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Abstract

This paper presents the consistency and stability analyses of the Generalized−α meth-
ods applied to non-linear dynamical systems. The second-order accuracy of this class of
algorithms is proved also in the non-linear regime, independently of the quadrature rule
for non-linear internal forces. Conversely, the G-stability notion which is suitable for lin-
ear multistep schemes devoted to non-linear dynamic problems cannot be applied, as the
non-linear structural dynamics equations are not contractive. Nonetheless, it is proved that
the Generalized − α methods are endowed with stability in an energy sense and guaran-
tee energy decay in the high-frequency range as well as asymptotic annihilation. However,
overshoot and heavy energy oscillations in the intermediate-frequency range are exhibited.
The results of representative numerical simulations performed on relatively simple single-
and multiple-degrees-of-freedom non-linear systems are presented in order to confirm the
analytical estimates.
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1 Introduction

For many problems in structural dynamics, the time integration of stiff ordinary differential

equations is required (Hairer and Wanner (1991), p. 9). Commonly used methods for integrating

equations with timescales that differ by several orders of magnitude are implicit as relatively

large time steps can be employed. As a matter of fact, most integration schemes are A-stable,

i.e. unconditionally stable in the linear regime. Moreover, it is essential that these methods

be endowed with mechanisms entailing numerical dissipation in the high-frequency range, with

limited algorithmic damping in the low-frequency range. These mechanisms help to eliminate

high-frequency modes that are insufficiently resolved by either the spatial discretization, the
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selected time step or both. Representative members of these algorithms are, among others, the

N−β method (Newmark (1959)), the HHT−α method (Hilber, Hughes and Taylor (1977)), the
WBZ−α method (Wood, Bossak and Zienkiewicz (1981)), the HP −θ1 method (Hoff and Pahl
(1988a), (1988b)) and the CH−α method (Chung and Hulbert (1993)). These methods exhibit
second order accuracy in linear dynamics and permit efficient variable step size techniques,

being one-step methods. The CH − α, the HHT − α and the WBZ − α methods, the so-

called α− methods, are one-parameter schemes which can be considered as particular cases of
a more general class of methods named Generalized− α (G− α) in the foregoing. This class of

methods corresponds to the CH−α scheme (Chung and Hulbert (1993)), where the algorithmic
parameters αm, αf ,β and γ are assumed to be independent of each other.

For stiff linear problems, A-stability may not be sufficient to ensure a robust temporal inte-

gration. As a matter of fact, some stiff components of the numerical solution damp out very

slowly even in the presence of numerical dissipation and can show up oscillations which alter the

solution. The low effectiveness of the numerical dissipation and the overshoot consequences on

the response of the HHT −α method applied to stiff dynamical systems have been highlighted

by Bauchau, Damilano and Theron (1995). Recently, Piché (1995) and (Owren (1995) proposed

Rosenbrock and Runge-Kutta methods, respectively, with better accuracy and stability proper-

ties than those of the Constant Average Acceleration (CAA) scheme (Newmark (1959)). More

specifically, these methods are L-stable and do not exhibit overshoot. Moreover, the L-stability

property entails A-stability and asymptotic annihilation, viz. these schemes damp out almost

in a single time step any non-zero response in the high-frequency modes (Hulbert (1991)). L-

stability combined with the optimized dissipation characteristics of higher modes represent the

attractive properties in the linear regime of the CH − α method (Chung and Hulbert (1993)).

These properties can be user-controlled by means of the spectral radius at infinity ρ∞(= ρ (Ω)

for Ω → ∞); more specifically ρ∞ ∈ [0, 1] and the choice ρ∞ = 0 corresponds to the case of

asymptotic annihilation of the high-frequency response, while ρ∞ = 1 corresponds to the case of

no algorithmic dissipation. The CH−α scheme has already been applied successfully to inertial
and wave propagation problems and allows adaptive time-stepping (Hulbert and Jang (1995)).

Hulbert and Hughes (1987) proved that the HHT−α scheme suffers from the velocity overshoot
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and that the acceleration is only first order accurate. Later, it is also proved that the CH − α

method and, more in general the class of G− α methods, inherits these unwanted properties.

Time-stepping algorithms often represent the only tool that can be exploited for the analysis

of non-linear problems, though a rigorous convergence analysis of such algorithms is feasible

only in the linear case. As a matter of fact, algorithms regarded as unconditionally stable in

linear dynamics, like the CAA scheme, can exhibit severe numerical instabilities in the non-linear

regime. To this regard see, among others, Simo and Tarnow (1992), Wood and Oduor (1988)

and Bauchau, Damilano and Theron (1995). Moreover, these methods may converge to spurious

solutions associated with a high energy state (Crisfield and Shi (1994)). The numerical stability

of time-stepping schemes in non-linear structural dynamics was analysed in some studies. In

detail, Park (1975) performed the local stability analysis of the Houbolt method (Houbolt (1950))

and the CAA method. Belytschko and Schoeberle (1975) proved that the CAA scheme complies

with an energy convergence criterion which represents a sufficient condition for the non-linear

unconditional (energy) stability of the numerical algorithm. Hughes extended the same result

to the N − β method (Hughes (1975)) . Again, Hughes (1976) performed an analysis of the

stability, accuracy and energy properties of the CAA method in the non linear regime.

Due to its favourable properties, the CH−α method augmented with energy and momentum
constraints was recently adopted as a basic algorithm for the non linear dynamics analysis of

shell structures (Kuhl and Ramm (1996)). Moreover, it represented the algorithmic environment

for the development of a new class of algorithms applied to non-linear elasto-dynamics and la-

belled Generalized Energy-Momentum methods (Kuhl and Crisfield (1999) and Kuhl and Ramm

(1998)) . Crisfield and his co-workers, compared the performances of the α−methods with those
of energy-conserving algorithms in non-linear elasto-dynamics (Crisfield, Galvanetto and Jelenic

(1997) and Zhong and Crisfield (1998)). This research work showed clearly the unfavourable

energy-decaying properties of the α− methods. As a matter of fact, this class of methods ex-
hibited overshoot phenomena, energy oscillations and blow-up for large time steps and certain

algorithmic parameter values. Recent approaches successfully employed both in linear and non-

linear transient/dynamic cases are the Virtual-Pulse time integral method and the generalized

W p-Family of operators, respectively, developed by Tamma and co-workers (2000). In non-linear
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dynamics the resulting algorithms exhibit favourable algorithmic and computational properties

over standard integration operators.

Though numerous studies have dealt with the α− methods, there is still a paucity of publi-
cations devoted to the clarification of specific issues in the non-linear regime, such as accuracy,

stability, energy-decaying properties, overshoot, high-frequency behaviour and numerical inte-

gration of internal forces. All together, they represents basic aspects of the temporal integration

of non linear systems and are the issues that the paper explores further. The remainder of

the paper is organized as follows. In Section 2, the class of G − α methods is applied to the

non-linear equations of structural dynamics according to a single-step as well as to a linear

multistep formulation. Moreover, three alternatives for the temporal integration of non-linear

internal forces are presented: the generalized trapezoidal rule, the mid-point rule and the gener-

alized energy-momentum rule. Section 3 presents the consistency analysis of the G−α methods,
demonstrating that the second order accuracy of displacements is also maintained in the non-

linear regime. Moreover, the conditions under which the acceleration is second order accurate

are shown. In Section 4, the contractivity of the equations of structural dynamics and the sta-

bility properties of these methods in the non-linear regime are investigated. Section 5 analyses

both the overshoot and the high-frequency behaviour of the class of G− α methods as well as

the dissipation properties. In Section 6, numerical experiments performed on relatively simple

non-linear single- (S.D.o.F.) and multiple-degrees-of-freedom (M.D.o.F.) test problems which

legitimate analytical findings are reported, while conclusions are drawn in Section 7. Finally,

the properties of the G− α methods relevant to the linear regime are recalled in Appendix 1.

2 The equations of structural dynamics and the G− α methods

The semidiscrete initial value problem for non-linear structural dynamics reads

Mü(t) +Cu̇(t) + S (u(t)) = F(t) (1)

whereM and C are the mass and damping matrices, respectively, S (u(t)) is the vector of non-

linear internal forces, F(t) is the vector of applied loads, u(t) is the displacement vector and

superimposed dots indicate time differentiation. The initial value problem consists of determin-

ing a function u = u (t) which satisfies Eq. (1) for all t ∈ [0, tf ] , tf > 0, with given initial
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conditions

u (0) = d , u̇ (0) = v. (2)

M and C are assumed to be both constant and symmetric. Moreover, M is positive definite,

C is positive semidefinite, F is considered a smooth function of t while S = S (u(t)) fulfils

the Lipschitz continuity in each time interval. In addition, a positive smooth scalar function

U = U (u(t)) exists, the potential energy, such that ∇U (u(t)) = S (u(t)) and U (0) = 0.
With this notation to hand, the class of G− α methods is applied to Eq. (1) and, for anal-

ysis purposes, both the single-step and the linear multistep formulation are considered (Hairer,

Nørsett and Wanner (1987) p. 304, Hughes (1987), p. 526 and Hulbert (1991)). Moreover, the

linearization of Eq. (1) and the iterative solution strategy are described.

