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Introduction to PDEs and Numerical Methods (PDEs 1):
Preperation for the test

Exercise 1: Definition and/or basic understanding of the terms:

• divergence, gradient, curl, nabla operator

• inner product, norms (of a vector/matrix and of a function)

• eigenvalue/eigenvector

• classification of PDEs

• wave equation, Laplace equation, heat equation

• separation of variables, separation-ansatz, separation constant

• well-posedness

• Projection theory, Grammian

• FD method

• computational stencil

• semi- discrete approximation of the heat equation

• Euler forward/Euler backward/Theta methods (forward/backward/centered differences)

• unconditionally stable

• solving system of equations in the basis defined by the eigenvectors

• convergency, stability, consistency, connection in between

• consistency order, convergence order

• Von Neumann stability analysis/gain factor

• connection between the gain factor and stability/positivity/oscillations

• different FD schemes of the heat equation (1D/2D) and their stability criteria

• direct/iterative solvers, choice of solvers



• steepest descent method, conjugate gradient method

• turning a linear system of equations to a minimization problem, conditions of doing so

• positive-definiteness

• Dirichlet/Neumann boundary conditions

• weighted residual methods (principle, examples)

• week/variational form of a boundary value problem

• divergence theorem, Green’s identity

• FEM, Bubnov Galerkin/Petrov Galerkin methods

• pointwise collocation, subdomain collocation

• test/weighting function, ansatz/basis function

• nodal/Lagrange basis, isoparametric elements, isoparametric mapping

• characteristic function, Dirac-delta function

• stiffness matrix

• Gauß quadrature, numerical integration

Exercise 2: Classification and analytical solution of PDEs

• Tell whether a given defferential operator is linear or not

• Classify PDEs (stationary/instationary, order of the PDE, linearity, hyperbolic/elliptic/parabolic)

• Give examples of hyperbolic/elliptic/parabolic PDEs

• Prove whether a given function is a solution of a given PDE (either with given boundary
condition or if not, find the boundary conditions)

• Define a certain parameter/function in a given PDE to assure that a given function is a
solution of that PDE with predefined boundary/initial conditions

• Solve simple ODEs analyticaly

• Solve simple PDEs analyticaly

• Write the Fourier-series of a given function

• Apply the differential operators (grad/div/curl)



Exercise 3: FD method

• Descretize a given PDE using FD method (with given discretization method(s)). Give
resulted equation for a typical element/timestep, write a script that solves the system.

• Derive a certain finite difference scheme for a given problem using given stencils (for
example derive an approximation of u′′(x) using the values u(x − h), u(x) and u(x + h)).
Determine the truncation error, order of the method, error constant.

• Define whether a given scheme for a given problem is cosistent or not.

• Define from a given matrix form/ MATLAB code, what scheme is used

• Define whether a given scheme is stable or not with eigenvalue analysis. Give stability
condition when not unconditionaly stable.

• Use the von-Neumann stability analysis to define whether a given scheme gives sta-
ble/positive/oscillatory solution. Define the condition of stability/positivity/no oscillation
if these properties are not unconditionaly satisfied.

Exercise 4: Krylov subspace methods as (Petrov-)Galerkin approximations to linear systems

• Connection of minimisation of quadratic functional to a solution of linear system. Dis-
crete weak formulation as an optimality condition. Assumptions on the matrix (positive
definitness, symmetry) and why those assumptions are important.

• Krylov subspace. Definition of conjugate gradients (CG) as a minimisation over a Krylov
subspace, connection to Galerkin approximation. Derivation of an optimality condition
for conjugate gradients.

• Gramm-Schmidt orthogonalisation and A-orthogonalisation. Why this orthogonalisation
is important for CG.

• Definition of GMRES method as a minimisation of residual function over a Krylov sub-
space. Derivation of optimality conditions.

Exercise 5: Weighted residual methods

• Derive the variational/week form of a given PDE (in 1D or in higher dimension) and the
vector spaces of the solution and of the weighting functions

• Calculate the element stiffness matrix K(e) for a given set of ansatz functions with a given
bilinear form

• Derive from the weak form, by Bubnov-Galerkin method, the linear system of equations,
that needs to be solved (using given ansatz/weighting functions)

• Calculate the right hand side term of the week form l of a given boundary value problem
with homogeneous/inhomogeneous Neumann/Dirichlet boundary condition(s) for a given
set of ansatz functions, and a given linear form. (Use numerical integration when needed).

• Numerical integration in 1D for arbitrary function with quadrature rule, define the ac-
curacy of the integration rule, or determine the needed number of points when f(x) is
polynomial of given order, to get exact result with the numerical integration.



• Assemble the global stiffness matrix from the element stiffness matrices for a given problem
(piece-wise linear ansatz functions)

• Apply different boundary conditions

• Solve a small system with FEM and plot its solution

• Define linear ansatzfunctions for a given element (line/triangular/quadrilateral)

• Define isoparametric mapping function from a masterelement onto an element with a pre-
defined geometry located in a given coordinate system, with a given set of ansatzfunctions

• Convert gradient or integral defined on a global coordinate system to an expression defined
on local coordinate system from a given mapping from local to global coordinates.

• Sketch ansatzfunctions for a given (line/triangular/quadrilateral) element


