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Abstract

Cracking and failure processes in concrete members as well as debonding mechanisms between concrete
surfaces and fiber-reinforced polymer composites used for structural strengthening are often modeled through
macroscopic empirically-based cohesive zone models. This approach presents a number of limitations, as
macroscopic laws spatially homogenize complex damage and failure processes taking place at the lower scales.
This paper proposes a multiscale approach for concrete and for the determination of mixed-mode cohesive zone
models for the composite-concrete interface based on mesomechanical analysis. The mesomechanical model
includes the explicit description of the heterogeneous material geometry close to the interfacial zone, as well
as a continuum damage description for both the cement matrix and the matrix-aggregate interfacial transition
zone. Macroscopic mixed-mode cohesive zone laws are then obtained through a numerical homogenization
procedure. The choice of the representative volume element is discussed and the cohesive behavior under
mode-I, mode-II and loading conditions with different degrees of mode mixity is analyzed. Comparisons with
available experimental and analytical results are also performed.

Keywords: concrete, cohesive zone model, FRP-concrete bond, homogenization, mesomechanical modeling,
mixed-mode fracture, multiscale modeling.

1. INTRODUCTION

The concept of the cohesive zone model (CZM), usually implemented in the framework of the finite
element (FE) method, has been widely used to analyze fracture problems both within a single material and
at bimaterial interfaces in a number of material systems including concrete, polymers, metals, ceramics, and
several types of composites such as fiber reinforced polymers (FRP) (Xu and Needleman 1994, Tvergaard
and Hutchinson 1992, Camacho and Ortiz 1996, Geubelle and Baylor 1998). CZM approaches have been
used to simulate fracture under static, dynamic, and cyclic loading conditions (Camacho and Ortiz 1996, Xu
and Needleman 1994), delamination of layered composites (Pantano and Averill 2004), debonding of FRP
sheets from concrete, masonry or steel substrates (Chen and Teng 2001, De Lorenzis and Zavarise 2009), or
to describe the macroscopic constitutive behaviour of a thin adhesive layer (Li et al. 2006).

Early cohesive failure models were developed for the mode-I fracture process, relating normal traction and
separation. The CZM was later extended to the mode-II fracture process, in which the tangential traction
and separation are considered instead. Experimental observations show distinctive characteristics of the
micromechanical failure mechanisms in peel and shear fracture, thus the cohesive behaviour is expected to
be mode-dependent (Roy et al. 1999, Chai 2003). At the meso- or microscale of observation, interfacial
fracture nearly always involves mixed-mode conditions. Also, macroscopic mixed-mode conditions take place
at a variety of bonded interfaces existing in practice, such as in various types of lap joints (Kafkalidis and
Thouless 2002), and at the interface between FRP and concrete or steel substrate in the proximity of inclined
cracks or at the edge of the FRP plate (Yao et al. 2005, Pan and Leung 2007, De Lorenzis et al. 2013). Mode
mixity also affects interfacial debonding between a thin plate and a curved substrate, which is relevant to the
structural analysis of FRP-strengthened concrete beams with curved soffits or masonry arches (De Lorenzis
2012).

Different approaches have been used for the numerical modeling of interfaces under mixed-mode con-
ditions, including the uncoupled and the coupled CZM approaches. In the latter case, the mode-I and
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mode-II cohesive laws may or may not be derived from a potential (De Lorenzis and Zavarise 2008). In
any case, the vast majority of the available CZM formulations are purely phenomenological, and “lump” all
the micromechanical processes occurring within the fracture process zone. Obviously, these processes vary
widely depending on the type of material, geometry and loading conditions. A CZM of this type, based on
macro-scale phenomenology, spatially homogenizes all effects that occur at the interface, which demands cau-
tion when comparing the cohesive zone (CZ) parameters with experiments. A good example was provided by
Hoefnagels et al. (2010) while applying CZ modeling to the copper-rubber interface in stretchable electronics.
They found that the calibrated parameters of the chosen macro-scale CZ law varied by orders of magnitude
as the experimental setup was changed. For the above reasons, any macroscopic phenomenological CZM
calibrated for a certain geometry and test setup is not necessarily applicable to simulate the same interface
under different loading conditions or substrate thicknesses.