2.1 Single-step three-stage formulation

Let 0 = t0 < t1 < . . . < tm = tf be a partition of the time domain and let ∆ti = ti+1 − ti be
the time step size. For brevity, a constant ∆t value is assumed hereinafter. The G−α methods

applied to the Eq. (1) and (2) yield the balance equation

Mai+1−αm +Cvi+1−αf + Si+1−αf = Fi+1−αf (3)

where the dynamic equilibrium is computed at some instant inside ∆ti. Moreover,

di+1 = di +∆tvi +∆t
2

µµ
1

2
− β

¶
ai + βai+1

¶
(4)

vi+1 = vi +∆t ((1− γ)ai + γai+1) (5)

define the Newmark approximations (Newmark (1959)) while

d0 = d, v0 = v (6)

a0 = M−1 (F (0)−Cv0 − S (d0)) . (7)

The time discrete combinations of displacements, velocities, accelerations and times read

di+1−αf = (1− αf )di+1 + αfdi
vi+1−αf = (1− αf )vi+1 + αfvi
ai+1−αm = (1− αm)ai+1 + αmai

(8)
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where i ∈ {0, 1, ...,m− 1}, m is the number of time steps while di,vi and ai are the numerical

approximations of u (ti) , u̇ (ti) and ü (ti), respectively. Usually, inertial and damping forces are

linearly interpolated while Fi+1−αf = F (αf , ti, ti+1), is approximated by means of Fi+1−αf =

(1− αf )F (ti+1)+αfF (ti) or Fi+1−αf = F ((1− αf ) ti+1 + αf ti). With regard to the non-linear

internal forces Si+1−αf = S (αf ,di,di+1) , three quadrature rules are considered in the foregoing:

the generalized trapezoidal rule (TR)

STRi+1−αf = (1− αf )S (di+1) + αfS (di) ; (9)

the generalized mid-point rule (MR)

SMRi+1−αf = S [(1− αf )di+1 + αfdi] ; (10)

and the generalized energy-momentum rule (GEMR)

SGEMRi+1−αf = S (αf ,di,di+1) (11)

proposed by Kuhl and Crisfield (1999).

In principle, the algorithmic parameters αm, αf , β and γ of the G − α methods may be

independent. Nonetheless, relations among them must be established to achieve consistency,

stability and favourable dissipation properties. These relations are discussed for the G − α

methods in the foregoing.

2.2 Linear three-step formulation

The Eqs. (3)-(5) allow di+1,vi+1 and ai+1 to be determined starting from known values of

di,vi and ai. If the same relations are applied to the time intervals [ti+1, ti+2] and [ti+2, ti+3],

nine equations are obtained, in which four velocities and four accelerations can be eliminated.

Thereby, a recurrence relation is obtained among displacements di+j , j = 0, 1, 2, 3 , that leads

to the linear multistep (LMS) formulation of the G − α methods. As a result, the three-step

algorithm is obtained

3X
j=0

£
Mαjdi+j +∆tCγjdi+j

¤
+∆t2

3X
j=1

δj
¡
Si+j−αf −Fi+j−αf

¢
= 0 (12)
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where the parameters read

α0 = αm γ0 = αf (−1+ γ) δ1 =
1
2 + β − γ

α1 = 1− 3αm γ1 = −1+ 2αf + γ − 3γαf δ2 =
1
2 − 2β + γ

α2 = −2 + 3αm γ2 = 1− αf − 2γ + 3γαf δ3 = β.
α3 = 1− αm γ3 = (1− αf )γ

(13)

2.3 Effective structural equation

The Eqs. (3)-(5) can be combined in the following non-linear relation

Si+1−αf (di+1)−Fi+1−αf
−M

h
−1−αmβ∆t2 (di+1 − di) + 1−αm

β∆t vi +
1−αm−2β

2β ai
i

−C
·
−(1−αf)γβ∆t (di+1 − di) + (1−αf)γ−ββ vi +

(γ−2β)(1−αf)
2β ∆tai

¸
= 0.

(14)

in the unknown displacement vector di+1 which can be solved applying a consistent linearization

and the Newton-Raphson method. Once di+1 is computed, ai+1 and vi+1 can be determined

using Eqs. (4) and (5), viz.

ai+1 =
di+1 −

¡
di +∆tvi +

¡
1
2 − β

¢
∆t2ai

¢
β∆t2

(15)

vi+1 = vi + (1− γ)∆tai + γ∆tai+1. (16)

Details of these and other techniques used to solve non-linear dynamic problems involving ma-

terial and geometric nonlinearities can be found in Karabalis and Beskos (1997).

3 Non-linear consistency

To analyse the consistency of the G−αmethods in the non-linear regime, the approach exploited
by Wood (1990, p. 20) is followed. The load vector F (t) is not included in the analysis assuming

that the power of the leading error term of its approximation is greater than the order of accuracy

of the methods. Starting from the LMS formulation (12), the difference operator L (d, t,∆t) can

be defined as

L (d, t,∆t) =
1

∆t2

 3X
j=0

£
Mαjdi+j +∆tCγjdi+j

¤
+∆t2

3X
j=1

δjSi+j−αf

 . (17)

As the coefficients δj defined in (13) do not depend on the linearity of S (d), the extension of

the consistency results from the linear to the non-linear regime is straightforward.
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Hulbert and Hughes (1987) pointed out in the linear regime that the accelerations computed

with the HHT − α method are only first order accurate, even though the relevant displace-

ments are second order accurate. Hence, the consistency analysis both of displacements and

accelerations evaluated with the G− α methods are considered in the foregoing.

3.1 Displacement

The local truncation error τu (t,∆t) reads

τu (t,∆t) = L (u, t,∆t) = O
³
∆tk

´
(18)

where u = u (t) is a sufficiently smooth solution of the differential equation (1) and k, the order

of the lowest term of the Taylor power series expansion of (18), the so-called order of accuracy.

Expanding u (ti+j) = u (ti + j∆t) by Taylor series about ti in the Eq. (18) and collecting

together terms with like powers of ∆t, one obtains

τu (ti,∆t) =
1

∆t2
Mu (ti)

3X
j=0

αj +

+
1

∆t

Mdu (ti)

dt

3X
j=0

jαj +Cu (ti)
3X
j=0

γj

+
+

Md2u (ti)

dt2

3X
j=0

j2

2!
αj +C

du (ti)

dt

3X
j=0

jγj + S [u (ti)]
3X
j=1

δj

+ (19)

+∆t

Md3u (ti)

dt3

3X
j=0

j3

3!
αj +C

d2u (ti)

dt2

3X
j=0

j2

2!
γj

+
+∆t

dS [u (ti)]

dt

3X
j=1

(j − αf ) δj +

+O(∆t2).

Recalling (13), it is straightforward to prove that

3X
j=0

αj =
3X
j=0

jαj =
3X
j=0

γj = 0 (20)

3X
j=0

j2

2!
αj =

3X
j=0

jγj =
3X
j=1

δj = 1. (21)
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Therefore the G − α methods are consistent, viz. they exhibit accuracy at least equal to

τu (ti,∆t) = O(∆t). Further, the condition

3X
j=0

j3

3!
αj =

3X
j=0

j2

2!
γj =

3X
j=1

(j − αf )βj (22)

entails that the coefficient of ∆t on the right-hand side of Eq. (19) vanishes. Thereby, from the

Eqs. (13) and (22), the G− α methods have accuracy τu (ti,∆t) = O
¡
∆t2

¢
, viz.

di = u (ti) +O
¡
∆t2

¢
(23)

provided that γ = 1
2 − αm + αf . Under this assumption, the G− α methods appear consistent

with order two (k = 2) in the non-linear regime.

To warrant this analytical convergence rate estimate, two representative model problems

described in detail in Section 6 are examined. They are a Duffing hardening oscillator endowed

with a reaction force (80) shown in Fig. 1a and a non-linear clamped-free homogeneous elastic

rod discretized with ten one-dimensional elements sketched in Fig. 2a. The relations among the

parameters αm, αf , β and γ correspond to those exploited by the CH −α method (Chung and

Hulbert (1993)). They are collected in row 5 of the Tables (2)-(3).

In the first problem, both the displacement error |u(ti)− di| and the velocity error |u̇(ti)− vi|
were evaluated a-posteriori at a time level t = 0.02. Both errors and rates are depicted in Fig.

1b and 1c, respectively, where rules (9) and (10) have been used. The agreement between the

analytical rate estimates and the test results is evident. Moreover, ρ∞ = 0 entails αf = 0

according to Table (3), and therefore rules (9) and (10) coincide. Likewise, the same quantities

are computed for node 10 of the non-linear rod. In this test, the GEMR rule (92) specialized to

the non-linear rod is used. Again from Figs. 2b and 2c, both the displacement and the velocity

error evaluated at a time level t = 0.2 exhibit a rate of two.

3.2 Acceleration

Hilber, Hughes and Taylor (1977) and Hulbert and Hughes (1987) pointed out that the numerical

and the exact accelerations relevant to the HHT − α method satisfy the following relationship

ai+1 − [(1+ αHHT ) ü (ti+1)− αHHT ü (ti)] = O
¡
∆t2

¢
. (24)

10



Eq. (24) implies that only a particular combination of the exact acceleration values is consistent

and of order two. Hereinafter, the aforementioned result is extended to the G−α methods which
satisfy the consistency condition γ = 1

2 − αm + αf , required to achieve second order accuracy

with the displacements. Moreover, it is demonstrated that the acceleration evaluated with the

G− α methods is consistent and of order one.

