

Numerical methods for PDEs FEM – convergence, a-priori error estimates, piecewise polynomials

Dr. Noemi Friedman

Contents of the course

- Fundamentals of functional analysis
- Abstract formulation FEM
- Spatial (meshing) and functional discretization (the basis functions)
- Convergence, regularity
- Variational crimes
- Implementation
- Error indicators/estimation
- Adaptivity
- Mixed formulations (e.g. Stokes)
- Stabilisation for flow problems

Abstract formulation, examples

- FEM and piecewise polynomials
- Non-degenerate triangulation, refinement of triangulation
- Convergence using piecewise linear functions
- Convergence using piecewise higher order elements
- Implementation, sparsity of the stiffnes matrix
- Variational crime: numerical integration
- Variational crime: curved boundaries

Recap: boundedness of the error of Galerkin method

 $a(u-u_h, v) = 0 \quad \forall v \in V_h$

If $a(\cdot, \cdot)$ is an inner product, it means that the approximation is an orthogonal projection to the subspace in the energy norm:

error =
$$\|u(\mathbf{x}) - u_h(\mathbf{x})\|_E \le \|u(\mathbf{x}) - v(\mathbf{x})\|_E \quad \forall v(\mathbf{x}) \in V_h$$

According to Céa's theorem (see prove at the lecture note), even without $a(\cdot, \cdot)$ being symmetric, the error of the approximation of Galerkin will be allways bounded:

$$\|u - u_h\| \le \frac{M}{\delta} \|u - v\| \quad \forall v \in V_h$$

Where *M* and δ are constants from the conditions of boundedness and V-ellipticity of the bilinear term $a(\cdot, \cdot)$:

 $a(u,v) \le M \|u\| \|v\|$ $a(u,u) \ge \delta \|u\|^2$

echnische

[Chapter 4]

Recap: what do we have to solve?

FEM: Galerkin method where Ψ_j are piecewise polynomials

Main goals when implementing:

- efficient calculation of K
- efficient calculation of f
- solve Kc=f efficiently
- true solution is approximated well (error is small enough)

piecewise polynomials

Piecewise polynomials and the FEM

piecewise polynomials: a function that is defined by a polynomial on each subdomain **mesh**: the collection of subdomains

nodal basis:

for Poisson equation we have to show that $P_h^1 \subset H_1$ when it's not satisfied it is not a ,conforming element method'

Recap: Why linear piecewise polynomials defined on a triangulation are in the subspace [Chapter 4.1.1]

Suppose, that uniqueness and existence can be shown in H_1

Show, that the space of all continious piecewise linear functions defined on the triangulation T_h is a subspace of H_1 .

The continious piecewise linear functions can be writen in the general form:

 $u = a_i + b_i x + c_i y \qquad (x, y) \in T_i$

$$a_j + b_j x + c_j y = a_i + b_i x + c_i y \quad \forall (x, y) \in e = T_i \cap T_j,$$

We have to show that all us are in H_1 :

•
$$\int_{\Omega} u^2 < \infty$$
 $\Omega = \cup_i T_i$

•
$$\int_{\Omega} \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 < \infty$$

echnische

Braunschweig

Recap: Why linear piecewise polynomials defined on a triangulation are in the subspace

1) First let's show that

$$\int_\Omega u^2 < \infty$$

$$\int_{\Omega} u^2 = \sum_i \int_{T_i} (a_i + b_i x + c_i y)^2 < \sum_i \int_{T_i} \max(a_i + b_i x + c_i y)^2 |T_i| < \infty$$

2.)Show that $\int_{\Omega} u^2 < \infty$ $\Omega = \cup_i T_i$

There is no derivatives in a strong sense, but let's see whether these give weak derivatives:

$$g_1 := \frac{\partial u}{\partial x} = b_i$$
 $(x, y) \in int(T_i)$
 $g_2 := \frac{\partial u}{\partial y} = c_i$ $(x, y) \in int(T_i)$

Technische Universität Braunschweig

Recap: Why linear piecewise polynomials defined on a triangulation are in the subspace

$$\int_{\Omega} u \frac{\partial v}{\partial x} = -\int_{\Omega} v g_1 \quad \text{and} \quad \int_{\Omega} u \frac{\partial v}{\partial y} = -\int_{\Omega} v g_2 \text{ holds.} \quad \text{We prove approach is same.}$$

We prove only this, because the approach of the derivation for g_2 is same.

