

Numerical methods for PDEs
FEM - convergence, a-priori error estimates, piecewise polynomials
Dr. Noemi Friedman

Contents of the course

- Fundamentals of functional analysis
- Abstract formulation FEM
- Spatial (meshing) and functional discretization (the basis functions)
- Convergence, regularity
- Variational crimes
- Implementation
- Error indicators/estimation
- Adaptivity
- Mixed formulations (e.g. Stokes)
- Stabilisation for flow problems

Abstract formulation, examples

- FEM and piecewise polynomials
- Non-degenerate triangulation, refinement of triangulation
- Convergence using piecewise linear functions
- Convergence using piecewise higher order elements
- Implementation, sparsity of the stiffnes matrix
- Variational crime: numerical integration
- Variational crime: curved boundaries

Recap: boundedness of the error of Galerkin method

$$
a\left(u-u_{h}, v\right)=0 \quad \forall v \in V_{h}
$$

If $a(\cdot, \cdot)$ is an inner product, it means that the approximation is an orthogonal projection to the subspace in the energy norm:

$$
\text { error }=\left\|u(\mathbf{x})-u_{h}(\mathbf{x})\right\|_{E} \leq\|u(\mathbf{x})-v(\mathbf{x})\|_{E} \quad \forall v(\mathbf{x}) \in V_{h}
$$

According to Céa's theorem (see prove at the lecture note), even without $a(\cdot, \cdot)$ being symmetric, the error of the approximation of Galerkin will be allways bounded:

$$
\left\|u-u_{h}\right\| \leq \frac{M}{\delta}\|u-v\| \quad \forall v \in V_{h}
$$

Where M and δ are constants from the conditions of boundedness and V-ellipticity of the bilinear term $a(\cdot, \cdot)$:

$$
\begin{gathered}
a(u, v) \leq M\|u\|\|v\| \\
a(u, u) \geq \delta\|u\|^{2}
\end{gathered}
$$

Recap: what do we have to solve?

$$
\sum_{i=1}^{N} c_{i} \underbrace{\int_{\Omega} \nabla \Psi_{i}(\mathbf{x}) \cdot \nabla \Psi_{j}(\mathbf{x}) d \Omega}_{K_{i j}}=\underbrace{\int_{\Omega} f(\mathbf{x}) \Psi_{j}(\mathbf{x}) d \Omega}_{f_{j}} \longmapsto \mathbf{K \mathbf { c } = \mathbf { f }}
$$

FEM: Galerkin method where Ψ_{j} are piecewise polynomials
Main goals when implementing:

- efficient calculation of K
- efficient calculation of f
- solve Kc=f efficiently
- true solution is approximated well (error is small enough)

Piecewise polynomials and the FEM

piecewise polynomials: a function that is defined by a polynomial on each subdomain mesh: the collection of subdomains
nodal basis:

$$
u_{h}(\mathbf{x}) \in P_{h}^{1}
$$

continious piecewise linear functions

for Poisson equation we have to show that $P_{h}{ }^{1} \subset H_{1}$ when it's not satisfied it is not a ,conforming element method'

Recap: Why linear piecewise polynomials defined on a triangulation are in the subspace

Suppose, that uniqueness and existence can be shown in H_{1}
Show, that the space of all continious piecewise linear functions defined on the triangulation \mathcal{T}_{h} is a subspace of H_{1}.

The continious piecewise linear functions can be writen in the general form:

$$
\begin{aligned}
u=a_{i}+b_{i} x+c_{i} y & (x, y) \in T_{i} \\
a_{j}+b_{j} x+c_{j} y=a_{i}+b_{i} x+c_{i} y & \forall(x, y) \in e=T_{i} \cap T_{j}
\end{aligned}
$$

We have to show that all $u \mathrm{~s}$ are in H_{1} :

- $\int_{\Omega} u^{2}<\infty \quad \Omega=U_{i} T_{i}$
- $\int_{\Omega}\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}<\infty$

Recap: Why linear piecewise polynomials defined on a triangulation are in the subspace

1) First let's show that

$$
\begin{gathered}
\int_{\Omega} u^{2}<\infty \\
\int_{\Omega} u^{2}=\sum_{i} \int_{T_{i}}\left(a_{i}+b_{i} x+c_{i} y\right)^{2}<\sum_{i} \int_{T_{i}} \max \left(a_{i}+b_{i} x+c_{i} y\right)^{2}\left|T_{i}\right|<\infty
\end{gathered}
$$