If C = 0, the exact equilibrium equation (1) at time ti reads

Mü (ti) + S (u (ti)) = 0 (25)

while the balance equation (3) becomes

(1− αm)Mai+1 + αmMai + Si+1−αf = 0. (26)

Substituting Eq. (23) in Eq. (26) one obtains

(1− αm)Mai+1 + αmMai + S
ex
i+1−αf =O

¡
∆t2

¢
(27)

where Sexi+1−αf = S (αf ,u (ti) ,u (ti+1)). Eq. (27) holds for any approximation Si+1−αf =

Si+1−αf (αf ,di,di+1) of the non-linear term which is assumed to be smooth with respect to di

and di+1. Substituting the relation Sexi+1−αf = S
ex,TR
i+1−αf +O

¡
∆t2

¢
and Eq. (25) in the Eq. (27),

the following relationship

[(1− αm)ai+1 + αmai]− [(1− αf ) ü (ti+1) + αf ü (ti)] = O
¡
∆t2

¢
(28)

is obtained. Eq. (28) represents the generalization of Eq. (24).

Setting i = 0 in Eq. (28) and recalling from Eqs. (6) and (7) that a0 = ü (0) one obtains

ü (t1)− a1 = αf − αm
1− αm

(ü (t1)− ü (t0)) +O
¡
∆t2

¢
(29)

which can be expressed as follows

E
(a)
1 = c

(a)
0 ∆t+O

¡
∆t2

¢
if the exact solution u (t) is sufficiently smooth, with E(a)1 = ü (t1)−a1 and c(a)0 =

αf−αm
1−αm

...
u (t0).

At the i− th step, Eq. (29) reads

ü (ti+1)− ai+1 = αf − αm
1− αm

(ü (ti+1)− ü (ti)) + −αm
1− αm

(ü (ti)− ai) +O
¡
∆t2

¢
11



and can be expressed as

E
(a)
i+1= c

(a)
i ∆t+ ηE

(a)
i +O

¡
∆t2

¢
(30)

with E(a)i = ü (ti)− ai, c(a)i =
αf−αm
1−αm

...
u (ti) and η = −αm

1−αm .

Eq. (30) yields the following relation°°°E(a)i °°° 6 N∆t i−1X
j=0

ηj + ηi kE0k (31)

in which N = maxti∈[0,tf ]
°°°c(a)i °°°. Assuming that E0 = ü (t0)−a0 = 0 and η 6= 1 the application

of the discrete Gronwall lemma (Stuart and Humphries (1996), p. 9) to Eq. (31) implies°°°E(a)i °°° = kü (ti)− aik 6 N∆t1− ηi+1

1− η
. (32)

If |η| < 1 ⇐⇒ αm <
1
2 , the relation (32) entails

ü (ti)− ai = O (∆t) , (33)

viz. the computed acceleration is only first order accurate. If αm = 1
2 ⇐⇒ η = −1 then

Eq. (33) still holds. Conversely when αm = αf , as in row 2 of Table 2, then N = 0 and

ü (ti) − ai = O
¡
∆t2

¢
. As a result, the computed acceleration is second order accurate. Figs.

1d and 2d depict the convergence rate of the acceleration of the hardening system and of the

non-linear elastic rod, respectively. Such rates confirm the analytical rate estimates inferred by

Eq. (33).

4 Non-linear stability

The stability analysis of the CH−α method was carried out by Chung and Hulbert (1993) in the
linear regime. More specifically, the concept of spectral stability was applied to the algorithm

expressed as single-step three-stage method. As an alternative, the stability analysis could be

performed exploiting the three-step form of the algorithm (Lambert (1991), p. 45). Nonetheless,

no stability analysis of the G − α schemes has been conducted in the non-linear regime to the

authors’ knowledge. Moreover, as a M.D.o.F. non-linear system cannot be decomposed into

nDoF uncoupled scalar equations, stability analyses have to be necessarily performed onM.D.o.F.

systems.
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To tackle the stability analysis of the G − α methods, the following definitions of stability

are considered hereinafter: (i) the G-stability notion applied in the context of p-step methods

(Hairer and Wanner (1991), p. 332); (ii) the non-linear (energy) stability analysis suggested,

among others, by Belytschko and Schoeberle (1975) and Hughes (1975), (1976) . Also the local

stability analysis proposed by Park (1975) could be applied to these schemes. Nonetheless for

brevity, such analysis is not illustrated as being restricted to S.D.o.F. systems.

For completeness, an additional stability analysis can be performed on Eq. (1): the so-called

zero-stability analysis (Lambert (1991), p. 45) . This analysis is discussed briefly here, because

it regards the stability of the difference system in the limit ∆t → 0. In this condition, the

roots of (97) defined in Appendix 1 reduce to those of the polynomial ρ (r) =
Pp
j=0 αjr

j . The

stability of the scheme requires that the roots exhibit modulus less or equal to unity while the

roots with modulus equal to unity must possess multiplicity less than or equal to two ((Hairer,

Nørsett and Wanner (1987), p. 424) . It can be proved readily by means of Eq. (13), that the

aforementioned condition is satisfied if αm 6 1
2 . Moreover, it is evident that the zero-stability

notion is independent of the non-linearity of S (d) and F (t) , Eq. (12) being only dependent on

the parameters αj for ∆t→ 0.

4.1 Contractivity and G-stability

For stiff problems, the above-mentioned zero-stability notion represents only one necessary

condition. As a matter of fact, a stability definition applicable to a fixed time step is needed. In

recent years, the non-linear G-stability theory has emerged for non-linear contractive systems

which requires that the numerical solutions of a linear multistep method be contractive in the

G-norm (Hairer and Wanner (1991), p. 332).

Given a first order differential equation ẏ = f (t,y) with any two solutions y and z satisfyng

the initial conditions y (0) = y0 and z (0) = z0, respectively, the solutions are said to be

contractive if and only if the system is dissipative, viz.

hf (t,y)− f (t,y) ,y− zi ≤ 0 (34)

(Lambert (1991), p. 266), where h·, ·i defines the inner product for which the corresponding
norm is the standard L2 norm. In the non-linear unforced case F (t) = 0, it can be proved that
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Eq. (1) does not satisfy Eq. (34). The usual first order form of Eq. (1) reads

y =

·
uy
u̇y

¸
(35)

ẏ = f (t,y)) =

·
u̇y

M−1 (−Cu̇y−S (uy))
¸

where uy and u̇y are the displacement and the velocity vectors, respectively, corresponding to

the initial conditions uy0 and vy0. Conversely, if the y vector is defined as follows,

y =

"
K̄

1
2uy

M
1
2 u̇y

#
(36)

where K̄ is an arbitrary symmetric stiffness matrix, then Eq. (1) reads

ẏ = f (t,y)) =

"
K̄

1
2 u̇y

M
1
2 üy

#
=

"
K̄

1
2 u̇y

M−1/2 (−Cu̇y − S (uy))

#
.

If z =
·³
K̄

1
2uz

´T
,
³
M

1
2 u̇z

´T¸T
with the initial conditions uz0 and vz0, it is straightforward to

prove that

hf (t,y)− f (t, z) ,y− zi =
¿
d

dt
(y− z) ,y− z

À
=
1

2

d

dt
ky− zk2 (37)

=
1

2

d

dt

h
(uy − uz)T K̄ (uy − uz) + (u̇y − u̇z)TM (u̇y − u̇z)

i
= (u̇y − u̇z)T

£
K̄ (uy − uz) +M (üy − üz)

¤
= (u̇y − u̇z)T [−C (u̇y − u̇z)−∆S (uy,uz)]

where ∆S (uy,uz) = S (uy)−S (uz)−K̄ (uy − uz) . In the linear case, S (u) =Ku, and choosing
K̄ =K it is easy to demonstrate that∆S (uy,uz) = 0. As a result, recalling that C is symmetric

and positive semidefinite, the inequality (34) is satisfied. In the non-linear case, the sign of the

term ∆S (uy,uz) is in general undefined. Thereby, the relation (34) cannot be proved and the

dynamical system may not be dissipative.

Fig. 3a shows the evolution provided by Eq. (34) for a Duffing hardening oscillator with

K̄ = S1, integrated with the CH −α method (ρ∞ = 1), using the TR rule (9) and a very small

time step size ∆t = 0.001. It is evident that the relation (34) is satisfied only for the linear

system endowed with S2 = 0. Thereby, as the dynamical system (1) is generally non dissipative,

only the non-linear (energy) stability analysis is conducted further.
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4.2 Non-linear (energy) stability

A sufficient condition for the (energy) stability in the non-linear regime of an unforced system

is provided by the following inequality

Ei+1 6 Ei ⇐⇒ ∆Ei = Ei+1 −Ei 6 0 (38)

which expresses the conservation or decay of the total energy within a time step (Kuhl and

Crisfield (1999)). More specifically, Ei = Ti+Ui = 1
2v

T
i Mvi+U (di) defines the total mechanical

energy of the system at the beginning of the i-th time step. The condition expressed by (38) is

satisfied by the CAA method in the linear regime. Moreover, if the following inequality

Êi+1 6 Êi ⇐⇒ ∆Êi = Êi+1 − Êi 6 0 (39)

is exploited, also the N−β method satisfies the above-mentioned stability in energy in the linear
regime. In detail, Êi = Ei +∆t2

¡
β − γ

2

¢
1
2a
T
i Mai is an energy norm which can be interpreted

as a generalized energy (Wood (1990), p. 234).