Let's first look at the left hand side of the equation:

are weak derivatives if for any $v \in C_0^{\infty}$

On th

Braunschweig

$$\int_{\Omega} u \frac{\partial v}{\partial x} = \sum_{i} \int_{T_{i}} u \frac{\partial v}{\partial x} = \sum_{i} \left\{ \int_{\partial T_{i}} uv \cdot n_{1} + \int_{T_{i}} \frac{\partial u}{\partial x} v \right\}$$

$$\int_{\partial T_{i}} uv \cdot n_{1} = 0 \text{ on the edges of the boundary, and } \int_{\partial T_{i}} uv \cdot n_{1} = -\int_{\partial T_{j}} uv \cdot n_{1}$$
The common edges of neighboring triangles T_{i} and T_{j}

$$\int_{T_{i}} \frac{\partial u}{\partial x} v = \int_{T_{i}} b_{i} v$$

$$\int_{T_{i}} \frac{\partial u}{\partial x} v = \int_{T_{i}} b_{i} v$$
FEM and its convergence | Dr. Noemi Friedman | PDE 2| Seite 9

Recap: Why linear piecewise polynomials defined on a triangulation are in the subspace

$$\int_{\Omega} u \frac{\partial v}{\partial x} = -\int_{\Omega} v g_1$$

The left hand side of the equation:

$$\int_{\Omega} u \frac{\partial v}{\partial x} = -\sum_{i} \left\{ \int_{T_{i}} b_{i} v \right\}$$

The left hand side of the equation:

$$-\int_{\Omega} v g_1 = -\sum_i \left\{ \int_{T_i} b_i v \right\}$$

[Chapter 4.1]

Piecewise polynomials and the FEM

$$v \in P_h^{(1)} \implies v(x, y) = a_i + b_i x + c_i y \quad (x, y) \in T_i$$

Derivatives in the classical sense:

$$\frac{\partial v}{\partial x}(x, y) = b_i, \ (x, y) \in int(T_i)$$

$$\frac{\partial v}{\partial y}(x, y) = c_i, \ (x, y) \in int(T_i).$$

$$weak derivatives of v$$

(see proof in Gockenbach Chapter 4.1)

$$\frac{25}{26} \frac{27}{28} \frac{29}{30} \frac{31}{32}$$

$$\frac{11}{18} \frac{19}{20} \frac{21}{22} \frac{23}{24}$$

$$\frac{9}{10} \frac{11}{12} \frac{14}{16} \frac{15}{6} \frac{7}{8}$$

$$\frac{10}{12} \frac{10}{12} \frac{10}{14} \frac{10}{16} \frac{10}{10} K_{1,19} = \int_{\Omega} \nabla \Psi_1(\mathbf{x}) \cdot \nabla \Psi_{19}(\mathbf{x}) d\Omega = 0$$

Technische Universität Braunschweig 5

[Chapter 4.1]

Sparsity of the stiffness matrix

[Chapter 4.2]

Quadratic piecewise polynomials

[Chapter 4.2]

Quadratic piecewise polynomials

[Chapter 4.3]

Cubic piecewise polynomials

Technische Universität Braunschweig

Requirements for polynomial of degree *d* in 2D (two variables)

• number of nodes per edge (to guarantee continuity of the ansatz function):

d+1 $(d-1 \text{ in between the vertices}) \rightarrow 3d \text{ on the edges} _1 _1 ____1$

