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Introduction to PDEs and Numerical Methods (PDEs 1):
Preperation for the test

Exercise 1: Definition and/or basic understanding of the terms:

e divergence, gradient, curl, nabla operator

e inner product, norms (of a vector/matrix and of a function)

e cigenvalue/eigenvector

e classification of PDEs

e wave equation, Laplace equation, heat equation

e separation of variables, separation-ansatz, separation constant

e well-posedness

e Projection theory, Grammian

e FD method

e computational stencil

e semi- discrete approximation of the heat equation

e Euler forward/Euler backward/Theta methods (forward/backward/centered differences)
e unconditionally stable

e solving system of equations in the basis defined by the eigenvectors

e convergency, stability, consistency, connection in between

e consistency order, convergence order

e Von Neumann stability analysis/gain factor

e connection between the gain factor and stability /positivity /oscillations

e different FD schemes of the heat equation (1D/2D) and their stability criteria

e direct/iterative solvers, choice of solvers



e steepest descent method, conjugate gradient method

e turning a linear system of equations to a minimization problem, conditions of doing so
e positive-definiteness

e Dirichlet/Neumann boundary conditions

e weighted residual methods (principle, examples)

e week/variational form of a boundary value problem

e divergence theorem, Green’s identity

e FEM, Bubnov Galerkin/Petrov Galerkin methods

e pointwise collocation, subdomain collocation

e test/weighting function, ansatz/basis function

e nodal/Lagrange basis, isoparametric elements, isoparametric mapping
e characteristic function, Dirac-delta function

o stiffness matrix

e Gaufl quadrature, numerical integration
Exercise 2: Classification and analytical solution of PDEs

e Tell whether a given defferential operator is linear or not
e Classify PDEs (stationary/instationary, order of the PDE, linearity, hyperbolic/elliptic/parabolic)
e Give examples of hyperbolic/elliptic/parabolic PDEs

e Prove whether a given function is a solution of a given PDE (either with given boundary

condition or if not, find the boundary conditions)

e Define a certain parameter/function in a given PDE to assure that a given function is a

solution of that PDE with predefined boundary /initial conditions
e Solve simple ODEs analyticaly
e Solve simple PDEs analyticaly
e Write the Fourier-series of a given function

e Apply the differential operators (grad/div/curl)



Exercise 3: FD method

o Descretize a given PDE using FD method (with given discretization method(s)). Give

resulted equation for a typical element/timestep, write a script that solves the system.

e Derive a certain finite difference scheme for a given problem using given stencils (for
example derive an approximation of u”(x) using the values u(z — h), u(z) and u(x + h)).

Determine the truncation error, order of the method, error constant.
e Define whether a given scheme for a given problem is cosistent or not.
e Define from a given matrix form/ MATLAB code, what scheme is used

e Define whether a given scheme is stable or not with eigenvalue analysis. Give stability

condition when not unconditionaly stable.

e Use the von-Neumann stability analysis to define whether a given scheme gives sta-
ble/positive/oscillatory solution. Define the condition of stability /positivity /no oscillation

if these properties are not unconditionaly satisfied.
Exercise 4: Krylov subspace methods as (Petrov-)Galerkin approzimations to linear systems

e Connection of minimisation of quadratic functional to a solution of linear system. Dis-
crete weak formulation as an optimality condition. Assumptions on the matrix (positive

definitness, symmetry) and why those assumptions are important.

e Krylov subspace. Definition of conjugate gradients (CG) as a minimisation over a Krylov
subspace, connection to Galerkin approximation. Derivation of an optimality condition

for conjugate gradients.

e Gramm-Schmidt orthogonalisation and A-orthogonalisation. Why this orthogonalisation

is important for CG.

e Definition of GMRES method as a minimisation of residual function over a Krylov sub-

space. Derivation of optimality conditions.
Exercise 5: Weighted residual methods

e Derive the variational/week form of a given PDE (in 1D or in higher dimension) and the

vector spaces of the solution and of the weighting functions

e Calculate the element stiffness matrix K (¢) for a given set of ansatz functions with a given

bilinear form

e Derive from the weak form, by Bubnov-Galerkin method, the linear system of equations,

that needs to be solved (using given ansatz/weighting functions)

e Calculate the right hand side term of the week form [ of a given boundary value problem
with homogeneous/inhomogeneous Neumann/Dirichlet boundary condition(s) for a given

set of ansatz functions, and a given linear form. (Use numerical integration when needed).

e Numerical integration in 1D for arbitrary function with quadrature rule, define the ac-
curacy of the integration rule, or determine the needed number of points when f(x) is

polynomial of given order, to get exact result with the numerical integration.



Assemble the global stiffness matrix from the element stiffness matrices for a given problem

(piece-wise linear ansatz functions)

Apply different boundary conditions

Solve a small system with FEM and plot its solution

Define linear ansatzfunctions for a given element (line/triangular/quadrilateral)

Define isoparametric mapping function from a masterelement onto an element with a pre-

defined geometry located in a given coordinate system, with a given set of ansatzfunctions

Convert gradient or integral defined on a global coordinate system to an expression defined

on local coordinate system from a given mapping from local to global coordinates.

Sketch ansatzfunctions for a given (line/triangular/quadrilateral) element



