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Numerical Methods for PDEs (PDEs 2):
Convergence, basis functions, FEM implementation and

adaptivity

Exercise 1: FEM: Triangulation properties, sparsity of the stiffness matrix (6 points)
(a) Let dT be the diameter of the largest circle contained in a triangle T. Prove that

dT
diam(T ) ≤

1√
3

Solution
The ratio attains its maximum when the triangle is equilateral. For the equilateral triangle
the diameter of the incircle is the third of the h height of the triangle

dT = 2h
3

If we assume that the edges have length a, then the hight is computed from

h2 +
(a

2

)2
= a2,

that gives

h =
√

3
2 a.

Then the diameter is
dT =

√
3
3 a = 1√

3
a.

The diameter of the triangle is the longest line that is contained in the triangle, which is the
longest edge:

diam(T ) = a.

The largest ratio is then
dT

diam(T ) = 1√
3

−−−−−−

(3 points)

(b) What is the role of this measure in the convergence analysis?
Solution
Convergence properties are dependent on the quality of the triangulation. If the ratio is
too small, then the triangles get very skinny, which deteriorates convergence. The error



estimators are only shown for a non-degenerate family of triangulation, which means that
the ratio can not get infinitely small during refinements.

−−−−−−

(1 points)

(c) A mesh of quadratic Lagrange triangles has two types of basis functions, those corre-
sponding to vertex nodes and those corresponding to midpoint nodes. How many nodes are
adjacent to a typical vertex node? To a typical midpoint node? How many nonzeros lie in
each row of the corresponding stiffness matrix?
Solution
There are 8 adjacent nodes for every midpoint node, and the corresponding row of the stiff-
ness matrix has 9 nonzero entries.
There are 18 adjacent nodes for every vertex node, and the corresponding row of the stiffness
matrix has 19 nonzero entries.

−−−−−−

(2 points)

Exercise 2: A priori error estimates (4 points)
Suppose {Th} is a nondegenerate family of triangulations of a polygonal domain Ω ∈ <2 and
suppose f ∈ Hd+1(Ω).
(a) If fI ∈ P dh is the piecewise polynomial interpolant of degree d of f , what can we know
about the bound of the L2 norm of the interpolation error. Please explain every expression
in the bound.
Solution

‖f − fI‖L2(Ω) ≤ Chd+1|f |Hd+1(Ω)

with

• C: positive constant

• |·|Hd+1(Ω): the seminorm

|f |Hd+1(Ω) =
∑

i+j=d+1

∫
Ω

∣∣∣∣ ∂i+jf∂xi∂yj

∣∣∣∣2dxdy
• h: the maximum diameter of any triangle in Th

−−−−−−

(2 points)

(b) This error bound is used to show convergence of the Galerkin method. What is the
connection between the interpolation error and the error of the Galerkin approximation?
(2 points)



Solution
We know from Cea’s theorem that when the bilinear operator is bounded and v-elliptic then
the error of the Galerkin approximation fh is bounded:

‖f − fh‖V ≤
M

δ
‖f − vh‖V ∀vh ∈ Vh

Here the contants M and δ are from the constants from the condition of boundedness and
V-ellipticity, respectively. Since the piecewise polynomial interpolant uI of u belongs to Vh,
the above bound of the interpolation error will also give a bound for the error of the Galerkin
approximation:

‖f − fh‖L2(Ω) ≤
M

δ
‖f − fI‖L2(Ω) ≤

M

δ
Chd+1|f |Hd+1(Ω)

−−−−−−



Exercise 3: C1 basis functions (7 points)
Let us define piece-wise Hermite polynomials, to span the space of C1(Ω) piece-wise poly-
nomials of total degree d.
Suppose Ω ⊂ R, so a 1D domain. Define the local basis functions defined over one element
in its local coordinate system Φi(ξ) : Ωe → R, Ωe = [−1, 1] as the linear combination of
the monomials:

φi(ξ) = ai0 + ai1ξ + ai1ξ
2 + . . .+ aidξ

d.