2.)Show that $\int_{\Omega} u^{2}<\infty \quad \Omega=U_{i} T_{i}$

There is no derivatives in a strong sense, but let's see whether these give weak derivatives:

$$
\begin{array}{ll}
g_{1}:=\frac{\partial u}{\partial x}=b_{\mathrm{i}} & (x, y) \in \operatorname{int}\left(T_{i}\right) \\
g_{2}:=\frac{\partial u}{\partial y}=c_{\mathrm{i}} & (x, y) \in \operatorname{int}\left(T_{i}\right)
\end{array}
$$

Recap: Why linear piecewise polynomials defined on a triangulation are in the subspace

are weak derivatives if for any $v \in C_{0}^{\infty}$

$\longrightarrow \int_{\Omega} u \frac{\partial v}{\partial x}=-\int_{\Omega} v g_{1} \quad$ and $\quad \int_{\Omega} u \frac{\partial v}{\partial y}=-\int_{\Omega} v g_{2}$ holds. | We prove only this, because the |
| :--- |
| approach of the derivation for g_{2} |
| is same. |

Let's first look at the left hand side of the equation:

$$
\int_{\Omega} u \frac{\partial v}{\partial x}=\sum_{i} \int_{T_{i}} u \frac{\partial v}{\partial x}=\sum_{i}\left\{\int_{\partial T_{i}} u v \cdot n_{1}+\int_{T_{i}} \frac{\partial u}{\partial x} v\right\}
$$

$$
\int_{\partial T_{i}} u v \cdot n_{1}=0 \text { on the edges of the boundary, and } \int_{\partial T_{i}} u v \cdot n_{1}=-\int_{\partial T_{j}} u v \cdot n_{1}
$$

On the common edges of neighboring triangles T_{i} and T_{j}

$$
\longmapsto \sum_{i}\left\{\int_{\partial T_{i}} u v \cdot n_{1}\right\}=0 \quad \int_{T_{i}} \frac{\partial u}{\partial x} v=\int_{T_{i}} b_{i} v
$$

Recap: Why linear piecewise polynomials defined on a triangulation are in the subspace

$$
\int_{\Omega} u \frac{\partial v}{\partial x}=-\int_{\Omega} v g_{1}
$$

The left hand side of the equation:

$$
\int_{\Omega} u \frac{\partial v}{\partial x}=-\sum_{i}\left\{\int_{T_{i}} b_{i} v\right\}
$$

The left hand side of the equation:

$$
-\int_{\Omega} v g_{1}=-\sum_{i}\left\{\int_{T_{i}} b_{i} v\right\}
$$

Piecewise polynomials and the FEM

$$
v \in P_{h}^{(1)} \quad \Longleftrightarrow \quad v(x, y)=a_{i}+b_{i} x+c_{i} y \quad(x, y) \in T_{i}
$$

Derivatives in the classical sense:

$$
\begin{aligned}
& \frac{\partial v}{\partial x}(x, y)=b_{i},(x, y) \in \operatorname{int}\left(T_{i}\right) \\
& \frac{\partial v}{\partial y}(x, y)=c_{i},(x, y) \in \operatorname{int}\left(T_{i}\right) .
\end{aligned} \quad \begin{aligned}
& \text { weak derivatives of } v \\
& \text { (see proof in Gockenbach Chapter 4.1) }
\end{aligned} \quad \begin{gathered}
v(x, y) \in L_{2} \\
v^{\prime}(x, y) \in L_{2} \\
\sqrt{b}
\end{gathered}
$$

Sparsity of the stiffness matrix

$K_{i j}=\int_{\Omega} \nabla \Psi_{i}(\mathbf{x}) \cdot \nabla \Psi_{j}(\mathbf{x}) d \Omega \neq 0 \Rightarrow$ if nodes i and j are adjacent
Example:

$K_{13, j} \neq 0$
if $j=7,8,12,13,14,18,19$
Similarly:
$K_{i, 13} \neq 0 \quad$ if $i=7,8,12,13,14,18,19$

max 7 nonzero elements/row and /column

Quadratic piecewise polynomials

Quadratic piecewise polynomials

$$
\begin{aligned}
& n z=405 \\
& \rrbracket \\
& \frac{405}{50 \times 50}=16 \%
\end{aligned}
$$

$$
\begin{aligned}
& n z=2219 \\
& \frac{2219}{200 \times 200}=5 \%
\end{aligned}
$$