In order to apply the same approach to the class of the G − α methods, the mean value

operator h·i and the undivided forward difference operator ∆ are introduced, respectively. More
specifically, hgii = gi+gi+1

2 and ∆gi = gi+1 − gi where gi is a scalar or a vector quantity. The
procedure proposed by Hughes (1976) for the CAA scheme is applied to the G− α methods in

the absence of damping and considering the classical TR rule (9). If JS (d) is defined as the

Jacobian operator of S (d) , one gets

∆Êi = ∆Ti +∆Ui +∆t
2
³
β − γ

2

´
∆Ai

= (γ − 1+ αm)∆d
T
i M∆ai

−
µ
1

2
− αf

¶
∆dTi ∆Si (40)

−∆t2
µ
γ − 1

2

¶³
β − γ

2

´
∆aTi M∆ai +∆d

T
i Pi∆di

where ∆Ti = ∆viM hvii, ∆Ai = ∆aiM haii, Si = S (di), ∆Ui = ∆Ui,Lin + ∆Ui,NLin =

∆dTi hSii + ∆dTi Pi∆di and Pi = 1
4

¡
JS
¡
d1i
¢− JS ¡d2i ¢¢. It is worthwhile to remark that the
15



error associated with the approximate solution of the non-linear Eq. (14) is assumed to be

negligible in Eq. (40). As the terms in the rhs of Eq. (40) can be positive or negative according

to the step i, the class of the G−α methods does not comply with the inequalities (38) and (39).
Even the CAA scheme, characterized by αm = αf = 0 and γ = 2β = 1

2 does not satisfy such

inequalities as the relation (40) reads ∆Êi = ∆dTi Pi∆di. As a matter of fact, Hughes (1976)

proved that ∆Êi = ∆Ei = ∆dTi Pi∆di and this term can be positive or negative. Moreover,

Wood and Oduor (1988) proved that the term ∆dTi Pi∆di of Eq. (40) can entail instability for

a non-linear Duffing oscillator. Such phenomenon is highlighted in Fig. 3b, where the CH − α

method with the TR rule (9) and ρ∞ = 1 is applied to a softening Duffing oscillator character-

ized by the reaction force (84) and described in Section 6. Nonetheless, the particular choice

ρ∞ = 0, which corresponds to the asymptotic annihilation of the high-frequency response, is

able to limit the instability phenomenon.

In the linear regime, Eq. (40) reads

∆Êi,Lin = (γ − 1+ αm)∆d
T
i M∆ai

−
µ
1

2
− αf

¶
∆dTi K∆di (41)

−∆t2
µ
γ − 1

2

¶³
β − γ

2

´
∆aTi M∆ai

and, again, the first term of the rhs can be positive or negative. Thereby, the inequality (39)

is not satisfied. The growth and decay of the energy norm ratio Êi,Lin/Ê0 provided by a linear

undamped system with a natural frequency ω = 10 using the CH −α method and the TR rule

(9) is shown in Fig. 3c, where Ê0 represents the initial generalized energy. The numerical results

confirm the analytical estimate of (41). In the particular case αm = αf ,M∆ai = −K∆di and
thereby,

∆Êi,Lin = −
µ
γ − 1

2

¶
∆dTi K∆di (42)

−∆t2
µ
γ − 1

2

¶³
β − γ

2

´
∆aTi M∆ai.

As a result, Eq. (42) satisfies (39). From the above-mentioned relationships, one concludes

that the energy criterion expressed by the inequalities (38) or (39) is not applicable to the class

of the G − α methods. Though these methods exhibit growth and decay of the mechanical
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energy in the linear regime, it is possible to define a norm k·kN of Xi = [di,vi,ai]
T such that

kXi+1kN 6 kXikN (Hughes 1987, p. 564). Thereby, the numerical norm decay of the discrete

solution is enough for the G− α schemes to exhibit numerical stability.

5 Overshoot, high-frequency behaviour and numerical damping
properties

The time step ∆t of standard implicit algorithms employed in stiff differential equations is small

compared to the period of the lower modes and large with respect to the period of high-frequency

components. Numerical simulations of non-linear test problems display an asymptotic energy

stability in the sense of Eq. (39) when∆τ = ∆t
T À 1, where T represents the period of the highest

frequency component. See for instance Fig. 3d, which shows the generalized energy ratios Êi+1
Êi

as a function of ∆τ = ∆t
T , provided by a Duffing hardening oscillator integrated with the CH−α

method (ρ∞ = 0.5) using the TR rule (9). On the other hand, Eq. (39) is violated for smaller

values of ∆τ , which leads to the conclusion that the non-linear instability phenomena exhibited

by the G − α methods are caused by the amplification of intermediate-frequency components.

Along these lines, Hughes (1976) analysed the behaviour of the CAA method applied to the

non-linear equation (1). More specifically, it was proved that the energy E is asymptotically

conserved for ∆τ À 1. Another typical characteristic of the G − α methods in the condition

∆τ À 1 regards the numerical amplification of spurious high-frequency response components

in the first steps also known as overshoot. Overshoot is clearly an undesirable feature of any

numerical scheme applied to Eq. 1. It is widely discussed in literature, see e.g. Hilber and

Hughes (1978) , Wood (1990) p. 134, among others, and it is independent of the algorithm

stability. As far as the linear undamped case is concerned, Hilber and Hughes (1978) studied

the overshoot effect of the HHT−αmethod by means of the asymptotic analysis. More recently,
other methods based on the Rosenbrock algorithm and without overshoot have been compared to

theHHT−αmethod (Piche (1995)). Nonetheless, no analysis of the aforementioned phenomena
has been performed in the non-linear case to the best of the authors’ knowledge. Such analyses

are conducted hereinafter.

In order to analyse the overshoot phenomenon, Eq. (14) is considered in the unforced case
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F (t) = 0, for i = 0

S1−αf (d1) = M

·
− 1− αm
βT 2∆τ2

(d1 − d0) + 1− αm − 2β
2β

a0 +
1− αm
βT∆τ

v0

¸
(43)

+C

·
−(1− αf ) γ

βT∆τ
(d1 − d0) + (γ − 2β) (1− αf )

2β
T∆τa0 +

(1− αf ) γ − β

β
v0

¸
,

along with Eqs. (4), (5) for i = 0

a1 =

µ
1− 1

2β

¶
a0 − 1

βT∆τ
v0 +

1

βT 2∆τ2
(d1 − d0) (44)

v1 =

µ
1− γ

2β

¶
a0T∆τ +

µ
1− γ

β

¶
v0 +

γ

βT∆τ
(d1 − d0) . (45)

Direct inspection of the Eq. (43) shows that the reaction force S1−αf (d1) is of the same

order of magnitude of ∆τ when C 6= 0, γ 6= 2β and a0 6= 0, being αf ≤ 1
2 (see row 2 of

Table 1). This leads often to convergence problems of the Newton-Raphson algorithm employed

for the computation of d1. Nonetheless, overshoot is clearly exhibited by d1 even in the case

of convergent Newton-Raphson iterations. Thereby, d1 always assumes limited values and no

overshoot in the displacements occurs when either C = 0 or γ = 2β or a0 = 0. Moreover,

Eq. (45) shows clearly that v1 exhibits overshoot when γ 6= 2β and a0 6= 0 ∀ C. It is also
worthwhile to remark that the occurrence of overshoot only depends on the parameters β and

γ included in (4) and (5), while it does not depend on the parameters αm and αf of Eq.

(3). Hereinafter, an asymptotic analysis of the G − α methods for ∆τ À 1 is developed,

which allows the high-frequency response properties of these algorithms to be studied in a

unified framework, independently of the quadrature rules. Asymptotic expressions for {ai},
{vi},

©
Si+1−αf

ª
, {Ei} and

n
Êi

o
, are derived in the high-frequency limit, assuming that no

overshoot in the displacements occurs.

When ∆τ À 1, the Eq. (43) can be simplified by omitting higher order terms in 1
∆τ .