The vector of coefficients
aTi =

[
ai0 ai1 . . . aid

]
can be calculated from i linear system of equations:

B̃ai = bi.

What is the matrix B̃ and what are the right hand sides bi when a two-node element is
used? The two nodes are at the coordinates ξ1 = −1 and ξ2 = 1. Draw a draft of all the
basis functions defined over the element.
Hint:

• Use N = 4 and d = 3 to have a well defined system of equations.

Draft of basis functions {φi}Ni=1:

Determination of matrix B̃:

Solution
The constraints for the basis functions are

φ1(ξ1) = 1

φ′1(ξ1) = φ1(ξ2) = φ′1(ξ2) = 0

φ′2(ξ1) = 1

φ2(ξ1) = φ2(ξ2) = φ′2(ξ2) = 0

φ3(ξ2) = 1

φ3(ξ1) = φ′3(ξ1) = φ′3(ξ2) = 0

φ′4(ξ2) = 1

φ4(ξ1) = φ′4(ξ1) = φ4(ξ2) = 0

.

The basis functions satisfying these constraints are shown below.



Using the polynomial form of the basis functions the function and their derivatives evaluated
at the ξ1 and ξ2 points read

φi(ξ1)
φ′i(ξ1)
φi(ξ2)
φ′i(ξ2)

 =


1 ξ1 ξ2

1 ξ3
1

0 1 2ξ1 3ξ2
1

1 ξ2 ξ2
2 ξ3

2
0 1 2ξ2 3ξ2

2



ai,0

ai,1

ai,2

ai,3

 =


1 −1 1 −1
0 1 −2 3
1 1 1 1
0 1 2 3



ai,0

ai,1

ai,2

ai,3


The first four constraints then are given by the system of equations:

φ1(ξ1)
φ′1(ξ1)
φ1(ξ2)
φ′1(ξ2)




1 −1 1 −1
0 1 −2 3
1 1 1 1
0 1 2 3



a1,0

a1,1

a1,2

a1,3

 =


1
0
0
0


In general, the coefficients of the ith basis functions can be solved from the system of
equations

B̃ai = bi,

where

B̃ =


1 −1 1 −1
0 1 −2 3
1 1 1 1
0 1 2 3


and

bi =


bi,0

bi,1

bi,2

bi,3


with

bi,j =
1 ifi = j

0 otherwise
−−−−−−



Exercise 4: C0 basis functions (7 points)
Now we define piece-wise Lagrange polynomials to span the space of all C0(Ω) piece-wise
polynomials of total degree d. Let Ω = (0, 1)×(0, 1) be a unit square and consider a uniform
triangulation of Ω created by dividing Ω into n2 sub-squares, each with side length h = 1/n,
and then dividing each sub-square into two triangles. Consider two different triangulations:

1. {T1}: uniform linear Lagrange triangulation with n = 2k (with 2(2k)2 triangles, d = 1);

2. {T2}: uniform quadratic Lagrange triangulation with n = k (with 2k2 triangles, d = 2);

• How many nodes are needed per inner edges in the triangulations {T1} and {T2} and why?

Solution
For assuring the continuity of a d degree function one needs d + 1 number of points per
inner edges. That means 2 nodes for {T1} and 3 for {T2}.

−−−−−−

• Which triangulation has more nodes (you can try for example k = 4, and draw a draft of
the mesh)?

Solution
They have the same number of nodes. The stiffness matrix is of the same size.

−−−−−−

• Which resulting stiffness matrix: Kij =
∫

Ω∇φi · ∇φj has more nonzero elements (which
one is more sparse) and why? What is the maximum number of nonzero elements per row
for the two triangulations?

Solution
The stiffness matrix for {T1} is sparser because the nodes have more adjacent nodes in
{T2}. {T1} has maximum 7 nz elements per row and {T2} has max 19.

−−−−−−

• Draw one triangle and its nodes that has to be used when d = 4. Explain the number of
the nodes.

Solution
The general polynomial take the form

p = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2 + . . .+ a15y
4

which can be well defined by 15 coefficients, so 15 nodes are needed. The number of the
nodes to assure continuity at the edge is d+ 1 = 5.