Cubic piecewise polynomials

$a+b x+c y+d x^{2}+e x y+f y^{2}+g x^{3}+h x^{2} y+i x y^{2}+j y^{3}$

Higher order piecewise polynomials

Requirements for polynomial of degree \boldsymbol{d} in 2D (two variables)

- number of nodes per edge (to guarantee continuity of the ansatz function):

$$
d+1
$$

($d-1$ in between the vertices) $\rightarrow 3 d$ on the edges

- Number of parameters needed to define 2D polynomials
$1+2+\cdots+(d+1)=\frac{(d+1)(d+2)}{2}$

$d=5$

Higher order piecewise polynomials

Let's check setup for $\boldsymbol{d}=\mathbf{4}$ in 2D (two variables)

- number of nodes per edge (to guarantee continuity of the ansatz function):

$$
d+1=5
$$

$$
\text { (} d-1=3 \text { in between the vertices) } \rightarrow 3 d=12 \text { on the edges }
$$

- Number of parameters needed to define 2D polynomials

$$
1+2+\cdots+(d+1)=\frac{(d+1)(d+2)}{2}
$$

$$
\frac{(d+1)(d+2)}{2}=15
$$

- Number of nodes in the middle $15-12=3$

Higher order piecewise polynomials

The a general piecewise polynomial takes the form

$$
\begin{array}{rlr}
u= & a_{1}^{(i)}+ & (x, y) \in T_{i} \\
& +a_{2}^{(i)} x+a_{3}^{(i)} y+ \\
& +a_{4}^{(i)} x^{2}+a_{5}^{(i)} x y+a_{6}^{(i)} y^{2}+ \\
& +a_{7}^{(i)} x^{3}+a_{8}^{(i)} x^{2} y+a_{9}^{(i)} x y^{2}+a_{10}^{(i)} y^{3}+ \\
& +a_{11}^{(i)} x^{4}+a_{12}^{(i)} x^{3} y+a_{13}^{(i)} x^{2} y^{2}+a_{14}^{(i)} x y^{3}+a_{14}^{(i)} y^{4}
\end{array}
$$

Let's suppose I know the solution at the nodes $\left\{x_{j}, y_{j}\right\}_{j=1}^{12}$:

$$
u_{j}=u\left(x_{j}, y_{j}\right)
$$

Then the nodes should define uniquely the plane, that is, the values for

$$
\left\{a_{k}^{(i)}\right\}_{j=1}^{12}
$$

$d=4$

Higher order piecewise polynomials

The a general piecewise polynomial takes the form

Different discretisations of the functional space

Shape functions in C^{0} and in C^{1} on 1D and or on 2D (quadratic or triangular) elements, the Lagrange polynomials and the Hermite polynomials, number of basis functions, conforming elements... (see lecture, or more in [1], [2], [3])

Picture source: http://fenicsproject.org/about/features.html\#features
[1]: Brenner\&Scott: The Mathematical Theory of FEM, Chapter 3 - Construction of the finite element space
[2]: Zienkiewicz\&Taylor: The Finite Elment Method, Chapter 8. ,Standard' and ,hierarchical' element shape functions: some general families of C_0 continuity [3]: Logg\&Mardal\&Wells: Automated Solution of Differential Equations by the FEMThe Fenics Book, Chapter 3: Common and unusual finite elements

1D Example with linear nodal basis

$$
\begin{aligned}
& p(x)=a x \\
& \text { Strong form: }-E A \frac{d^{2} u}{d x^{2}}=p(x) \\
& \\
& \quad u(0)=u(l)=0
\end{aligned}
$$

Weak form:

$$
\int_{0}^{l} E A \frac{d u}{d x} \frac{d \psi}{d x} d x=\int_{0}^{l} p(x) \psi(x) d x
$$

Discretisation of the weak form:

$$
\begin{aligned}
& u(\mathbf{x}) \approx \sum_{i=1}^{4} u_{i} \psi_{i}(\mathbf{x}) \\
& \sum_{i=1}^{4} u_{j} \underbrace{E A \int_{l} \frac{\partial \psi_{i}(x)}{\partial x} \frac{\partial \psi_{j}(x)}{\partial x}}_{K_{i j}} d x \underbrace{=\int_{l} p(x) \psi_{j}(x)}_{f_{j}} d x
\end{aligned}
$$

Not efficient to calculate all the elements of the stiffness matrix one by one!