Moreover, for the sake of clarity, the parameters β and γ are expressed as functions of ρ∞(∈ [0, 1],
where ρ∞ = 0 asymptotic annihilation, ρ∞ = 1 none), viz. β = 1

(1+ρ∞)2
and γ = 1

2
3−ρ∞
1+ρ∞

,

according to the relations of Table 3. Thus, one obtains

S1−αf (d1) = M

"Ã
(1− αm) (1+ ρ∞)

2

2
− 1
!
a0 +

(1− αm) (1+ ρ∞)
2

T∆τ
v0

#
(46)

+C

"
−(1− ρ∞)

2 (1− αf )

4
T∆τa0 +

µ
(1− αf ) (3− ρ∞) (1+ ρ∞)

2
− 1
¶
v0

#
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where the dependency of αm and αf on ρ∞ is collected in Table 3.

The case ρ∞ ∈ [0, 1) equivalent to γ 6= 2β is analysed first. In this condition, overshoot in d
can be avoided only in the following three cases:

(a) a0 6= 0 C = 0
(b) a0 = 0 C = 0
(c) a0 = 0 C 6= 0

(47)

which imply the annihilation of the term C
(1−ρ∞)2(1−αf)

4 T∆τa0 in Eq. (46). As a result, this

relation becomes

S1−αf (d1) = M

"Ã
(1− αm) (1+ ρ∞)

2

2
− 1
!
a0 +

(1− αm) (1+ ρ∞)
2

T∆τ
v0

#

+C

·
(1− αf ) (3− ρ∞) (1+ ρ∞)

2
− 1
¸
v0,

while Eqs. (44), (45) can be rewritten accordingly as

a1 =
1− 2ρ∞ − ρ2∞

2
a0 − (1+ ρ∞)

2

T∆τ
v0 (48)

v1 =
(1− ρ∞)

2

4
a0T∆τ − 1+ 2ρ∞ − ρ2∞

2
v0. (49)

For the subsequent time step (i = 1) and considering that ∆τ À 1, Eq. (14) can be simplified
by the same approximations performed for i = 0, thus yielding

S2−αf (d2) = M

"Ã
(1− αm) (1+ ρ∞)

2

2
− 1
!
a1 +

(1− αm) (1+ ρ∞)
2

T∆τ
v1

#
(50)

+C

"
−(1− ρ∞)

2 (1− αf )

4
T∆τa1 +

µ
(1− αf ) (3− ρ∞) (1+ ρ∞)

2
− 1
¶
v1

#
.

Accounting for the assumptions exploited in (47) and (48), it can be readily demonstrated that

d2 is limited. Thereby, Eqs. (4) and (5) considered for i = 1 and ∆τ À 1 yield

a2 =
1− 2ρ∞ − ρ2∞

2
a1 − (1+ ρ∞)

2

T∆τ
v1 (51)

v2 =
(1− ρ∞)

2

4
a1T∆τ − 1+ 2ρ∞ − ρ2∞

2
v1. (52)

The following relations can then be determined iteratively

ai+1 =
1− 2ρ∞ − ρ2∞

2
ai − (1+ ρ∞)

2

T∆τ
vi (53)

vi+1 =
(1− ρ∞)

2

4
aiT∆τ − 1+ 2ρ∞ − ρ2∞

2
vi (54)
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for i ≥ 0. Applying Eq. (53) and (54) to two subsequent time steps, the recursive relations

ai+1 = −2ρ∞ai − ρ2∞ai−1 (55)

vi+1 = −2ρ∞vi − ρ2∞vi−1 (56)

are obtained. As a result, by recursion on Eq. (55) and (56) and recalling the initial values

expressed in (48) and (49), one obtains:

{ai} = (−1)i ρi−1∞
·
ρ∞ −

i

2

¡
1− ρ2∞

¢¸
a0 + i (−1)i ρi−1∞

(1+ ρ∞)
2

T∆τ
v0 (57)

{vi} = − i
4
(−1)i ρi−1∞ (1− ρ∞)

2 a0T∆τ

− (−1)i ρi−1∞
·
i
ρ2∞ − 2ρ∞ − 1

2
+ (i− 1)ρ∞

¸
v0. (58)

It is worthwhile to remark that the terms proportional to a0 in (58) will be dominant when

∆τ À 1. Therefore, the terms proportional to v0 will only be considered in the case a0 = 0.

Substituting the values of ai and vi of Eq. (57) and (58), in Eq. (3) considered for Fi+1−αf = 0,

one obtains©
Si+1−αf

ª
= (−1)i ρi−1∞

· ¡−ρ∞ + i
2

¡
1− ρ2∞

¢¢
(−ρ∞ (1− αm) + αm)

−12ρ∞
¡
1− ρ2∞

¢
(1− αm)

¸
Ma0

+(−1)i ρi−1∞ [ρ∞ (1− αm) (i+ 1)− i αm] (1+ ρ∞)
2

T∆τ
Mv0

+(−1)i ρi−1∞
(1− ρ∞)

2

4
[−ρ∞ (1− αf ) (i+ 1) + αf i]Ca0T∆τ

+(−1)i ρi−1∞

 − (1− αf )ρ∞
h
(i+ 1) ρ

2∞−2ρ∞−1
2 + iρ∞

i
+αf

h
iρ

2∞−2ρ∞−1
2 + (i− 1)ρ∞

i Cv0. (59)

Employing Eqs. (57) and (58) along the same lines, the asymptotic expressions for the sequences

{Ei} and
n
Êi

o
can be derived:

{Ei} = ρ2(i−1)∞ i2
(1− ρ∞)

4

16
T 2∆τ2

1

2
aT0Ma0

+2 i ρ2(i−1)∞
(1− ρ∞)

2

4

·
i
ρ2∞ − 2ρ∞ − 1

2
+ (i− 1) ρ∞

¸
T∆τ

1

2
aT0Mv0

+ρ2(i−1)∞

·
i
ρ2∞ − 2ρ∞ − 1

2
+ (i− 1)ρ∞

¸2
1

2
vT0Mv0

+U (di) (60)

20



andn
Êi

o
= ρ2(i−1)∞

"
i2
(1− ρ∞)

4

16
+
(1− ρ∞)

2

4 (1+ ρ∞)
2

µ
−ρ∞ +

i

2

¡
1− ρ2∞

¢¶2#
T 2∆τ2

1

2
aT0Ma0

+2 i ρ2(i−1)∞
(1− ρ∞)

2

4

·
i
ρ2∞ − 2ρ∞ − 1

2
+ (i− 1)ρ∞

¸
T∆τ

1

2
aT0Mv0

+ρ2(i−1)∞

"µ
i
ρ2∞ − 2ρ∞ − 1

2
+ (i− 1) ρ∞

¶2
+
i2

4

¡
1− ρ2∞

¢2# 1
2
vT0Mv0

+U (di) . (61)

It is worthwhile to emphasize that {Ei} and
n
Êi

o
can only be computed explicitly by means of

the above-mentioned formulae as long as U (di) is negligible compared to the remaining term of

the rhss for i > 1. It can be demonstrated that this holds as long as C = 0 (cases (a) and (b)
in (47)).

The asymptotic sequences of the ratios ra,i, rv,i, rs,i, Ei/E1 and Êi/Ê0 relevant to case

(a) in (47) are plotted in Fig. 4 and 5, for ρ∞ = 0.5 and ρ∞ = 0.9, respectively. More

specifically, ai = ra,ia0, vi = rv,iv1 and Si+1−αf = rs,iS1−αf while the cases in which overshoot

occurs according to the analysis performed above are pointed out. For this reason, the reference

values for vi and Ei are assumed to be v1 and E1, respectively. It can be observed that all the

ratios annihilate after a certain number i of time steps while this trend is faster for ρ∞ = 0.5.

Moreover, only rs,i depends upon the integration method employed as (59) exploits αm and αf

which depend on ρ∞ (see Table 3); all the sequences are independent on the quadrature rules

(9)-(11).

The same ratios relevant to cases (b) and (c) in (47) are illustrated in Fig. 6 and 7, for

ρ∞ = 0.5 and ρ∞ = 0.9, respectively. As a0 = 0, the plotted quantity ra,i is defined as ai = ra,ia1

and the cases in which the ratios depend on ∆τ−1 are pointed out too. All the ratios annihilate

after a certain number i of time steps while the annihilation is faster for ρ∞ = 0.5. Again, the

ratios do not depend on the quadrature rule employed. In the next section, such analytical

estimates are warranted by numerical simulations.

The sequences computed above allow the dissipation properties of the G−αmethods relevant
to the high-frequency components to be understood. In the linear regime, such properties are

related to the spectral radius ρ∞ as illustrated in Appendix 1. Hereinafter, it is shown that this
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dependence on ρ∞ also holds in the non-linear regime. From Eq. (57), in the limit ∆τ À 1, one
gets

ra,i+1
ra,i

=
ρ∞
¡−ρ∞ + i+1

2

¡
1− ρ2∞

¢¢
ρ∞ − i

2 (1− ρ2∞)
a0 6= 0 (i > 0)

ra,i+1
ra,i

= −ρ∞
i+ 1

i
a0 = 0 (i > 1)

lim
i→∞

ra,i+1
ra,i

= −ρ∞ (62)

Analogous results hold for the velocities through Eq. (58), and reaction forces through Eq. (59).

