungs in der Ableitung der Wellenfunktion

$$\lim_{\epsilon \to 0} \left(\psi'(\epsilon) - \psi'(-\epsilon) \right) ,$$

indem Sie die Schrödinger-Gleichung (1) in einem kleinen Bereich um x=0 integrieren.

(b) Betrachten Sie den Fall E < 0 und diskutieren Sie, wieviele gebundene Lösungen Sie erhalten! Berechnen Sie die Energie des Grundzustandes und skizzieren Sie die normierte Grundzustandswellenfunktion!

Hausaufgaben

H1. Wir betrachten noch einmal den eindimensionalen Potentialtopf aus H3.2:

$$V(x) = \begin{cases} 0 & \text{für } |x| > a \\ -U < 0 & \text{für } |x| < a \end{cases},$$

$$I \qquad II \qquad III$$

und wollen nun das Verhalten für E > 0 diskutieren.

(a) Von links laufe eine ebene Welle ein. Diese Situation wird beschrieben durch eine Lösung $\psi(x)$ der stationären Schrödingergleichung der Form

$$\psi_{\rm I}(x) = e^{ik_{\rm I}x} + R(E) e^{-ik_{\rm I}x}, \qquad \psi_{\rm III}(x) = S(E) e^{ik_{\rm III}x}.$$

Zeigen Sie:

$$S(E) = \frac{e^{-2ika}}{\cos(2qa) - i/2 \sin(2qa) (q/k + k/q)}$$
mit $k = \sqrt{2mE}/\hbar$, $q = \sqrt{2m(E+U)}/\hbar$! (2)

- (b) Bestimmen Sie die Pole von S(E) nach (2) für $E<0,\,E\in\mathbb{R}$! Vergleichen Sie die Position der Pole mit dem Ergebnis von H3.2(c) für die Energie der gebundenen Zustände!
- (c) Bestimmen Sie die Positionen E_n der Maxima von $|S(E)|^2$ für E > 0, $E \in \mathbb{R}$ und berechnen Sie $|S(E_n)|^2$!

Bemerkung: Diese Maxima unter den Streuzuständen heißen "Resonanzen".

(d) Entwickeln Sie S(E) um die nte Resonanz E_n und bringen Sie das Ergebnis in die Breit-Wigner-Form

$$S(E) \approx (-1)^n e^{-2ika} \frac{i\Gamma_n/2}{(E - E_n) + i\Gamma_n/2}$$
!

Drücken Sie die "Resonanzbreite" Γ_n durch die Energie E_n der Resonanz aus !

10 Punkte

H2. Ein einfaches Modell für Energiebänder in Festkörpern ist das Kronig-Penney-Modell. Es handelt sich hierbei um ein eindimensionales Modell mit folgendem Potential:

$$V(x) = D \sum_{n \in \mathbb{Z}} \delta(x - na).$$

(Man stelle sich darunter eine eindimensionale periodische Anordnung von Atomen im Abstand a vor, die durch unendlich hohe aber unendlich dünne Barrieren der Stärke D > 0 voneinander getrennt sind).

(a) Lösen Sie die Schrödingergleichung in den Bereichen

$$B_n = \{x \mid na < x < (n+1)a\}!$$

- (b) Bestimmen Sie die Anschlußbedingung für die Lösungen bei $x=na,\,n\in\mathbb{Z}$!
- (c) Aufgrund der Periodizität des Potentials V(x+a) = V(x) kann die Lösung als *Bloch*-Welle angesetzt werden, d.h.

$$\psi(x) = e^{iKx} u_K(x)$$

mit periodischem u_K : $u_K(x+a) = u_K(x)$.

Setzen Sie diesen Ansatz in Ihre Anschlußbedingungen ein und leiten Sie daraus eine Eigenwertgleichung für die Energie E her !

(d) Geben Sie eine allgemeine Formel für die oberen Kanten der Energiebänder an ! Skizzieren Sie die untersten 3 Energieniveaus als Funktion von K/a für $amD/\hbar^2=2$!

8 Punkte

Klausur: 18.12.2004
 Klausur: 12.02.2005