In this paper, attention is focused on the interface between FRP sheets and concrete. Concrete has
a highly heterogeneous microstructure and several numerical micromechanics analyses of the interaction
between its various components have been developed to deduce its macroscopic constitutive behaviour (see
the brief review in Section 2.1). Despite fracture in concrete having been extensively interpreted with CZMs,
there have been very limited attempts to derive the shape and magnitude of the cohesive law based on
a detailed consideration of the microstructure. Considering the case of FRP sheets bonded to concrete
substrates, interfacial failure typically occurs by formation of a crack within the concrete, a few millimeters
from the bond line, and is thus heavily influenced by the heterogeneous nature of the concrete superficial
layer. The interfacial behavior is often described with CZMs. Several phenomenological CZMs are available
for the FRP-concrete interface in macroscopic mode II, and in many cases the bilinear shape is adopted
showing generally a satisfactory correlation with test results (Chen and Teng 2001). However, these models
are unable to interpret the competition between different cohesive crack paths based on the micromechanical
details of the substrate. Moreover, they cannot deal with mixed-mode loading. Very limited investigations
have focused on such interfaces under mixed-mode conditions which very often result from geometry, loading
and/or deformation-induced effects (De Lorenzis and Zavarise 2008, Karbhari et al. 1997, Wan et al. 2004).
They have pointed out a complex influence of the mode mixity on the microstructural details of the failure
mechanism and on the consequent strength of the interface (Karbhari et al. 1997). The same considerations
about case-sensitivity of macroscopic phenomenological CZMs apply of course to this type of interface, whose
modeling is particularly challenging due to the complexity of the microstructure.

A solution to the above issues can be found by accounting explicitly for the processes occurring at the
lower scales, and transferring these informations to the macroscale in a consistent manner, which is the idea
underlying multiscale approaches. In the case of continuum models, numerical homogenization is based on
computationally averaging the generated microstructural stress and deformation over a representative volume
element (RVE), thereby implicitly establishing an effective constitutive relation between the average stress
and deformation. Over the past two decades, various approaches have been developed along this line (see
Zohdi and Wriggers 2001 for a review, with further more recent contributions including Kouznetsova et al.,
2001, Miehe and Koch, 2002, Pelissou et al., 2009, among many others). These approaches rely on a local
periodicity of the microstructure in the direct neighborhood of the RVE, but do not require global periodicity.

Numerical homogenization frameworks for thin layer problems are much more recent and focused thus
far on heterogeneous adhesive layers. In Matouš et al. (2008) and Kulkarni et al. (2009) a mesoscale
CZM formulation was derived from numerically homogenizing the microscale failure processes in a thin,
heterogeneous adhesive, as simulated with an isotropic damage model. The examples presented therein
involved only a one-way coupling between the scales by specifying an arbitrary macroscopic displacement
jump across the heterogeneous adhesive layer and extracting the corresponding macroscopic tractions through
the computational homogenization approach. In Hirschberger et al. (2009), the multi-scale cohesive scheme
of Matouš et al. (2008) was extended to the case of finite deformations. However, this work did not involve
modeling of failure or softening at the macro- and micro-levels. In Kulkarni et al. (2010) the first steps
were made towards the multi-scale modeling of structures with heterogeneous interfaces involving a two-way
coupling between the macro- and micro-scales. This work considers the situation of an adhesive layer with
embedded perfectly bonded particles. Cid Alfaro et al. (2010) also focuses on the derivation of a mesoscale
cohesive zone model from the numerical homogenization of microscale fracture processes in a thin layer.
The homogenization framework developed here shows similarities with that of Geubelle and co-workers.
However, the microscale fracture processes are modeled with the CZM approach rather than in a smeared
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fashion using a continuum damage model. Although the homogenization framework presented is applicable to
arbitrary, mixed-mode loading conditions, the numerical examples focus upon uniaxial tension. Verhoosel et
al. (2010) also proposed an averaging scheme that provides traction-opening relations governing the evolution
of macroscopic cracks. In the case of a crack running within the bulk of the material, the averaging relations
are applied to an FE model representing the material in the vicinity of the crack. In the case of a crack
at a bimaterial interface within the domain, the employed microscale model represents the material in the
adhesive layer. Since for both cases the obtained macroscopic traction-opening relations are only defined on
macroscopic cracks, the proposed averaging scheme can be regarded as a homogenization procedure applied
along the macroscopic cracks.