Х

 x^2 xy y^2 -

x³ x²y xy² y³___

• Number of parameters needed to define 2D polynomials

 $1 + 2 + \dots + (d + 1) = \frac{(d + 1)(d + 2)}{2}$

Let's check setup for d = 4 in 2D (two variables)

• number of nodes per edge (to guarantee continuity of the ansatz function):

$$d + 1 = 5$$

$$(d - 1 = 3 \text{ in between the vertices}) \rightarrow 3d = 12 \text{ on the edges} \qquad 1 \qquad ---- ca$$

$$x \qquad y \qquad ---- Lir$$
Number of parameters needed to define 2D polynomials
$$x^{2} \qquad xy \qquad y^{2} \qquad ----$$

$$1 + 2 + \dots + (d + 1) = \frac{(d + 1)(d + 2)}{2} \qquad x^{3} \qquad x^{2}y \qquad xy^{2} \qquad y^{3} \qquad -----$$

$$\frac{(d + 1)(d + 2)}{2} = 15$$

• Number of nodes in the middle 15 - 12 = 3

$$d = 4$$

The a general piecewise polynomial takes the form

$$\begin{split} u &= a_1^{(i)} + (x, y) \in T_i \\ &+ a_2^{(i)} x + a_3^{(i)} y + (x, y) \in T_i \\ &+ a_4^{(i)} x^2 + a_5^{(i)} xy + a_6^{(i)} y^2 + (x, y) + a_6^{(i)} x^2 + a_6^{(i)} x^3 + a_6^{(i)} x^3 + a_8^{(i)} x^2 y + a_9^{(i)} xy^2 + a_{10}^{(i)} y^3 + (x, y) + a_{11}^{(i)} x^4 + a_{12}^{(i)} x^3 y + a_{13}^{(i)} x^2 y^2 + a_{14}^{(i)} xy^3 + a_{14}^{(i)} y^4 \end{split}$$

Let's suppose I know the solution at the nodes $\{x_j, y_j\}_{j=1}^{12}$:

$$u_j = u(x_j, y_j)$$

Then the nodes should define uniquely the plane, that is, the values for

 $\left\{a_k^{(i)}\right\}_{j=1}^{12}$

d = 4

Different discretisations of the functional space

Shape functions in C^0 and in C^1 on 1D and or on 2D (quadratic or triangular) elements, the Lagrange polynomials and the Hermite polynomials, number of basis functions, conforming elements... (see lecture, or more in [1], [2], [3])

Picture source: http://fenicsproject.org/about/features.html#features

[1]: Brenner&Scott: The Mathematical Theory of FEM, Chapter 3 – Construction of the finite element space

[2]: Zienkiewicz&Taylor: The Finite Elment Method, Chapter 8. ,Standard' and ,hierarchical' element shape functions: some general families of C_0 continuity
[3]: Logg&Mardal&Wells: Automated Solution of Differential Equations by the FEM-The Fenics Book, Chapter 3: Common and unusual finite elements

Technische Universität Braunschweig

1D Example with linear nodal basis

Discretisation of the weak form:

 $u(\mathbf{x}) \approx \sum_{i=1}^{4} u_i \psi_i(\mathbf{x})$ $\sum_{i=1}^{4} u_j EA \int_l \frac{\partial \psi_i(x)}{\partial x} \frac{\partial \psi_j(x)}{\partial x} dx = \int_l p(x) \psi_j(x) dx$ K_{ij}

p(x) = axStrong form: $-EA \frac{d^2 u}{dx^2} = p(x)$ u(0) = u(l) = 0Weak form:

$$\int_0^l EA \frac{du}{dx} \frac{d\psi}{dx} dx = \int_0^l p(x)\psi(x) dx$$

Not efficient to calculate all the elements of the stiffness matrix one by one!

