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Abstract
To evaluate the cyclic behaviour under different loading conditions using the kinematic and isotropic hardening

theory of steel a Chaboche visco-plastic material model is employed. The parameters of a constitutive model are
usually identified by minimization of the distance between model response and experimental data. However, mea-
surement errors and differences in the specimens lead to deviations in the determined parameters. In this work the
Choboche model is used and a stochastic simulation technique is applied to generate artificial data which exhibit the
same stochastic behaviour as experimental data. Then the model parameters are identified by applying a variaty of
Bayes’s theorem. Identified parameters are compared with the true parameters in the simulation and the efficiency
of the identification method is discussed.

Introduction
In order to predict the behaviour of loaded metallic materials, constitutive models are applied, which
present a mathematical frame for the description of elastic and inelastic deformation. All inelastic
constitutive models contain parameters which have to be identified for a given material from exper-
iments. In the literature only few investigations can be found, dealing with identification problems
using stochastic approaches.

In this paper, a viscoplastic model of Chaboche [1] is studied. The model contains five material pa-
rameters which have to be determined from experimental data. It should be noted that virtual data are
employed instead of real experimental data. In addition, a cyclic tension-compression test is applied
in order to extract the virtual data.

Model problem
The mathematical description of metals under cyclic loading beyond the yield limit that includes the
viscoplastic material behaviour as well as the characterization of compulsatory isotropic-kinematic
hardening is here given in terms of a modified Chaboche model introduced by [2]. As we consider
classical infinitesimal material behaviour, we assume an additive strain decomposition. The complete
model is stated in the Table below.

Strain
ε(t) = εe(t) + εvp(t)

Hooke’s Law
σ(t) = E : εe(t)

Flow Rule

ε̇vp(t) = 〈
σeq(t)−σy−R(t)

k 〉n∂σex∂σ

Hardening
Ṙ = bR(HR −R)ṗ

χ̇ = bχ(
2
3Hχ

∂σeq
∂σ − χ)ṗ

Initial Conditions
εvp(0) = 0, R(0) = 0, χ(0) = 0

Parameters
σy (Yield Stress)
k, n (Flow Rule)

bR, HR, bχ, Hχ (Hardening)

By gathering all the desired material parameters to identify into the vector q = [κ G bR bχ σy],
where κ and G are bulk modulus and shear modulus, respectively, the goal is to estimate q given
measurement displacement data, i.e.

u = Y (q) + ε (1)
in which Y (q) represents the measurement operator and ε the measurement (also possibly the model)
error. Being an ill-posed problem, the estimation of q given u is not an easy task and requires regu-
larisation. This can be achieved either in a deterministic or probabilistic setting. Here, the latter one
is taken into consideration as further described in the text.

Bayesian identification
By acquiring additional (prior) knowledge on the parameter set next to the observation data, the prob-
abilistic approach regularise the problem of estimating q with the help of Bayes’s theorem

πq|u(q|u) ∝ L(q)πq(q) (2)

in which the likelihood L(q) describes how likely the measurement data are given prior knowledge
πq(q). This in turn requires the reformulation of the deterministic model into the probabilistic one, and
hence the propagation of material uncertainties through the model —the so-called forward problem—
in order to obtain the likelihood [3]. An affine approximation of relation 2 is

qa(ω) = qf (ω) + k(z(ω)− uf (ω)), (3)

also known as a linear Bayesian posterior estimate. Here, qf represents the prior random variable,
qa is the posterior approximation, uf is the forecasted measurement and k represents the very well-
known Kalman gain

k := Cqfuf
(
Cuf + Cε

)† (4)
which can be easily evaluated if the appropriate covariance matrices Cqfuf , Cuf and Cε are known.
Namely, qa(ω), qf (ω), z(ω) and uf (ω) denote the RVs used to model the posterior, prior, observation,
and forecasted observation, respectively.

In this light the linear Bayesian procedure can be reduced to a simple algebraic method. Starting
from the functional representation of the prior

q̂f =
∑
α

q
(α)
f ψα(ω) (5)

where ψα is the Hermite function, one may discretise 3 as:

q̂a = q̂f + k
(
ẑ − ûf

)
, (6)

where ẑ ∈ RL×Z are the PCE coefficient of the measurement. Here, k in equation 6 is the Kalman
gain evaluated in an algebraic way knowing that

Cqf ,uf =
∑
α>0

α! q
(α)
f (u

(α)
f )T . (7)

Note that in the numerical computation q̂f := [qf (ω1), ..., qf (ωZ)] is the PCE coefficient of the prior
and q̂a := [qa(ω1), ..., qa(ωZ)] is the PCE coefficient of the posterior with cardinality z determined by
(L + 1) RVs and polynomial order p [4].

Numerical results
Preliminary study is on a regular cube, modelled with one 8 node element, completely restrained on
the back face, and with normal traction on the opposite (front) face. The magnitude of the normal
traction and a stress in the plane of the front face is plotted in the Figure below. Purple and orange
colours represent the stress value in normal and in plane directions, respectively.

Considering the parameters listed in the Table below, the related σ-ε hysteretic graph obtained
which can be seen in the Figure below.

κ G σy n k bR HR bχ Hχ
1.66e9 7.69e8 1.7e8 1 1.5e8 50 0.5e8 50 0.5e8

The displacements of a node on the front surface in normal and in plane directions are observed as
the virtual data in this study. Applying stochastic identification and introducing likelihood in such a
way that 10 percent of mean values are equal to the variance of the related parameter, the probability
density function of prior and posterior of the identified parameters can be seen in the Figure below.
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Summarising the results, the true values and the mean and variance of the estimated parameters are
compared in the Table below.

Parameters qtrue qest(mean) qest(standard deviation)
κ 1.66e9 1.66e9 2.59e6
G 7.69e8 7.68e8 6.39e5
bR 50 52.38 0.29
bχ 50 52.05 0.53
σy 1.7e8 1.69e8 1.52e5

Conclusions
Using the stochastic methods explained to identify the model parameters of the Choboche model in-
dicates that it is possible to identify the model parameters using Gauss-Markov Kalman filter. The
parameters are well estimated and the uncertainty of the parameters is reduced while the probability
density function of the parameters are updated during the process.

Forthcoming Research
The model is going to be developed by adding a damage model and then the efficiency of the methods
used and their developments will also be studied in the near future. Also, the design of experiments
in the Bayesian setting will be investigated.
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