Calculate element stiffness matrices and assemble

1D Example with linear nodal basis

FEM and its convergence | Dr. Noemi Friedman | PDE 2| Seite 22

1D Example with linear nodal basis

instead:
Compute stiffness matrix elementwisely and then assemble
$f_{4}^{e}(1)=\int_{\Omega_{4}} p(x) \psi_{4}(x) d x$
$f_{4}{ }^{e}(2)=\int_{\Omega_{4}} p(x) \psi_{5}(x) d x$

Non-degenerate triangulation

Diameter of a set:

$$
\operatorname{diam}(S)=\sup \left\{\left\|z_{1}-z_{2}\right\|: z_{1}, z_{2} \in S\right\}
$$

Diameter of a triangle:
D_{T} : length of longest side
$\boldsymbol{d}_{\boldsymbol{T}}$: largest circle contained in T
$\frac{d_{T}}{D_{T}}$: measures how skinny the triangle is
Other definitions
T_{h} :triangulation (set of triangles), with
h : maximal diameter of any triangle in T_{h} (the length of longest side)
Nondegenerate triangulation:

$$
\frac{d_{T}}{\operatorname{diam}(T)} \geq \rho
$$

for all the triangles in the triangulation.

Convergence using piecewise polynomials

$$
\text { error }=\left\|u-u_{h}\right\|_{E} \leq\|u-v\|_{E} \quad \forall v \in V_{h}
$$

$$
\left\|u-u_{h}\right\| \leq \frac{M}{\delta}\|u-v\| \quad \forall v \in V_{h}
$$

Let's compare the best approximation u_{h} with the proximodel with piecewise linear functions:

$$
\begin{gathered}
u_{I}(x)=\sum_{j=1}^{n} u_{I j} \Psi_{j}(x) \quad u_{I} \in V_{h} \\
\left\|u-u_{h}\right\|_{E} \leq\left\|u-u_{I}\right\|_{E} \\
\left\|u-u_{h}\right\| \leq \frac{M}{\delta}\left\|u-u_{I}\right\|
\end{gathered}
$$

If I can bound the expression in the r.h.s, I also bound the errors.

Convergence using piecewise linear functions

Theorem:

$\left\{T_{h}\right\}$: non-degenerate family of triangulations of a polygonal domain $\Omega \in R^{2}$ $u \in H_{2}$
u_{1} : piecewise linear approximation
There exists a constant C depending on Ω and the value ρ (see definition of nondegenerate triangulation) such that

$$
\begin{gathered}
\left\|u-u_{I}\right\|_{L 2} \leq C h^{2}|u|_{H 2} \\
\left\|u-u_{I}\right\|_{H 1} \leq C h|u|_{H 2} \\
\text { where: } \\
|u|_{H^{2}(\Omega)}^{2}=\int_{\Omega}\left\{\left|\frac{\partial^{2} u}{\partial x^{2}}\right|^{2}+2\left|\frac{\partial^{2} u}{\partial x \partial y}\right|^{2}+\left|\frac{\partial^{2} u}{\partial y^{2}}\right|^{2}\right\} \\
\text { (seminorm) }
\end{gathered}
$$

Convergence using piecewise linear functions

$\frac{h}{\sqrt{2}}$	$\left\\|u-u_{I}\right\\|_{L^{2}(\Omega)}$	$\left\\|u-u_{I}\right\\|_{H^{1}(\Omega)}$
$5.0000 \cdot 10^{-1}$	$5.6484 \cdot 10^{-2}$	$4.1361 \cdot 10^{-1}$
$2.5000 \cdot 10^{-1}$	$1.6022 \cdot 10^{-2}$	$2.2448 \cdot 10^{-1}$
$1.2500 \cdot 10^{-1}$	$4.1305 \cdot 10^{-3}$	$1.1450 \cdot 10^{-1}$
$6.2500 \cdot 10^{-2}$	$1.0405 \cdot 10^{-3}$	$5.7536 \cdot 10^{-2}$