Calculate element stiffness matrices and assemble

1D Example with linear nodal basis

Braunschweig

1D Example with linear nodal basis

Non-degenerate triangulation

Diameter of a set:

diam(S) = sup {
$$||z_1 - z_2||$$
 : $z_1, z_2 \in S$ }

Diameter of a triangle:

 D_T : length of longest side d_T : largest circle contained in T $\frac{d_T}{D_T}$: measures how skinny the triangle is

Other definitions T_h :triangulation (set of triangles), with h: maximal diameter of any triangle in T_h (the length of longest side)

Nondegenerate triangulation:

$$\frac{d_T}{\operatorname{diam}(T)} \ge \rho$$

for all the triangles in the triangulation.

Fechnische

Convergence using piecewise polynomials

error =
$$||u - u_h||_E \le ||u - v||_E \quad \forall v \in V_h$$

 $||u - u_h|| \le \frac{M}{\delta} ||u - v|| \quad \forall v \in V_h$

Let's compare the best approximation u_h with the proximodel with piecewise linear functions:

$$u_{I}(x) = \sum_{j=1}^{n} u_{Ij} \Psi_{j}(x) \quad u_{I} \in V_{h}$$
$$\|u - u_{h}\|_{E} \leq \|u - u_{I}\|_{E}$$
$$\|u - u_{h}\| \leq \frac{M}{\delta} \|u - u_{I}\|$$

If I can bound the expression in the r.h.s, I also bound the errors.

echnische

raunschweig

Convergence using piecewise linear functions

Theorem:

echnische

Braunschweig

 $\{T_h\}$: non-degenerate family of triangulations of a polygonal domain $\Omega \in \mathbb{R}^2$ $u \in H_2$

 u_I : piecewise linear approximation

There exists a constant C depending on Ω and the value ρ (see definition of nondegenerate triangulation) such that

$$|u - u_I||_{L^2} \le Ch^2 |u|_{H^2}$$

$$||u - u_I||_{H_1} \le Ch|u|_{H_2}$$

where:

$$|u|_{H^{2}(\Omega)}^{2} = \int_{\Omega} \left\{ \left| \frac{\partial^{2} u}{\partial x^{2}} \right|^{2} + 2 \left| \frac{\partial^{2} u}{\partial x \partial y} \right|^{2} + \left| \frac{\partial^{2} u}{\partial y^{2}} \right|^{2} \right\}$$
(seminorm)

[Chapter 5.1]

Convergence using piecewise linear functions

$\frac{h}{\sqrt{2}}$	$\ u-u_I\ _{L^2(\Omega)}$	$\ u-u_I\ _{H^1(\Omega)}$
$5.0000 \cdot 10^{-1}$	5.6484 · 10 ⁻²	4.1361 · 10 ⁻¹
$2.5000 \cdot 10^{-1}$	$1.6022 \cdot 10^{-2}$	$2.2448 \cdot 10^{-1}$
$1.2500 \cdot 10^{-1}$	$4.1305 \cdot 10^{-3}$	$1.1450 \cdot 10^{-1}$
$6.2500 \cdot 10^{-2}$	$1.0405 \cdot 10^{-3}$	$5.7536 \cdot 10^{-2}$

Source: Gockenbach: Understanding and Implementing FEM

[Chapter 5.2] Convergence using piecewise higher-order polynomials

Theorem:

Technische

Braunschweig

 $\{T_h\}$: non-degenerate family of triangulations of a polygonal domain $\Omega \in \mathbb{R}^2$ $u \in H_{p+1}$

 $u_{I,p}$: piecewise d-order approximation

There exists a constant C depending on Ω and the value ρ such that

$$\|u - u_I\|_{L^2} \le Ch^{d+1} \|u\|_{Hd+1}$$

$$||u - u_I||_{H1} \le Ch^d |u|_{Hd+1}$$

where:

$$|u|_{H^{d+1}(\Omega)}^2 = \sum_{i+j=d+1} \int_{\Omega} \left| \frac{\partial^{d+1} u}{\partial x^i \partial y^j} \right|^2$$