−−−−−−



Exercise 5: Numerical integration over quadrilateral element (7 points)
Assume the domain Ω = (−1, 1)× (−1, 1). Now the task is to compute the integral∫ ∫

Ω
(x3y + x2y + 3y + 5)dxdy (1)

with Gauß quadrature.
(a) Which point rule has to be used in the x direction and which in the y direction to
get exact solution of (1)? (Give the minimum number of the points to be used for the two
univariate rules.) Explain the answer in one sentence.
Solution
The polynomial can be written as linear combination of the tensor product of the monomials:
{1, x, x2, x3} and the monomials {1, y}.

• in the x direction: 2nx − 1 = dx = 3→ nx = 2

• in the y direction: 2ny − 1 = dy = 1→ ny = 1

−−−−−−

(b) Collect in a table the coordinates of the integration points and the corresponding weights
of the combined rule to be used to calculate the given integral. You can use the points and
the weights for the univariate rule in Table 1.
Solution

i xi yi ω1x ω2x ωi f(xi, yi)

1
√

1
3 0 1 2 2 5

2−
√

1
3 0 1 2 2 5

−−−−−−

(c) Calculate the integral.
Solution ∫ ∫

Ω
(x3y + x2y + 3y + 5)dxdy = f(x1, y1)ω1 + f(x2, y2)ω2 = 20

−−−−−−

Exercise 6: Mesh generation, adaptivity, a posterior error estimates (6 points)
(a) What does it mean nonconforming triangulation? Draw an example.



number of points, n Points, xi Weights, wi
1 0 2

2 ±
√

1
3 1

3 0 8
9

±
√

3
5

5
9

4 ±
√

3
7 −

2
7

√
6
5

18+
√

30
36

±
√

3
7 + 2

7

√
6
5

18−
√

30
36

5 0 128
225

±1
3

√
5− 2

√
10
7

322+13
√

70
900

±1
3

√
5 + 2

√
10
7

322−13
√

70
900

Table 1: Points and weights of the univariate Gauss-Legendre quadrature rule

Solution
That there is at least one hanging node, that is, node that belongs to one element, but does
not belong to its neighboring element.

−−−−−−

(b) Explain the main idea of the strategy for choosing which triangles to refine due to
Babuska and Rheinboldt by answering the following questions. Suppose there is a triangu-
lation Th with triangles {Ti}Ni=1. The longest edge of the triangles is noted be hi. Suppose
that with an available error estimator we can compute the elementwise errors {ε(1)

i }Ni=1. Let’s
suppose that this triangulation is coming from a uniform refinement, and we also computed
the error estimators for the courser mesh, so we have for all the Ti triangles an error es-
timator {ε(0)

i }Ni=1, which is the element-wise error for the triangle the subtriangles Ti were
refined from.

• Main Assumptions: 1) What is our main assumption on the dependence of the elementwise
error εi on the hi diameter? 2) When do we call a mesh to be optimal?

Solution

1. That the it takes the form εi = chλi , where c and λ are positive constants

2. When the errors a equilibrated, that is when the elementwise errors a nearly constant

−−−−−−

• How do we compute the constants in the first assumption?

Solution
According to the assumptions

ε0i = ch
(0)λ
i



and
ε1i = ch

(1)λ
i ,

from which the constants c and λ can be determined.

−−−−−−

• There is an important a-posteriori measure, which helps choosing triangles for refinement.
How do we compute this measure?

Solution
First a prediction of the error should be computed for each element if a further uniform
refinement were carried out

ε2i = c

(
h

(1)
i

2

)λ
,

Then the measure is the biggest error, that is

M = max{ε2i }

− −−−−−

• Using the above mentioned measure, what is the criteria that chooses a triangle to be
refined?

Solution
Choose the i triangles for refinement, for which

ε1i > M,

−−−−−−

(c) What are the three components to an adaptive algorithm? (Give only a concise definition
for all three.)
Solution

1. An element-by-element error estimator

2. a strategy for choosing which trangles to refine

3. an algorithm for locally refining a mesh.

−−−−−−