Source: Gockenbach: Understanding and Implementing FEM

Convergence using piecewise higher-order polynomials

Theorem:

$\left\{T_{h}\right\}$: non-degenerate family of triangulations of a polygonal domain $\Omega \in R^{2}$ $u \in H_{p+1}$
$u_{I, p}$: piecewise d-order approximation
There exists a constant C depending on Ω and the value ρ such that

$$
\begin{gathered}
\left\|u-u_{I}\right\|_{L 2} \leq C h^{d+1}|u|_{H d+1} \\
\left\|u-u_{I}\right\|_{H 1} \leq C h^{d}|u|_{H d+1} \\
\text { where: } \\
|u|_{H^{d+1}(\Omega)}^{2}=\sum_{i+j=d+1} \int_{\Omega}\left|\frac{\partial^{d+1} u}{\partial x^{i} \partial y^{j}}\right|^{2}
\end{gathered}
$$

See proof in [3]: Brenner\&Scott: The Mathematical Theory of FEM, Chapter 4.4

Convergence using piecewise higher-order polynomials

$d=2$

$\frac{h}{\sqrt{2}}$	$\left\\|u-u_{I}\right\\|_{L^{2}(\Omega)}$	$\left\\|u-u_{I}\right\\|_{H^{\prime}(\Omega)}$
$5.0000 \cdot 10^{-1}$	$7.8059 \cdot 10^{-3}$	$1.2655 \cdot 10^{-1}$
$2.5000 \cdot 10^{-1}$	$1.0413 \cdot 10^{-3}$	$3.3340 \cdot 10^{-2}$
$1.2500 \cdot 10^{-1}$	$1.3227 \cdot 10^{-4}$	$8.4444 \cdot 10^{-3}$
$6.2500 \cdot 10^{-2}$	$1.6600 \cdot 10^{-5}$	$2.1180 \cdot 10^{-3}$

$d=4$

$\frac{h}{\sqrt{2}}$	$\left\\|u-u_{I}\right\\|_{L^{2}(\Omega)}$	$\left\\|u-u_{I}\right\\|_{H^{1}(\Omega)}$
$5.0000 \cdot 10^{-1}$	$1.1860 \cdot 10^{-4}$	$3.6516 \cdot 10^{-3}$
$2.5000 \cdot 10^{-1}$	$3.8542 \cdot 10^{-6}$	$2.3635 \cdot 10^{-4}$
$1.2500 \cdot 10^{-1}$	$1.2162 \cdot 10^{-7}$	$1.4901 \cdot 10^{-5}$
$6.2500 \cdot 10^{-2}$	$3.8098 \cdot 10^{-9}$	$9.3335 \cdot 10^{-7}$

Source: Gockenbach: Understanding and Implementing FEM

Convergence using piecewise higher-order polynomials

$$
\begin{aligned}
& \left\|u-u_{I}\right\|_{L^{2}} \leq C h^{d+1}|u|_{H^{d+1}} \\
& \left\|u-u_{I}\right\|_{H^{1}} \leq C h^{d}|u|_{H^{d+1}} \\
& \xi \\
& \left\|u-u_{h}\right\|_{E} \leq\left\|u-u_{I}\right\|_{E} \quad \square \text { ? } \\
& \left\|u-u_{h}\right\|_{H^{1}} \leq \frac{M}{\delta}\left\|u-u_{I}\right\|_{H^{1}} \leq \frac{M}{\delta} C h^{d}|u|_{H^{d+1}}=O\left(h^{d}\right) \\
& \text { convert to homogeneous } \\
& \text { problem: } \\
& G \text { :known function, } G=g \text { on } \Gamma_{D} \\
& \hat{u} \text { :new function that we look for } \\
& u=G+\hat{u} \\
& \int_{\Omega} \kappa(\mathbf{x}) \nabla \hat{u}(\mathbf{x}) \cdot \nabla v(\mathbf{x}) d \Omega=\int_{\Omega} f(\mathbf{x}) v(\mathbf{x}) d \Omega+\int_{\Gamma_{N}} h v(\mathbf{x}) d \Gamma-\int_{\Omega} \kappa(\mathbf{x}) \nabla G(\mathbf{x}) \cdot \nabla v(\mathbf{x}) d \Omega \\
& \text { from natural/Neumann BC }
\end{aligned}
$$