As far as the energy ratios are concerned, on the basis of Eq. (60) andC = 0 it is straightforward

to prove that

Ei+1
Ei

= ρ2∞
(i+ 1)2

i2
a0 6= 0 (i > 1) (63)

Ei+1
Ei

= ρ2∞

"
(i+ 1) ρ

2∞−2ρ∞−1
2 + i ρ∞

iρ
2∞−2ρ∞−1

2 + (i− 1) ρ∞

#2
a0 = 0 (i > 0). (64)

An attentive reader can observe that Ei+1
Ei

is not always bounded by 1. However, it can be

proved that

lim
i→∞

Ei+1
Ei

= ρ2∞. (65)

Analogously in the undamped case, Eq. (61) yields

Êi+1

Êi
= ρ2∞

(i+ 1)2 (1−ρ∞)
4

16 + (1−ρ∞)2
4(1+ρ∞)

2

¡−ρ∞ + i+1
2

¡
1− ρ2∞

¢¢2
i2 (1−ρ∞)

4

16 + (1−ρ∞)2
4(1+ρ∞)

2

¡−ρ∞ + i
2 (1− ρ2∞)

¢2 a0 6= 0 (i > 0) (66)

and

Êi+1

Êi
= ρ2∞

³
(i+ 1) ρ

2∞−2ρ∞−1
2 + iρ∞

´2
+ (i+1)2

4

¡
1− ρ2∞

¢2³
iρ

2∞−2ρ∞−1
2 + (i− 1) ρ∞

´2
+ i2

4 (1− ρ2∞)
2

a0 = 0 (i > 0). (67)

Thereby

Êi+1

Êi
∈ [0, 1) (68)

always holds for ρ∞ < 1 and ∆τ À 1. Moreover,

lim
i→∞

Êi+1

Êi
= ρ2∞. (69)
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One can observe that Eqs. (63)-(69) do not depend on the algorithmic parameters αm and αf

as well as on the internal force function S = S (u). Eqs. (65) and (69) show clearly that the

dissipation rate of high-frequency components is governed by ρ∞ also in the non-linear regime.

The ratios Ei+1/Ei and Êi+1/Êi, as functions of ρ∞, are plotted in Fig. 8 both for the case

a0 6= 0 and a0 = 0, respectively. The convergence of those ratios to the limiting value ρ2∞ for

iÀ 1 is evident.
The case ρ∞ = 1 is considered hereinafter. It is worthwhile to recall that the non-dissipative

CAA method, endowed with γ = 2β = 1
2 and αm = αf = 0, was analysed by Hughes (1976)

and Wood and Oduor (1988) . With regard to the G− α methods using ρ∞ = 1, one obtains

γ = 2β = 1
2 according to Table 3 and

1) αm = αf = 0 for the N − β,HHT − α,WBZ − α methods (70)

2) αm = αf =
1

2
for the CH − α method. (71)

In what follows, the asymptotic analysis is carried out as in the previous case (ρ∞ < 1). When

ρ∞ = 1 Eq. (43) yields

S1−αf (d1) = (1− 2αm)Ma0 + (1− αm)
4

T∆τ
Mv0 + (1− 2αf )Cv0

and thereby,

1) S1 (d1) = S (d1) =Ma0 +
4

T∆τ
Mv0 +Cv0 = −S (d0) + 4

T∆τ
Mv0 (72)

2) S1− 1
2
(d1) = S1−1

2
(d0,d1) =

2

T∆τ
Mv0 (73)

in the conditions (70) and (71), respectively. Two separated cases must be considered:

(a) d0 = 0
(b) d0 6= 0. (74)

In the case (a) v0 6= 0 must hold. It can be also proved through the Eqs. (72) and (73) that d1
is asymptotically negligible in this case, so that Eqs. (44) and (45) yield

a1 = −a0 − 4

T∆τ
v0

v1 = −v0.
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By iteration, one obtains

{ai} = (−1)i a0 + i (−1)i 4

T∆τ
v0

{vi} = (−1)i v0
{Ei} =

n
Êi
o
=
1

2
vT0Mv0 = E0 = Ê0

1) {Si+1} = (−1)i (i+ 1) 4

T∆τ
Mv0

2)
n
Si+1−1

2

o
= (−1)i 2

T∆τ
Mv0. (75)

In the case (b), Eqs. (72) and (73)

1) S (d1) = −S(d0) + 4

T∆τ
Mv0 (76)

2) S1−1
2
(d0,d1) =

2

T∆τ
Mv0 (77)

are considered again. Nonetheless, the value of d1 can be easily determined from Eq. (76) under

the assumption that S (−u) = −S (u) (see Hughes (1976)). As a result, one gets in the limit,

d1 = −d0. (78)

On the other hand, if S1− 1
2
(d0,d1) = S

TR
1− 1

2

(d0,d1) =
S(d0)+S(d1)

2 , through Eq. (77) it is easy

to prove that S (d1) = −S (d0) + 4
T∆τMv0; thereby, the antisymmetry of S (u) implies again

(78). The same result holds for all the quadrature rules for which S1− 1
2
(d0,d1) = 0 implies

S (d1) = −S (d0). Under these assumptions, Eqs. (44), (45) and (78) yield

a1 = −a0 − 4

T∆τ
v0

v1 = −v0 − 4

T∆τ
d0.

Thereby, by iteration for i > 1 it is easy to demonstrate that

{di} = (−1)i d0
{ai} = (−1)i a0 + i (−1)i 4

T∆τ
v0 (79)

{vi} = (−1)i v0 + i (−1)i 4

T∆τ
d0

{Ei} =
n
Êi

o
→ 1
2
vT0Mv0 + U (d0) = E0 = Ê0
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To warrant the analytical estimates provided by (79), the Duffing hardening oscillator endowed

with the reaction force (80) and period T is considered. It has been integrated by means of the

CH − α method with ρ∞ = 1, using the TR rule (9) and a large time step size ∆t = 151.53,

viz. ∆t/T = 1000. It is evident from Fig. 9, how energy Ei (= Êi) is asymptotically conserved

for small i/(T∆τ) ratios in agreement with the conclusions of Hughes (1976) and Hoff and Pahl

(1988b).

6 Representative numerical simulations

In this section, three representative numerical examples are introduced both to evaluate the

performance of the class of G− α methods and to warrant the analytical findings presented in

the previous sections. The model problems selected exhibit key features typical of more complex

systems which arise in non-linear structural dynamics.

The first problem deals with a S.D.o.F. system which is an unforced and undamped Duffing

oscillator (Wood (1988) and (1990), p. 298 ). It can reproduce, for instance, the motion of a

lumped mass attached to a taut string, viz. a hardening system.

The restoring force for such oscillator reads

S (u(t)) = S1u(t)(1+ S2u(t)
2) (80)

where S1 and S2 are stiffness constants. Since a hardening system is examined, S2 > 0. In order

to analyse the time-stepping method it is useful to provide the solution of Eq. (1) with M = 1,

C = 0 and F (t) = 0. As the non-linear term in the internal force is cubic in u, the solution can be

easily expressed in terms of Jacobi elliptic functions (Wood (1988)). Let K (m) =
R π
2
0

dϑ√
1−m sin2 ϑ

denote the complete elliptic integral of the first kind (Abramowitz and Stegun (1964) p. 569)

and consider the case of v0 = 0. The solution of the hardening system reads

u(t) = u0cn(−ω̂t,m) (81)

u̇(t) = u0ω̂sn(−ω̂t,m)dn(−ω̂t,m) (82)

where ω̂2 = S1(1+ S2u20) and m = S2u
2
0/
¡
2 + 2S2u

2
0

¢
. The solution is periodic with period

T =
4K (m)

ω̂
. (83)

25



S1 = 100, S2 = 10, u0 = 1.5 and v0 = 0 was assumed in the simulations while according to the

expression (83), the period of the solution appears to be T = 0.15153. Moreover, simulations on

the softening oscillator analysed by Park (1975 ) and characterized by the reaction force

S (u(t)) = S1 tanhu(t) (84)

with S1 = 100 have also been performed.

The second problem regards a non-linear 2.D.o.F. system endowed with natural frequencies

typical of large systems, introduced so as to highlight the favourable accuracy and dissipative

properties of the higher modes of the proposed schemes. A linear version of this system was

considered in Hughes ((1987), p. 542). The system is represented in Fig. 10 and is endowed

with m1 = m2 = 1 and C = 0. The restoring force S1 (u1) complies with Eq. (80), where

S1 = S2 = 104 while S2 (u2) complies with Eq. (84) where S1 = 1. The natural frequencies

of the linear system are ω1=0.99995 and ω2=100.00500, respectively. The mode related to the

lower frequency represents those modes that are physically important and must be accurately

integrated. The second mode represents those spurious high-frequency modes which have to be

filtered by the numerical method.

The results provided by the CH −α method using ρ∞ = 0.5 and a time step size ∆t = 0.25

are illustrated in Fig. 11. The initial conditions uT0 = {1.5, 2.5} and vT0 = {0, 1} entail a0 6= 0
while the following expressions

E1,i =
1

2
v21,i +

1

2
104d21,i +

1

4
108d41,i (85)

Ê1,i = E1,i +
1

2
a21,i∆t

21

4

(1− 1/2)2
(1+ 1/2)2

(86)

have been used to evaluate both the energy E and the generalized energy Ê of the hardening

spring at the i-th step, which exhibits the spurious high-frequency behaviour. In Eqs. (85) and

(86), d1,i,v1,i and a1,i represent the numerical approximations of displacements, velocities and

accelerations, respectively, at the instant ti. One may observe that the time histories plotted

in Fig. 11 agree with the analytical estimates (57)-(61) depicted in Fig. 4. Moreover, the

capabilities of the G − α methods to wipe out the high-frequency components of the response

and the effects of the overshoot phenomena are evident.
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The third example deals with a stiff system, viz. a one-dimensional model of a clamped-free

rod. Since the discontinuity in the velocity and strain (weak shocks) influences the physical

solution, the high-frequency dissipation of spurious responses is a desired feature. This problem

has been proposed in literature as spurious oscillations arise when non-dissipative integrators

like the CAA method are adopted (Hughes and Liu (1978)). The governing equation of the

problem is
∂

∂x

µ
EA

∂u

∂x

¶
− ρA

··
u = 0 (87)

with the boundary conditions

u (0, t) = 0 and EA
∂u

∂x

¯̄̄̄
x=L

= 0. (88)

The problem was sketched in Fig. 2a where a homogeneous elastic rod with a constant cross-

sectional area was depicted. The length L of the rod is equal to 10, the density ρ and the cross

sectional area A have unit values while a lumped mass matrix is used and C = 0.