This paper describes a numerical homogenization procedure applied to concrete and to the FRP-concrete
interface. The focus here is on the so-called mesoscale, where the coarser aggregates are explicitly described
and the finer aggregates are incorporated in the matrix (mortar) behavior. The main idea is the determination
of macroscopic mixed-mode CZ laws for the FRP-concrete interface through numerical homogenization of the
mesoscale behavior, whereby the three involved constituent phases (aggregates, matrix and aggregate-matrix
interface) are mechanically modeled with appropriate constitutive laws. A mesomechanical testing procedure
and a meso-macroscale transition are then devised to derive macroscopic CZ laws based on mesostructural
details. Note that, although this work had FRP-concrete bond as primary motivation, the presented approach
is equally well applicable to other interface regions in concrete structures, as well as to interfaces in other
quasi-brittle materials (provided that the respective geometry features and material behavior are properly
accounted for).

The paper is organized as follows. Section 2 illustrates the mesomechanical modeling of the concrete, in-
cluding numerical generation of the aggregate geometry and constitutive modeling of the involved constituent
phases. The developed model is applied to three benchmark tests, involving uniaxial tension and uniaxial
compression of concrete specimens, as well as a classical FRP-concrete bond test. The first two tests are
used to calibrate reasonable values of the unknown parameters in the constitutive models, whereas results of
the third test are compared with experimental values. Section 3 develops the mesomechanical formulation
to study the behaviour of the FRP-concrete interface. The meso-macroscale transition is derived herein
based on Hill’s energy consistency condition. In Section 4, the choice of the representative volume element
(RVE) is first discussed. Subsequently, CZ macroscopic laws are derived in mode-I, mode-II and mixed-mode
loading conditions and several relevant observations are set forth. Also, a comparison with phenomenological
analytical models from the literature is performed. Finally, Section 5 summarizes the main conclusions.

2. MESOMECHANICAL MODEL FOR CONCRETE

The multiscale approach sought in this work requires the explicit definition of the mesostructure of
the interface between FRP sheets and concrete, i.e. of the superficial layer of concrete in the vicinity of
the bondline. Therefore, a necessary intermediate step is the development of a mesomechanical model for
concrete, which is illustrated in this section. After a brief literature review, the algorithm adopted for the
description of the geometry and the material modeling approach are presented. Subsequently, the choice of
the discretization and simulation parameters is motivated and mesh sensitivity issues associated with local
damage modeling are discussed. Finally, benchmark tests on concrete numerical specimens are performed.
These include tensile and compression tests, as well as FRP-concrete bond tests. In the latter case, a
comparison with available experimental results is also presented.