Convergence using piecewise higher-order polynomials

First let's suppose homogenous Dirichlet condition:

$$
\begin{aligned}
& \int_{\Omega} \kappa(\mathbf{x}) \nabla u(\mathbf{x}) \cdot \nabla v(\mathbf{x}) d \Omega=\int_{\Omega} f(\mathbf{x}) v(\mathbf{x}) d \Omega+\int_{\Gamma_{N}} h v(\mathbf{x}) d \Gamma \\
& \left\|u-u_{h}\right\|_{E} \leq\left\|u-u_{I}\right\|_{E}
\end{aligned}
$$

If

$$
\begin{aligned}
& 0<k_{0} \leq \kappa \leq k_{1} \\
& \left\|u-u_{I}\right\|_{E}=a\left(u-u_{I}, u-u_{I}\right) \leq M\left\|u-u_{I}\right\|_{H^{1}} \leq C h^{d}|u|_{H^{d+1}}
\end{aligned}
$$

One can also show for inhomogeneous boundary conditions:

$$
\left\|u-u_{h}\right\|_{E} \leq \sqrt{2} C h^{d}\|u\|_{H^{d+1}} \quad[\text { Chapter 5.3] }
$$

Variational crime: curved boundary

Source: Gockenbach: Understanding and Implementing FEM

Variational crimes \Rightarrow Céa's lemma and the error estimators may not be valid anymore
but: additional errors can be also estimated (Strang)

Variational crime: numerical integration

Discretisation of the weak form:
$p(x)=a x$
$u(\mathbf{x}) \approx \sum_{i=1}^{4} u_{i} \psi_{i}(\mathbf{x})$

For more complicated trial functions, $\mathrm{p}(\mathrm{x})$ and nonconstant $\mathrm{EA}(\mathrm{x})$ difficult to calculate

Strong form:
$-E A \frac{d^{2} u}{d x^{2}}=p(x) \quad u(0)=u(l)=0$
Weak form:

$$
\int_{0}^{l} E A \frac{d u}{d x} \frac{d \psi}{d x} d x=\int_{0}^{l} p(x) \psi(x) d x \quad \forall \psi(x)
$$

Example:

$$
f_{j}=\int_{l} p(x) \psi_{j}(x) d x \approx \sum_{k=1}^{n} \omega_{k} p\left(x_{k}\right) \psi_{j}\left(x_{k}\right)
$$

Numerical integration
(example: Gauß-quadrature)

Local/ coordinate system, isoparametric mapping 1D

Shape functions:

$$
\begin{gathered}
N_{1}(\xi)=1-\xi \\
N_{2}(\xi)=\xi
\end{gathered}
$$

Transformation from local to global coordinates:

$$
x(\xi)=x_{i} N_{1}(\xi)+x_{i+1} N_{2}(\xi)=\left[N_{1}(\xi) \quad N_{2}(\xi)\right]\left[\begin{array}{c}
x_{i} \\
x_{i+1}
\end{array}\right] \longmapsto
$$

Stiffness matrix with isoparametric elements:
functions of lower order: subparametric functions of higher order: superparametric

$$
\begin{array}{ll}
K_{4}{ }^{e}(k, l)=E A \int_{\Omega_{4}} \frac{\partial \psi_{i}(x)}{x} \frac{\partial \psi_{j}(x)}{\partial x} d x=E A \int_{\Omega_{4}} \frac{\partial N_{k}(\xi)}{\partial \xi} \frac{\partial \xi}{\partial x} \frac{\partial N_{l}(\xi)}{\partial \xi} \frac{\partial \xi}{\partial x} d x & \underbrace{\left(\frac{d x}{d \xi}\right)^{-1}}_{\left(\frac{d x}{d \xi}\right)^{-1}} \\
K_{4}{ }^{e}(k, l)=E A \int_{0}^{1} \frac{\partial N_{k}(\xi)}{\partial \xi}\left(\frac{d x}{d \xi}\right)^{-1} \frac{\partial N_{l}(\xi)}{\partial \xi}\left(\frac{d x}{d \xi}\right)^{-1}\left|\frac{d x(\xi)}{d \xi}\right| d \xi & k, l \in[1,5]
\end{array}
$$