The system is discretized with ten elements of the same length, Lj = L
10 = 1, and it has been

integrated by means of the G−α methods with ρ∞ = 0.5 and ∆t = 0.075. The Young’s moduli

are E1 = 108, E2 = 107, and E3 = E4 = ... = E10 = 102. The element nodal displacement vector

is defined as uj (t) = [uj−1 (t) , uj (t)]T , where uk (t) with k = 1, ..., 10, is the displacement of

the k − th node and u0 (t) = 0 owing to the boundary conditions. Moreover, the uj (t) , with

j = 1, ..., 10, are the components (u (t))j of the nodal displacement vector u (t) . The mass matrix

and the non-linear internal force for the j − th element reads

Mj =
1

2
A Lj ρ I2 (89)

Sj (uj (t)) = ALjEj

Ã
b+

4

L2j
Auj (t)

!
ε (uj (t)) (90)

where

ε (uj (t)) = b
Tuj (t) +

2

L2j
uTj (t)Auj (t) (91)

defines the scalar Green strain, A = 1/4

µ
1 −1
−1 1

¶
and b = 1

Lj

µ −1
1

¶
. In this case, Eq.

(11) reads

SGEMRj, i+1−αf = ALjEj

Ã
b+

4

L2j
Adj, i+1−αf

!
((1− αf ) ε (dj, i+1) + αf ε (dj, i)) (92)
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where dj, i = [dj−1, i, dj, i]T represents the numerical approximation of uj (ti). Again, the ex-

pressions

E1_2, i =
1

2
ρA

L

10

¡
v21,i + v

2
2,i

¢
+
1

2
E1ε

2 (d1, i) +
1

2
E2ε

2 (d2, i) (93)

Ê1_2, i = E1−2, i +
1

2
(a21,i + a

2
2,i)∆t

21

4

(1− 1/2)2
(1+ 1/2)2

(94)

have been used to estimate both the energy E and the generalized energy Ê relevant to the

high frequency components of elements 1 and 2, respectively, indicated in Fig. 2a. Moreover,

vk,i and ak,i are the numerical approximation of u̇k (ti) and ük (ti) .

Two cases are considered in the following. In the first case, the initial conditions (u0)j = j/10,

(v0)j = u̇j (0) = 0, for j = 1, ..., 10 are chosen to achieve a0 6= 0. Due to the large elastic moduli
of elements 1 and 2, see Fig. 2, only results relevant to nodes 1, 2 sensitive to the high-frequency

response components and node 10 located at the rod tip are plotted. More specifically, the time

histories of the displacements, velocities, accelerations, internal forces, energies and generalized

energies are depicted in Fig. 12. Again, it is evident that the high-frequency components follow

the analytical estimates predicted by Eqs. (57)-(61) and plotted in Fig. 4. Moreover, one may

observe that such spurious components are annihilated in a few steps owing to the choice of

ρ∞ = 0.5 (< 1).

In the second case, the initial conditions (u0)j = 0, (v0)j = −1, for j = 1, ..., 10 are chosen,
to achieve a0 = 0. Again, the results plotted in Fig. 13 highlight that the responses with

the high-frequency components agree with the analytical estimates provided by Eqs. (57)-(61)

depicted in Fig. 6.

7 Conclusions

An accuracy analysis followed by a stability analysis of the class of the Generalized−α methods
applied to non-linear dynamical systems has been presented in this paper. It has been proved

that the G− α methods achieve second order accuracy for displacements and velocities also in

the non-linear regime, independently of the quadrature rule of the non-linear internal forces.

Conversely, the computed acceleration is, in general, first order accurate. As far as the stability

analysis is concerned, it has been demonstrated that the G-stability definition, suitable for linear
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multistep methods applied to non-linear systems, cannot be applied to algorithms dealing with

structural dynamics equations, as these equations are not contractive. Thereby, other (energy)

stability definitions have been exploited, which prove that the G− α methods are stable in an

energy sense in the high-frequency range depending on the algorithmic parameter ρ∞. When

ρ∞ = 0, such algorithms are asymptotically annihilating. Conversely, the G−α methods entail

heavy energy oscillations in the intermediate-frequency range. Moreover, the G − α methods

have been analysed in terms of overshoot and the relevant drawbacks have been shown. Finally,

results of representative numerical simulations performed on single- and multiple-degrees-of-

freedom non-linear systems which exhibit key features typical of more complex systems arising

in non-linear dynamics have been performed, showing the validity of the analytical estimates.

The analysis of the G− α methods applied to forced non-linear systems subjected to potential

resonant phenomena deserves additional futures studies.

8 Appendix 1. Properties of the G − α methods in the linear
regime

In this Section, the convergence properties of the G−α methods in the linear regime are recalled
and some links between the properties in the linear and the non-linear regime are established.

Since a M.D.o.F. coupled system (3) can be decomposed into nDoF uncoupled scalar equations,

the analysis of the class of the G−αmethods is performed on a S.D.o.F. model equation (Hughes
(1987), p. 492). In the linear regime, Eq. (12) entails the application of the TR rule (9) and

reads

3X
j=0

£
Mαjdi+j +∆tCγjdi+j +∆t

2βj (Kdi+j −Fi+j)
¤
= 0 (95)

where

β0 = αf
¡
1
2 + β − γ

¢
β1 =

1
2 + β − γ − 3βαf + 2γαf

β2 =
1
2 −

αf
2 − 2β + γ + 3βαf − γαf
β3 = (1− αf )β

(96)

while αj and γj are defined in Eq. (13) and K is the symmetric positive-semidefinite stiffness

matrix. Hence, Eq. (95) can be associated with the characteristic polynomial
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Π(λ, ξ,Ω) =
3X
j=0

£
αj + 2ξΩγj +Ω

2βj
¤
λj (97)

where Ω = ω∆t, ω is the natural frequency and ξ is the damping ratio. Both the stability

and accuracy properties of the G − α methods can be deduced through the analysis of the

characteristic polynomial (97).

Given ∆t, the stability of the G−α schemes is verified when the roots of Π(λ, ξ,Ω) are less

than or equal to unity in modulus or strictly less than unity when the roots have multiplicity

greater than one (Hairer and Wanner (1991), p. 256)). The conditions on the algorithmic

parameters which ensure the unconditional stability of theG−αmethods ∀ Ω ∈ (0,∞) have been
derived using the Routh-Hurwitz criterion and are collected in row 2 of Table 1. The polynomial

(97) admits two principal roots λ1,2 (ξ,Ω) = a (ξ,Ω) + i b (ξ,Ω) and one real spurious root λ3.

In order to maximize the high-frequency dissipation, the principal roots shall remain complex

conjugate as Ω increases. Moreover, limΩ→∞ b (ξ,Ω) = Imλ
(∞)
1,2 = 0 in the high-frequency limit

(Chung and Hulbert (1993)). The expressions of λ = λ (ξ,Ω) for Ω→∞ read

λ
(∞)
1,2 =

4β − 2γ − 1
4β

± i

β

s
β − 1

4

µ
γ +

1

2

¶2
; λ

(∞)
3 =

αf
−1+ αf

(98)

and one may observe that such relations do not depend on ξ. Thereby, imposing the condition

β =
1

4

µ
γ +

1

2

¶2
(99)

in (98) the principal roots λ(∞)1,2 become real and read

λ
(∞)
1,2 =

2γ − 3
1+ 2γ

and λ
(∞)
3 =

αf
−1+ αf

. (100)

The row 3 of Table 1 collects the unconditional stability conditions after imposing (99).

The condition

γ =
1

2
+ αf − αm (101)

determined in Subsection 3.1 for non-linear systems entails a second order accuracy of the G−α
methods aside from the remaining parameters. These conditions are collected in row 4 of Table
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1. The stability conditions corresponding to conditions (99) and (101) are reported in row 5 of

Table 1. As a result, the class of the G−αmethods endowed with optimal accuracy, stability and
dissipation properties has two free algorithmic parameters: αf and αm. Setting αf = αm = 0

and using the condition (99) the N − β method (Newmark (1959)) is recovered, while the CAA

method requires in addition that γ = 1
2 .

The condition (101) on (100) entails

λ
(∞)
1,2 =

αf − αm − 1
αf − αm + 1

and λ
(∞)
3 =

αf
−1+ αf

. (102)

If αm = 0 and αf = −αHHT the HHT − α method is retrieved (Hilber, Hughes and Taylor

(1977)) while if αm = αWBZ and αf = 0 the WBZ − α is recovered (Wood, Bossak and

Zienkiewicz, (1981)). However, Chung and Hulbert (1993) enforce the condition λ(∞)3 = λ
(∞)
1,2 to

reduce the algorithmic damping of the CH − α method in the low-frequency range. Thereby,

both the above-mentioned condition and (102) imply αm = 3αf − 1. The values of the free
algorithmic parameters and the relevant relations for the G − α methods are summarized in

Table 2.