2.1. Previous work

Several mesomechanical models have been developed to study the damage and failure mechanisms of con-
crete and other quasi-brittle heterogeneous materials. Many early models were based on idealized mesostruc-
tures (random particle model, Bažant et al. 1990, framework model, Schorn and Rode 1991, and lattice
model, Schlangen and van Mier 1992). They replace the continuous constituents (coarse aggregate, matrix
and interface zones) with one-dimensional discrete elements featuring non-linear stress-strain relationships.
Other early models were already based on a more realistic description of the mesoscale geometry (Wittmann
et al. 1984, De Schutter and Taerwe 1993), with coarse aggregates and matrix modeled with two-dimensional
finite elements.
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More recent models are mostly based on the latter approach, and typically consider concrete as a three-
phase composite including mortar, coarse aggregate and the interfacial transition zone (Wang et al. 1999,
Teng et al. 2004, Zhu et al. 2004, Häfner et al. 2006, Snozzi et al. 2011). These models mainly differ from
each other in the representation of the geometry, in the method used to characterise the randomness and
heterogeneity of concrete at the mesolevel, as well as in the material models used for the single phases. The
method for the geometry description ranges from hand drawing (Zhu et al. 2004) to Voronoi tessellation
(Snozzi et al. 2011) to ad-hoc elaborated procedures incorporating random variables (Wang et al. 1999).
The material models include rotating crack, damage and CZ approaches. In spite of the differences, all these
models share the objective of deriving the macroscopic mechanical response of concrete from the detailed
consideration of the meso-level geometry and material behavior. This is obviously a simplified view which
neglects lower-scale effects such as the role of the finer aggregates and the multiscale nature of the cement
paste, but seems to be the most viable option at the current stage. The vast majority of the previous studies
considered a 2D geometry, which is a rather crude assumption but maintains the computational effort within
reasonable limits. 3D approaches have been proposed by Caballero et al. (2006) and Wriggers and Moftah
(2006). In this paper, we limit ourselves to a 2D geometry.

2.2. Definition of the geometry

The concrete mesostructure is here intended as being constituted by the coarse aggregates, the cement
paste with the finer aggregates embedded, and the interfacial transition zone (ITZ) between coarse aggregates
and paste. For the generation of the mesostructure, several studies are available based on different criteria and
procedures. An important distinction is based on the shape of the coarse aggregates, which is generally taken
as round or angular for gravel or crushed rock types, respectively. This paper considers concrete made with
crushed rock aggregates, for which the procedure proposed by Wang et al. (1999) for the numerical generation
of a random aggregate structure of angular shape is adopted. The main steps involved are summarized as
follows, while further details can be retrieved in the original paper.

2.2.1. Grading curve and outline of the procedure
First of all, a suitable grading curve must be selected. This is given as a function P (D), which represents

the cumulative percentage of aggregate P passing through the sieve of aperture size D. The latter ranges
between Dmin and Dmax, which coincide respectively with the minimum and maximum size of the coarse
aggregate. Herein, the classical Fuller curve is adopted, i.e.

P = 100

√
D

Dmax
(1)

Once P (D) is known, the area of aggregate contained within the ith of the s grading segments, [Di, Di+1],
can be computed as

Aagg,i =
P (Di)− P (Di−1)

P (Dmax)− P (Dmin)
Aagg (2)

where Aagg is the total area of coarse aggregates, in turn equal to a desired fraction Ragg of the total concrete
area, ranging for most concretes between 0.4 and 0.5.

The generation of the aggregate structure proceeds through a take-and-place process, which is conducted
for each grading segment starting with the largest one and proceeding until the smallest. For the generic
segment i, once its aggregate area Aagg,i is computed with eq. (2), a number of particles of random shape
and size are generated (take process) and placed (place process) into the area of the concrete specimen, until
the area of aggregate left to be generated is insufficient for the creation of an additional particle within the
same grading segment. When this condition is reached, the remaining aggregate area is added to the next
grading segment and the procedure continues for this segment.

2.2.2. The take process
In the take process, the aggregate particles are generated as randomly shaped polygons, with size (i.e.

width) dictated by the current grading segment and elongation (i.e. length to width ratio) prescribed as a
random variable uniformly distributed between two predetermined values λmin and λmax. These values must
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be chosen upfront, possibly based on observations of the real aggregate geometry. In this study it is λmin = 1
and λmax = 3.

The shape of a polygon is completely defined by the number of sides n, and by the polar radii rj and
the polar angles θj of the n vertices. Following visual observations and in line with Wang et al. (1999), n is
taken herein as a random integer variable uniformly distributed between 4 and 10. The polar radii rj are also
considered as uniformly distributed random variables in the range between rmin and rmax, whereas the polar
angles are found by first computing the angles subtended by consecutive sides, φj = θj+1 − θj . The latter
are taken as random variables, uniformly distributed with an average value 2π/n and assumed to differ from
this average by a maximum of δ2π/n, with a predetermined value of δ ≤ 1. The subtended angles obtained
from the random procedure are normalized to ensure that their sum equals 2π, as follows

φ̃j =
2π∑
k φk

φj (3)

and the polar angles are subsequently evaluated as

θj = β +

j−1∑
k=1

φ̃k (4)

where β is a phase angle determining the orientation of the particle, also obtained from a random uniform
distribution.