Technische
Universität Braunschweig

FEM and its convergence | Dr. Noemi Friedman | PDE 2| Seite 34

Local/ coordinate system, isoparametric mapping 2D triangular elements

Basis functions:

$$
\begin{aligned}
& N_{1}(\xi, \eta)=\xi \\
& N_{2}(\xi, \eta)=\eta \\
& N_{3}(\xi, \eta)=1-\xi-\eta
\end{aligned}
$$

Transformation from local to global coordinates:

$\binom{x_{g l o b}}{y_{g l o b}}(\xi, \eta)=N_{1}(\xi, \eta)\binom{x_{1}}{y_{1}}+N_{2}(\xi, \eta)\binom{x_{2}}{y_{2}}+N_{3}(\xi, \eta)\binom{x_{3}}{y_{3}}$

$$
\left[\begin{array}{l}
x_{\text {glob }}(\xi, \eta) \\
y_{\text {glob }}(\xi, \eta)
\end{array}\right]=\left[\begin{array}{lllll}
N_{1}(\xi, \eta) & & N_{2}(\xi, \eta) & N_{3}(\xi, \eta) & \\
& N_{1}(\xi, \eta) & N_{2}(\xi, \eta) & & N_{3}(\xi, \eta)
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
x_{2} \\
y_{2} \\
x_{3} \\
y_{3}
\end{array}\right]
$$

Stiffness matrix:

$$
\mathbf{K}_{i j}=\int_{\Omega_{e l m}}\binom{\frac{\partial N_{j}}{\partial x}}{\frac{\partial N_{j}}{\partial y}} \cdot\binom{\frac{\partial N_{i}}{\partial x}}{\frac{\partial N_{i}}{\partial y}} d \Omega_{e l m} \quad i, j \in[1,2,3]
$$

Local/ coordinate system, isoparametric mapping 2D triangular elements

Stiffnecc matrix-
$\mathbf{K}_{i j}=\int_{\Omega_{e l m}}\binom{\frac{\partial N_{j}}{\partial x_{j}}}{\frac{\partial N_{j}}{\partial y}} \cdot\binom{\frac{\partial N_{i}}{\partial x_{i}}}{\frac{\partial N_{i}}{\partial y}} d \Omega_{e l m} \quad i, j \in[1,2,3]$
Stiffness matrix with local coordinates:

$$
\boldsymbol{K}_{i j}=\int_{0}^{1} \int_{0}^{1-\eta} J^{-T}\left[\begin{array}{l}
\frac{\partial N_{j}}{\partial \xi} \\
\frac{\partial N_{j}}{\partial \eta}
\end{array}\right] \cdot J^{-T}\left[\begin{array}{l}
\frac{\partial N_{i}}{\partial \xi} \\
\frac{\partial N_{i}}{\partial \eta}
\end{array}\right] \boldsymbol{J | d \xi d \eta} \quad \begin{aligned}
& \text { substitution rule } \\
& \text { detenant should not be negative or zero! } \\
& i, j \in[1,2,3]
\end{aligned}
$$

where:

$$
\mathbf{J}=\left(\begin{array}{ll}
\frac{\partial x_{g l o b}}{\partial \xi} & \frac{\partial x_{g l o b}}{\partial \eta} \\
\frac{\partial y_{g l o b}}{\partial \xi} & \frac{\partial y_{g l o b}}{\partial \eta}
\end{array}\right)
$$

$$
\mathbf{J}=\left(\begin{array}{ll}
\sum_{i=1}^{4} \frac{\partial N_{i}(\xi, \eta)}{\partial \xi} x_{i} & \sum_{i=1}^{4} \frac{\partial N_{i}(\xi, \eta)}{\partial \eta} x_{i} \\
\sum_{i=1}^{4} \frac{\partial N_{i}(\xi, \eta)}{\partial \xi} y_{i} & \sum_{i=1}^{4} \frac{\partial N_{i}(\xi, \eta)}{\partial \eta} y_{i}
\end{array}\right)
$$