See proof in [3]: Brenner&Scott: The Mathematical Theory of FEM, Chapter 4.4

[Chapter 5.2] Convergence using piecewise higher-order polynomials

d = 2

$\frac{h}{\sqrt{2}}$	$\ u-u_I\ _{L^2(\Omega)}$	$\ u-u_I\ _{H^1(\Omega)}$
$5.0000 \cdot 10^{-1}$	$7.8059 \cdot 10^{-3}$	$1.2655 \cdot 10^{-1}$
$2.5000 \cdot 10^{-1}$	$1.0413 \cdot 10^{-3}$	$3.3340 \cdot 10^{-2}$
$1.2500 \cdot 10^{-1}$	$1.3227 \cdot 10^{-4}$	$8.4444 \cdot 10^{-3}$
$6.2500 \cdot 10^{-2}$	$1.6600 \cdot 10^{-5}$	$2.1180 \cdot 10^{-3}$

d = 4

$\frac{h}{\sqrt{2}}$	$\ u-u_I\ _{L^2(\Omega)}$	$\ u-u_I\ _{H^1(\Omega)}$
$5.0000 \cdot 10^{-1}$	1.1860 · 10 ⁻⁴	$3.6516 \cdot 10^{-3}$
$2.5000 \cdot 10^{-1}$	$3.8542 \cdot 10^{-6}$	$2.3635 \cdot 10^{-4}$
$1.2500 \cdot 10^{-1}$	$1.2162 \cdot 10^{-7}$	$1.4901 \cdot 10^{-5}$
$6.2500 \cdot 10^{-2}$	$3.8098 \cdot 10^{-9}$	9.3335 · 10 ⁻⁷

Source: Gockenbach: Understanding and Implementing FEM

Convergence using piecewise higher-order polynomials

$$\begin{aligned} \|u - u_{I}\|_{L^{2}} &\leq Ch^{d+1} \|u\|_{H^{d+1}} \\ \|u - u_{I}\|_{H^{1}} &\leq Ch^{d} \|u\|_{H^{d+1}} \\ & & & & \\ \|u - u_{h}\|_{E} \leq \|u - u_{I}\|_{E} & & ? \\ \|u - u_{h}\|_{H^{1}} &\leq \frac{M}{\delta} \|u - u_{I}\|_{H^{1}} \leq \frac{M}{\delta} Ch^{d} \|u\|_{H^{d+1}} = O(h^{d}) \end{aligned} \qquad \begin{array}{l} \text{convert to homogeneous problem:} \\ g:\text{known function,} & g \in g \text{ on } \Gamma_{\rho} \\ & & & \\ \hat{u}:\text{new function that we look for} \\ & & & \\ u = G + \hat{u} \end{aligned} \\ \int_{\Omega} \kappa(\mathbf{x}) \nabla \hat{u}(\mathbf{x}) \cdot \nabla v(\mathbf{x}) d\Omega = \int_{\Omega} f(\mathbf{x}) v(\mathbf{x}) d\Omega + \int_{\Gamma_{N}} hv(\mathbf{x}) d\Gamma - \int_{\Omega} \kappa(\mathbf{x}) \nabla G(\mathbf{x}) \cdot \nabla v(\mathbf{x}) d\Omega \\ & & \text{from natural/Neumann BC} \end{aligned} \qquad \begin{array}{l} \text{from essential/Dirichlet BC} \end{aligned}$$

Convergence using piecewise higher-order polynomials

First let's suppose homogenous Dirichlet condition:

$$\int_{\Omega} \kappa(\mathbf{x}) \, \nabla u(\mathbf{x}) \cdot \nabla v(\mathbf{x}) d\Omega = \int_{\Omega} f(\mathbf{x}) v(\mathbf{x}) d\Omega + \int_{\Gamma_N} h v(\mathbf{x}) d\Gamma$$

$$\|u-u_h\|_E \leq \|u-u_I\|_E$$

lf

$$0 < k_0 \le \kappa \le k_1$$

echnische

raunschweio

$$||u - u_I||_E = a(u - u_I, u - u_I) \le M ||u - u_I||_{H^1} \le C h^d |u|_{H^{d+1}}$$