Each particle as it results from the random generation procedure features a size and an elongation that
do not necessarily correspond to the desired values. As in Wang et al. (1999), the size is herein assumed
to coincide with the width of the particle, and the latter is computed as the minimum width of a rectangle
excribing the particle, which is consistent with the meaning of variable D as the aperture size of a sieve.
Also, the elongation is obtained as the length to width ratio of the minimum-width rectangle. Once the
actual width and elongation of the particle are computed, straightforward scalings can be implemented to
bring them to the desired values.

2.2.3. The place process
Once a particle is generated, its positioning within the concrete specimen requires that the coordinates

of a reference point and the orientation angle β be specified. These three quantities are also considered
as random variables, whereby the first two vary within the area of the concrete specimen and the last one
between 0 and 2π. Also, it is assumed that each particle is surrounded by a mortar layer of thickness γ
times the particle size. The value of γ is assumed to vary between γmin and γmax. In this study, we take
γmin = 0.05 and γmax = 0.15.

2.3. Material modeling

In this work, the aggregates are considered linearly elastic, whereas both the cement matrix and the ITZ
are modeled with the isotropic damage law by Mazars (Pijaudier-Cabot and Mazars 2001). The main features
of the damage model are briefly summarized as follows.

The isotropic damage model by Mazars adopts a single scalar damage variable d, ranging from 0 for the
undamaged state to 1 for the fully damaged state. Thus the stress-strain relation reads

εij =
1 + ν0

E0(1− d)
σij −

ν0

E0(1− d)
σkkδij (5)

where E0 and ν0 are respectively the elastic modulus and the Poisson’s ratio of the undamaged material,
σij and εij are the components of the stress and strain tensors, and δij is Kronecker’s delta. The damage
variable is evaluated from an appropriate combination of tension and compression damage, as follows

d = αtdt + αcdc (6)

where dt and dc are the damage variables in tension and compression, respectively, combined through the
weigthing coefficients αt and αc.
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The computation of the weighting coefficients is summarized as follows, see Pijaudier-Cabot and Mazars
(2001) for more details. The first step is the decomposition of the stress tensor (expressed in principal
coordinates) into a positive and a negative part

σ = 〈σ〉+ + 〈σ〉−

where 〈σ〉+ contains the positive and 〈σ〉− the negative stress eigenvalues. More in detail, 〈σa〉+ = σa if
σa ≥ 0, 〈σa〉+ = 0 if σa < 0, and 〈σa〉− = −〈−σa〉+, with σa as the principal stresses. From the stress
decomposition, a strain decomposition is obtained as follows

εt =
1 + ν0

E0
〈σ〉+ −

ν0

E0
tr 〈σ〉+ (7)

εc =
1 + ν0

E0
〈σ〉− −

ν0

E0
tr 〈σ〉− (8)

Finally, the weigthing coefficients are derived from

αt =

3∑
a=1

Ha
εta (εta + εca)

ε̃2
(9)

αc =

3∑
a=1

Ha
εca (εta + εca)

ε̃2
(10)

where εa = εta + εca are the principal strains, Ha = 1 if εa ≥ 0 and Ha = 0 if εa < 0, and the equivalent
strain ε̃ is defined as

ε̃ =

√√√√ 3∑
a=1

(〈εa〉+)2 (11)

with the same meaning of the “positive” Macauley brackets 〈εa〉+ illustrated above.
The damage variables in tension and compression evolve based on the following relationships

dt = 1− k0(1−At)
ε̃

− At
exp[Bt(ε̃− k0)]

(12)

dc = 1− k0(1−Ac)
ε̃

− Ac
exp[Bc(ε̃− k0)]

