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Numerical Methods for PDEs (PDEs 2):
Convergence, basis functions, FEM implementation and

adaptivity

Exercise 1: FEM: Triangulation properties, sparsity of the stiffness matrix (6 points)
(a) Let dT be the diameter of the largest circle contained in a triangle T. Prove that

dT

diam(T ) ≤
1√
3

(3 points)

(b) What is the role of this measure in the convergence analysis? (1 points)

(c) A mesh of quadratic Lagrange triangles has two types of basis functions, those corre-
sponding to vertex nodes and those corresponding to midpoint nodes. How many nodes are
adjacent to a typical vertex node? To a typical midpoint node? How many nonzeros lie in
each row of the corresponding stiffness matrix? (2 points)

Exercise 2: A priori error estimates (4 points)
Suppose {Th} is a nondegenerate family of triangulations of a polygonal domain Ω ∈ <2 and
suppose f ∈ Hd+1(Ω).
(a) If fI ∈ P d

h is the piecewise polynomial interpolant of degree d of f , what can we know
about the bound of the L2 norm of the interpolation error. Please explain every expression
in the bound. (2 points)

(b) This error bound is used to show convergence of the Galerkin method. What is the
connection between the interpolation error and the error of the Galerkin approximation?
(2 points)



Exercise 3: C1 basis functions (7 points)
Let us define piece-wise Hermite polynomials, to span the space of C1(Ω) piece-wise poly-
nomials of total degree d.
Suppose Ω ⊂ R, so a 1D domain. Define the local basis functions defined over one element
in its local coordinate system Φi(ξ) : Ωe → R, Ωe = [−1, 1] as the linear combination of
the monomials:

φi(ξ) = ai0 + ai1ξ + ai1ξ
2 + . . .+ aidξ

d.

The vector of coefficients
aT

i =
[
ai0 ai1 . . . aid

]
can be calculated from i linear system of equations:

B̃ai = bi.

What is the matrix B̃ and what are the right hand sides bi when a two-node element is
used? The two nodes are at the coordinates ξ1 = −1 and ξ2 = 1. Draw a draft of all the
basis functions defined over the element.
Hint:

• Use N = 4 and d = 3 to have a well defined system of equations.

Draft of basis functions {Φi}Ni=1:

Determination of matrix B̃:

And the right hand sides {bi}Ni=1:



Exercise 4: C0 basis functions (7 points)
Now we define piece-wise Lagrange polynomials to span the space of all C0(Ω) piece-wise
polynomials of total degree d. Let Ω = (0, 1)×(0, 1) be a unit square and consider a uniform
triangulation of Ω created by dividing Ω into n2 sub-squares, each with side length h = 1/n,
and then dividing each sub-square into two triangles. Consider two different triangulations:

1. {T1}: uniform linear Lagrange triangulation with n = 2k (with 2(2k)2 triangles, d = 1);

2. {T2}: uniform quadratic Lagrange triangulation with n = k (with 2k2 triangles, d = 2);

• How many nodes are needed per inner edges in the triangulations {T1} and {T2} and why?

• Which triangulation has more nodes (you can try for example k = 4, and draw a draft of
the mesh)?

• Which triangulation has more nodes (you can try for example k = 4, and draw a draft of
the mesh)?

• Which resulting stiffness matrix: Kij =
∫

Ω∇φi · ∇φj has more nonzero elements (which
one is more sparse) and why? What is the maximum number of nonzero elements per row
for the two triangulations?

• Draw one triangle and its nodes that has to be used when d = 4. Explain the number of
the nodes.



number of points, n Points, xi Weights, wi

1 0 2

2 ±
√

1
3 1

3 0 8
9

±
√

3
5

5
9

4 ±
√

3
7 −

2
7

√
6
5

18+
√

30
36

±
√

3
7 + 2

7

√
6
5

18−
√

30
36

5 0 128
225

±1
3

√
5− 2

√
10
7

322+13
√

70
900

±1
3

√
5 + 2

√
10
7

322−13
√

70
900

Table 1: Points and weights of the univariate Gauss-Legendre quadrature rule

Exercise 5: Numerical integration over quadrilateral element (7 points)
Assume the domain Ω = (−1, 1)× (−1, 1). Now the task is to compute the integral∫ ∫

Ω
(x3y + x2y + 3y + 5)dxdy (1)

with Gauß quadrature.
(a) Which point rule has to be used in the x direction and which in the y direction to
get exact solution of (1)? (Give the minimum number of the points to be used for the two
univariate rules.) Explain the answer in one sentence.

(b) Collect in a table the coordinates of the integration points and the corresponding weights
of the combined rule to be used to calculate the given integral. You can use the points and
the weights for the univariate rule in Table 1.
(c) Calculate the integral.

Exercise 6: Mesh generation, adaptivity, a posterior error estimates (6 points)
(a) What does it mean nonconforming triangulation? Draw an example.
(b) Explain the main idea of the strategy for choosing which triangles to refine due to
Babuska and Rheinboldt by answering the following questions. Suppose there is a triangu-
lation Th with triangles {Ti}Ni=1. The longest edge of the triangles is noted be hi. Suppose
that with an available error estimator we can compute the elementwise errors {ε(1)

i }Ni=1. Let’s
suppose that this triangulation is coming from a uniform refinement, and we also computed
the error estimators for the courser mesh, so we have for all the Ti triangles an error es-
timator {ε(0)

i }Ni=1, which is the element-wise error for the triangle the subtriangles Ti were
refined from.



• Main Assumptions: 1) What is our main assumption on the dependence of the elementwise
error εi on the hi diameter? 2) When do we call a mesh to be optimal?

• How do we compute the constants in the first assumption?

• There is an important a-posteriori measure, which helps choosing triangles for refinement.
How do we compute this measure?

• Using the above mentioned measure, what is the criteria that chooses a triangle to be
refined?

(c) What are the three components to an adaptive algorithm? (Give only a concise definition
for all three.)