One can also show for inhomogeneous boundary conditions:

$$\|u - u_h\|_E \le \sqrt{2}C h^d \|u\|_{H^{d+1}}$$
 [Chapter 5.3]

[Chapter 5.5]

Variational crime: curved boundary

Source: Gockenbach: Understanding and Implementing FEM

Variational crimes \implies Céa's lemma and the error estimators may not be valid anymore

but: additional errors can be also estimated (Strang)

[Chapter 5.5]

Variational crime: numerical integration

Local/ coordinate system, isoparametric mapping 1D

$$x \longrightarrow \xi = [0,1]$$
coordinate transformation
using the ansatzfunctions isoparametric mapping
Shape functions: $N_1(\xi) = 1 - \xi$
Transformation from local to global coordinates:
 $x(\xi) = x_i N_1(\xi) + x_{i+1} N_2(\xi) = [N_1(\xi) N_2(\xi)] \begin{bmatrix} x_i \\ x_{i+1} \end{bmatrix}$

$$\int \frac{dx}{d\xi} = x_i \frac{dN_1(\xi)}{d\xi} + x_{i+1} \frac{dN_2(\xi)}{d\xi}$$

$$\int \frac{dx}{d\xi} = x_i \frac{dN_1(\xi)}{d\xi} + x_{i+1} \frac{dN_2(\xi)}{d\xi} \begin{bmatrix} x_i \\ x_{i+1} \end{bmatrix}$$
Stiffness matrix with isoparametric elements:
 $K_4^{\ e}(k,l) = EA \int_{\Omega_4} \frac{\partial \psi_i(x)}{x} \frac{\partial \psi_j(x)}{\partial x} dx = EA \int_{\Omega_4} \frac{\partial N_k(\xi)}{\partial \xi} \frac{\partial \xi}{\partial x} \frac{\partial N_l(\xi)}{\partial \xi} \frac{\partial \xi}{\partial x} dx$

$$i, j \in [4,5]$$

$$K_4^{\ e}(k,l) = EA \int_0^1 \frac{\partial N_k(\xi)}{\partial \xi} \left(\frac{dx}{d\xi}\right)^{-1} \frac{\partial N_l(\xi)}{\partial \xi} \left(\frac{dx}{d\xi}\right)^{-1} \left|\frac{dx(\xi)}{d\xi}\right| d\xi$$
FEM and its convergence | Dr. Noemi Friedman | PDE 2| Seite 34

Braunschweig

Local/ coordinate system, isoparametric mapping 2D triangular elements

Basis functions:

 $N_1(\xi, \eta) = \xi$ $N_2(\xi, \eta) = \eta$ $N_3(\xi, \eta) = 1 - \xi - \eta$

Transformation from local to global coordinates:

$$\begin{pmatrix} x_{glob} \\ y_{glob} \end{pmatrix} (\xi,\eta) = N_1(\xi,\eta) \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + N_2(\xi,\eta) \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} + N_3(\xi,\eta) \begin{pmatrix} x_3 \\ y_3 \end{pmatrix}$$

$$\begin{pmatrix} x_{glob}(\xi,\eta) \\ y_{glob}(\xi,\eta) \end{bmatrix} = \begin{bmatrix} N_1(\xi,\eta) & N_2(\xi,\eta) & N_3(\xi,\eta) \\ N_1(\xi,\eta) & N_2(\xi,\eta) & N_3(\xi,\eta) \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ x_2 \\ y_2 \\ x_3 \\ y_3 \end{bmatrix}$$

Stiffness matrix:

Technische

Universität Braunschweig

$$\mathbf{K}_{ij} = \int_{\Omega_{elm}} \left(\begin{array}{c} \frac{\partial N_j}{\partial x} \\ \frac{\partial N_j}{\partial y} \end{array} \right) \cdot \left(\begin{array}{c} \frac{\partial N_i}{\partial x} \\ \frac{\partial N_i}{\partial y} \end{array} \right) d\Omega_{elm} \qquad i, j \in [1, 2, 3]$$