$$
\begin{aligned}
& \frac{\partial N}{\partial \xi}=\frac{\partial N}{\partial x} \frac{\partial x_{g l o b}}{\partial \xi}+\frac{\partial N}{\partial y} \frac{\partial y_{g l o b}}{\partial \xi} \\
& \frac{\partial N}{\partial}=\frac{\partial N}{2} \frac{\partial x_{g l o b}}{\partial N}+\frac{\partial N}{\partial} \underline{\partial y_{g l o b}}
\end{aligned} \quad\binom{\frac{\partial N}{\partial \xi}}{\frac{\partial N}{\partial \eta}}=\mathbf{J}^{T}\binom{\frac{\partial N}{\partial x}}{\frac{\partial N}{\partial y}}
$$

$$
\mathbf{J}^{-T}\binom{\frac{\partial N}{\partial \xi}}{\frac{\partial N}{\partial \eta}}=\binom{\frac{\partial N}{\partial x}}{\frac{\partial N}{\partial y}}
$$

Local/ coordinate system, isoparametric mapping 2D triangular elements, example

Transformation from local to global coordinates (isoparametric mapping):

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{\text {glob }}(\xi, \eta) \\
y_{\text {glob }}(\xi, \eta)
\end{array}\right]=\left[\begin{array}{llllll}
N_{1}(\xi, \eta) & & N_{2}(\xi, \eta) & & N_{3}(\xi, \eta) & \\
& N_{1}(\xi, \eta) & & N_{2}(\xi, \eta) & & N_{3}(\xi, \eta)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
y_{1} \\
x_{2} \\
y_{2} \\
x_{3} \\
y_{3}
\end{array}\right]} \\
& {\left[\begin{array}{l}
x(\xi, \eta) \\
y(\xi, \eta)
\end{array}\right]=\left[\begin{array}{lllll}
(1-\xi-\eta) & & (1-\xi-\eta) & \xi & \\
& & & \eta
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
7 \\
1 \\
9 \\
7
\end{array}\right]}
\end{aligned}
$$

Local/ coordinate system, isoparametric mapping 2D triangular elements, example

Stiffness matrix with local coordinates:
$\boldsymbol{K}_{i j}=\int_{0}^{1} \int_{0}^{1-\eta} \boldsymbol{J}^{-T}\left[\begin{array}{c}\frac{\partial N_{j}}{\partial \xi} \\ \frac{\partial N_{j}}{\partial \eta}\end{array}\right] \cdot \boldsymbol{J}^{-\boldsymbol{T}}\left[\begin{array}{c}\frac{\partial N_{i}}{\partial \xi} \\ \frac{\partial N_{i}}{\partial \eta}\end{array}\right]|\boldsymbol{J}| d \xi d \eta \quad i, j \in[1,2,3]$
$\mathbf{J}=\left(\begin{array}{cc}\frac{\partial x_{g l o b}}{\partial \xi} & \frac{\partial x_{g l o b}}{\partial \eta} \\ \frac{\partial y_{g l o b}}{\partial \xi} & \frac{\partial y_{g l o b}}{\partial \eta}\end{array}\right)$

Condition number of the stiffness matrix

Condition number

What happens with the roundoff errors in $\widehat{\mathbf{K}}=\mathbf{L U}=\mathbf{K}+\boldsymbol{\delta} \mathbf{K} \neq \mathbf{K}$

$$
\mathbf{K u}=\mathbf{f} \quad(\mathbf{K}+\boldsymbol{\delta} \boldsymbol{K}) \widehat{\mathrm{u}}=\mathbf{f}+\boldsymbol{\delta} \mathbf{f} \quad \frac{\|\widehat{\mathrm{u}}-\mathbf{u}\|}{\|\mathbf{u}\|} \leq \frac{\lambda_{\max }}{\lambda_{\min }} \frac{\|\mathbf{\delta} \mathbf{f}\|}{\|\mathbf{f}\|} \quad \frac{\lambda_{\max }}{\lambda_{\min }}=\kappa(\mathbf{K})
$$

Condition number of \mathbf{K} with nodal bases with 2D triangular mesh: $O\left(h^{-2}\right)$:

For the Poisson equation

$$
\sum_{i=1}^{N} c_{i} \underbrace{\int_{\Omega} \nabla \Psi_{i}(\mathbf{x}) \cdot \nabla \Psi_{j}(\mathbf{x}) d \Omega}_{K_{i j}}=\int_{\Omega} f(\mathbf{x}) \Psi_{j}(\mathbf{x}) d \Omega
$$

turns il-conditioned for refined mesh!!!