(13)

As can be inferred from eqs. (5), (12) and (13), this material model requires 7 parameters: E0, ν0, k0, At, Bt,
Ac, Bc. Beside E0 and ν0 whose meaning is clear, k0 can be set as the strain at peak stress of the material
under uniaxial tension, i.e.

k0 =
ft
E0

(14)

where f t is the material tensile strength.
In the present 2D implementation, plane stress conditions are assumed. Within a 2D approximation

of the aggregate geometry, plane stress conditions are believed to be more appropriate as they correspond
to simulating a concrete specimen of small thickness. In such a case it is reasonable that the aggregate
geometry be constant across the thickness. Conversely, plane strain conditions imply a large out-of-plane
thickness which contradicts the 2D nature of the aggregate geometry.
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2.4. Discretization and choice of simulation parameters

The concrete geometry was created with the procedure outlined in Sect. 2.2. The set of geometry pa-
rameters used in this investigation is reported in Table 1. Figure 1 shows three sample geometries obtained
with different aggregate ratios. This geometry was then automatically meshed with triangular linear ele-
ments using the advancing front technique. Matching meshes for aggregate and mortar were obtained. The
constitutive properties of the ITZ were assigned to the first layer of elements around each aggregate (Figure
2).

As a preliminary step to the actual simulations on concrete specimens, tensile and compression tests were
run on matrix square specimens with 300-mm side, of which only a quarter were modeled exploiting symmetry
conditions. The properties of the material are reported in Table 1. These tests were used to calibrate the
optimal pseudo-time step to be used in the analyses, as well as to quantify the well-known mesh sensitivity
effect associated to local damage models. The optimal pseudo-time step was chosen as the maximum value
for which a mesh with 2 elements reproduced the analytical behavior with satisfactory accuracy, as shown
in Figures 3a,c. Note that the analytical behavior was straightforwardly obtained from the model in Section
2.3 specialized for a uniaxial case. Regarding the mesh sensitivity issue, Figures 3b,d show the tensile and
compressive stress-strain curves obtained from different meshes. As expected, mesh refinement leads to an
earlier and increasingly abrupt decrease of the stress after the peak, due to strain localization. This effect
seems to saturate for elements smaller than a given maximum size. This size was thus set as an upper
bound for the meshes used in all subsequent simulations, in order to mitigate mesh sensitivity effects. The
same phenomenon can be circumvented by using e.g. the crack band theory by Bažant and Oh (1983), or
more sophisticated damage models such as non-local or strain-gradient models. These may be considered for
extensions of the present study.

2.5. Benchmarking

2.5.1. Uniaxial tension and compression
Before being used for modeling the FRP-concrete interface, the mesomechanical concrete model described

in the previous section was tested under simple loading conditions, i.e. uniaxial tension and uniaxial com-
pression. For both tests, a square concrete specimen with 300-mm size was used, a quarter of which was
modeled exploiting symmetry (Figure 4).

As mentioned in the previous section, local damage models are well known to suffer from mesh sensitivity
induced by strain localization. To circumvent this problem, non-local or gradient enhancements of the model
or the use of the crack band approach are needed and will be pursued in future developments. Herein, these
effects were mitigated on one side by an appropriate choice of the maximum element size (see Section 2.4),
on the other side by the heterogeneous nature of the sample which to some extent dictates the range of
feasible discretizations and mitigates the occurrence of localization. For the heterogeneous concrete specimen
as opposed to a homogeneous one, the size of the element has an upper bound equal to the minimum distance
between aggregates. Moreover, for consistency of the multiscale procedure, the lower bound of the element
size should be set as the maximum characteristic length of the lower scale, e.g. the size of the small aggregates
which are considered dispersed in the mortar.