In the low-frequency range, the condition |λ3| 6 |λ1,2| usually holds. To avoid sharp variation
of the spectral radius ρ = max(|λ1|, |λ2| |λ3|), such inequality must hold for all Ω ∈ [0,∞) (Chung
and Hulbert (1993)). More specifically, the following relation¯̄̄

λ
(∞)
3

¯̄̄
6
¯̄̄
λ
(∞)
1,2

¯̄̄
(103)

is exploited. Taking into account the relation (102), it can be shown that the condition (103) is

satisfied by the HHT −α method if −13 6 αHHT 6 0. The parameters of the WBZ−α method
satisfy the condition (103) for all αWBZ , while λ

(∞)
1,2 = λ

(∞)
3 ∀ αf by design in the CH−αmethod.

As a result, it is convenient to set ρ∞ = limΩ→∞ ρ (Ω) =
¯̄̄
λ
(∞)
1,2

¯̄̄
and express all the parameters

as functions of ρ∞. This single parameter ρ∞ ∈ [0, 1], ρ∞ 6 1 for the unconditional stability
of the G− α methods and the choice ρ∞ = 0 corresponds to the asymptotic annihilation of the

high-frequency response, while ρ∞ = 1 corresponds to the case of no algorithmic dissipation.

Table 3 collects the algorithmic parameters of the G − α methods parametrized by ρ∞. In all

cases, β = 1
(1+ρ∞)2

and γ = 1
2
3−ρ∞
1+ρ∞

. Moreover, β ∈ £14 , 49¤ and γ ∈ £12 , 56¤ for the HHT − α

method while β ∈ £14 , 1¤ and γ ∈ £12 , 32¤ for the other methods.
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11 List of Figures

Fig. 1. a Reaction force vs. displacement of an undamped Duffing hardening oscillator; b
convergence of displacement at t = 0.02 with u0 = 1.5, v0 = 0; c convergence of velocity
at t = 0.02; d convergence of acceleration at t = 0.02.

Fig. 2. a Non-linear undamped clamped-free homogeneous elastic rod with a constant cross-
sectional area; b convergence of displacement at t = 0.2 with (u0)j = j/10, v0 = 0; c
convergence of velocity at t = 0.2; d convergence of acceleration at t = 0.2.

Fig. 3. a Evolution of hf (t,y)− f (t, z) , y− zi for a Duffing hardening oscillator with dif-
ferent parameters and yT0 = (uy0 ,vy0) = (1.5, 1), z

T
0 = (uz0 ,vz0) = (1, 5) and ∆t = 0.001;

b Evolution of the undamped softening oscillator with u0 = 4, v0 = 0 and ∆t = 0.5; c
Evolution of the energy norm ratio for a linear undamped system with natural frequency ω

= 10, with u0 = 1.5, v0 = 0 and ∆t/T = 1/(10π); d Energy norm ratios for an undamped
Duffing hardening oscillator with u0 = 1.5 and v0 = 0.

Fig. 4. Evolution of the ratios of acceleration, velocity, reaction force, energy and generalized
energy for a0 6= 0, C = 0, ρ∞ = 0.5 and ∆τ À 1.

Fig. 5. Evolution of the ratios of acceleration, velocity, reaction force, energy and generalized
energy for a0 6= 0, C = 0, ρ∞ = 0.9 and ∆τ À 1.

Fig. 6. Evolution of the ratios of acceleration, velocity, reaction force, energy and generalized
energy for a0 = 0, ρ∞ = 0.5 and ∆τ À 1.

Fig. 7. Evolution of the ratios of acceleration, velocity, reaction force, energy and generalized
energy for a0 = 0, ρ∞ = 0.9 and ∆τ À 1.

Fig. 8 Evolution of the ratios of energy and generalized energy for C = 0 and ∆τ À 1.

Fig. 9 Evolution of the energy ratio Ei/E0 for an undamped Duffing hardening oscillator

with u0 = 1.5, v0 = 0 and ∆t = 151.53.

Fig. 10 Non-linear two D.o.F. system.

Fig. 11. Evolution of acceleration, velocity, displacement, reaction force, energy and gener-
alized energy for a non-linear two D.o.F system with a0 6= 0, C = 0, ρ∞ = 0.5, uT0 =
{1.5, 2.5} , vT0 = {0, 1} and ∆t = 0.25.

Fig. 12. Evolution of acceleration, velocity, displacement, reaction force, energy and gener-
alized energy for a non-linear clamped-free homogeneous elastic rod with a0 6= 0, C = 0,
ρ∞ = 0.5, (u0)j = j/10, v0 = 0 and ∆t = 0.075.
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Fig. 13. Evolution of acceleration, velocity, displacement, reaction force, energy and gener-
alized energy for a non-linear clamped-free homogeneous elastic rod with a0 = 0, C = 0,
ρ∞ = 0.5, u0 = 0, (v0)j = -1 and ∆t = 0.075.
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Parameter conditions αm αf β γ

S 1
2 − (γ − αf ) 6 αm 6 1

2 6 1
2 > γ

2 > 1
2

S and O.D. (99) 1
2 − (γ − αf ) 6 αm 6 1

2 6 1
2

1
4

¡
γ + 1

2

¢2 > 1
2

S and S.O.A. (101) 6 αf 6 1
2 > 1

4 +
1
2 (αf − αm)

1
2 + αf − αm

S, (99) and (101) 6 αf 6 1
2

1
4 (1+ αf − αm)

2 1
2 + αf − αm

Table 1. Unconditional stability conditions for the algorithmic parameters of the G − α

methods. S: Stability; O.D.: Optimal Dissipation; S.O.A.: Second Order Accuracy.

Method αm αf β γ

N − β 0 0 1
4

¡
γ + 1

2

¢2 > 1
2

HHT − α 0 0 6 −αHHT 6 1
2

1
4 (1− αHHT )

2 1
2 − αHHT

WBZ − α αWBZ 6 0 0 1
4 (1− αWBZ)

2 1
2 − αWBZ

CH − α 3αf − 1 6 1
2 (1− αf )

2 3
2 − 2αf

Table 2. Relations among the algorithmic parameters in order to achieve first order accuracy
for the N − β method, second-order accuracy for the α− methods and corresponding

unconditional stability conditions.

Method ρ∞ αm αf

N − β −2γ−31+2γ ∈ [0, 1] 0 0

HHT − α 1+αHHT
1−αHHT ∈

£
1
2 , 1
¤

0 −αHHT = 1−ρ∞
1+ρ∞

∈ £0, 13¤
WBZ − α 1+αWBZ

1−αWBZ
∈ [0, 1] αWBZ =

ρ∞−1
1+ρ∞

∈ [−1, 0] 0

CH − α
αf
1−αf ∈ [0, 1]

2ρ∞−1
1+ρ∞

∈ £−1, 12¤ ρ∞
1+ρ∞

∈ £0, 12¤
Table 3. Relations among the algorithmic parameters of the N − β and the α− methods

expressed as functions of the spectral radius ρ∞ and corresponding ranges.
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Fig. 1. a Reaction force vs. displacement of an undamped Duffing hardening oscillator; b convergence of 
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Fig. 2. a Non-linear undamped clamped-free homogeneous elastic rod with a constant cross-sectional area; b 
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 = (1, 5) and ∆t = 0.001; b Evolution of the undamped softening oscillator 
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Fig. 4. Evolution of the ratios of acceleration, velocity, reaction force, energy and generalized energy for a0 ≠0,  
C = 0, ρ∞ = 0.5 and ∆τ  >>1. 
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Fig. 5. Evolution of the ratios of acceleration, velocity, reaction force, energy and generalized energy for a0 ≠0, 
C = 0, ρ∞ = 0.9 and ∆τ  >>1. 
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Fig. 6. Evolution of the ratios of acceleration, velocity, reaction force, energy and generalized energy for a0 = 0, 
ρ∞ = 0.5 and ∆τ  >>1. 
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Fig. 7. Evolution of the ratios of acceleration, velocity, reaction force, energy and generalized energy for a0 = 0, 
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Fig. 8. Evolution of the ratios of energy and generalized energy for C = 0 and ∆τ  >>1. 
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Fig. 9. Evolution of the energy ratio Ei / E0 for an undamped Duffing hardening oscillator with u0 = 1.5, v0 = 0 
and ∆T=151,53 . 
 

 
 
 

 
 

Fig. 10. Non linear two D.o.F. system 
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Fig. 11. Evolution of acceleration, velocity, reaction force, energy and generalized energy for a non-linear two 
D.o.F. system with a0 ≠ 0, C = 0, ρ∞ = 0.5, u0
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Fig. 12. Evolution of acceleration, velocity, reaction force, energy and generalized energy for a non-linear 
clamped-free homogeneous elastic rod with a0 ≠ 0, C = 0, ρ∞ = 0.5, (u0 )j = j/10,  v0 = 0 and ∆t = 0.075 . 
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Fig. 13. Evolution of acceleration, velocity, reaction force, energy and generalized energy for a non-linear 
clamped-free homogeneous elastic rod with a0 = 0, C = 0, ρ∞ = 0.5, u0 = 0, (v0 )j = -1 and ∆t = 0.075 . 
 