FEM and its convergence | Dr. Noemi Friedman | PDE 2| Seite 35

 $N_1(\xi,\eta)$

Local/ coordinate system, isoparametric mapping 2D triangular elements

Stiffness matrix:

Universität Braunschweig

١

Local/ coordinate system, isoparametric mapping 2D triangular elements, example

Technische

Universität Braunschweig

Transformation from local to global coordinates (isoparametric mapping):

$$\begin{bmatrix} x_{glob}(\xi,\eta) \\ y_{glob}(\xi,\eta) \end{bmatrix} = \begin{bmatrix} N_{1}(\xi,\eta) & N_{2}(\xi,\eta) & N_{3}(\xi,\eta) \\ N_{1}(\xi,\eta) & N_{2}(\xi,\eta) & N_{3}(\xi,\eta) \end{bmatrix} \begin{bmatrix} y_{1} \\ x_{2} \\ y_{2} \\ x_{3} \\ y_{3} \end{bmatrix}$$
$$\begin{bmatrix} x(\xi,\eta) \\ y(\xi,\eta) \end{bmatrix} = \begin{bmatrix} (1-\xi-\eta) & \xi & \eta \\ (1-\xi-\eta) & \xi & \eta \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 7 \\ 1 \\ 9 \\ 7 \end{bmatrix}$$

FEM and its Convergence | Dr. Noemi Friedman | PDE 2| Seite 37

 Γ^{χ_1}

Local/ coordinate system, isoparametric mapping 2D triangular elements, example

Stiffness matrix with local coordinates:

Technische

Universität Braunschweig

$$\begin{split} \boldsymbol{K}_{ij} &= \int_{0}^{1} \int_{0}^{1-\eta} \boldsymbol{J}^{-T} \begin{bmatrix} \frac{\partial N_{j}}{\partial \xi} \\ \frac{\partial N_{j}}{\partial \eta} \end{bmatrix} \cdot \boldsymbol{J}^{-T} \begin{bmatrix} \frac{\partial N_{i}}{\partial \xi} \\ \frac{\partial N_{i}}{\partial \eta} \end{bmatrix} |\boldsymbol{J}| d\xi d\eta \qquad i,j \in [1,2,3] \\ \boldsymbol{J} &= \begin{pmatrix} \frac{\partial x_{glob}}{\partial \xi} & \frac{\partial x_{glob}}{\partial \eta} \\ \frac{\partial y_{glob}}{\partial \xi} & \frac{\partial y_{glob}}{\partial \eta} \end{pmatrix} \end{split}$$

Condition number of the stiffness matrix

Condition number

What happens with the roundoff errors in $\widehat{K} = LU = K + \delta K \neq K$

$$\mathbf{K}\mathbf{u} = \mathbf{f} \qquad (\mathbf{K} + \delta K)\hat{\mathbf{u}} = \mathbf{f} + \delta \mathbf{f} \qquad \frac{\|\hat{\mathbf{u}} - \mathbf{u}\|}{\|\mathbf{u}\|} \le \frac{\lambda_{max}}{\lambda_{min}} \frac{\|\delta \mathbf{f}\|}{\|\mathbf{f}\|} \qquad \frac{\lambda_{max}}{\lambda_{min}} = \kappa(\mathbf{K})$$

Condition number of **K** with nodal bases with 2D triangular mesh: $O(h^{-2})$.

For the Poisson equation

NΙ

turns il-conditioned for refined mesh!!!

$$\sum_{i=1}^{N} c_{i} \int_{\Omega} \nabla \Psi_{i}(\mathbf{x}) \cdot \nabla \Psi_{j}(\mathbf{x}) d\Omega = \int_{\Omega} f(\mathbf{x}) \Psi_{j}(\mathbf{x}) d\Omega$$

K_{ij}