Table 1 summarizes the material parameters adopted in the present investigation for the three phases.
The stress-strain curves obtained from uniaxial tensile and compressive tests are reported in Figure 5. Figure
5a illustrates the tensile stress-strain response for concrete specimens with different aggregate ratios (includ-
ing the limit case of no aggregates for comparison purposes) and with only two phases (i.e. matrix and
aggregates). The presence of the aggregates, as expected, leads to a larger initial stiffness, which increases
with the aggregate ratio. On the other hand, the tensile strength of the specimen decreases below the value of
the matrix due to the local stress concentrations generated by the angular aggregates, and is not significantly
influenced by the aggregate ratio. A similarly moderate influence of the aggregate ratio on the response has
been reported by Lopez et al. (2008) and Zhu et al. (2004). The fact that the matrix with aggregates is
predicted to be more brittle than the pure matrix appears rather unrealistic, but is a direct consequence of
the adopted damage model. Future enhancements of the model should overcome this drawback.

Considering the presence of the ITZ with a strain at peak stress k0 lower than the matrix (Table 1),
the tensile strength decreases whereas the other behavioral features remain nearly unchanged (Figure 5b).
Figures 5c,d report analogous results under compression.
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Figures 6 and 7 display the evolution of the damage variable distribution during the tension and the
compression tests, respectively. Under tension, damage is seen to start close to the peak stress mostly within
the ITZ and to propagate gradually along the direction perpendicular to the applied load during the softening
stage. In the advanced softening region, the damage pattern closely resembles the shape of a crack running
through the specimen in a nearly horizontal direction, which agrees with intuition and with the experimental
evidence. Under compression, a significant damage accumulation starts already during the increasing branch
of the stress-strain response. Once again, at the advanced softening stage the damage contour assumes a
complex and diffuse pattern along crossed inclined directions which resembles the cracking patterns usually
obtained experimentally.

2.5.2. FRP-concrete bond test
As a further benchmark, a classical FRP-concrete bond test was simulated using the mesomechanical

concrete model. The specimen consists of a concrete prism bonded with an FRP strip, whose geometry and
boundary conditions are presented in Figure 8a. The objective was to verify whether the developed concrete
model is able to predict with reasonable accuracy the experimental ultimate load reported by several authors
with this type of test, see Table 3. Here fc is the concrete compressive strength, Ef is the FRP elastic modulus,
bc and bf are respectively the concrete and FRP width, and lb is the bond length. The numerical concrete
samples were generated with the same material and geometry characteristics used in Section 2.5.1, therefore
the concrete compressive strength was constant and equal to the value obtained from the compression tests in
Section 2.5.1 (about 33 MPa). The FRP was modeled with truss elements perfectly bonded to the upper side
of the concrete specimen (no separate adhesive layer was modeled). The elastic properties, cross-sectional
area and length of the FRP matched those of the reference test results.

Table 3 shows that the agreement between numerical and experimental ultimate load is quite close for
the first three considered specimens, where the concrete strength is similar to that of the numerical concrete.
Not surprisingly, the last two specimens, which are characterized by a significantly larger concrete strength
than in the numerical concrete, have a higher failure load than predicted by the model.

The damage variable distribution within the concrete sample at failure is shown in Figure 8b. The
damaged area is generally localized in a thin layer of material underneath the FRP sheet, however in the
portion of the bond length closest to the free end the fracture path becomes deeper and involves the underlying
aggregates. The fracture path is obviously influenced by the location of the aggregates close to the surface,
as will be shown in further tests in the following sections. Moreover, the comparison is approximate due to
the 2D setting of the proposed model, as opposed to the 3D nature of the experimental results where non-
negligible width effects are often registered (see also Section 4.3). Nevertheless, the overall results of these
benchmark simulations confirm that the mesomechanical concrete model does provide reasonable predictions
not only for the pure tensile and compressive behavior but also for FRP-concrete bond tests.

3. MULTISCALE FORMULATION

In the following, a numerical homogenization framework is set up for the FRP-concrete interface to
relate damage and failure processes taking place at the mesoscale to a macroscopic CZM. This framework
substantially follows the approach proposed by Matouš et al. (2008) and reformulated by Cid Alfaro et al.
(2010) and Verhoosel et al. (2010). The macro- and mesoscales are linked using a transition procedure based
upon Hill’s energy principle. The starting point of the approach is the definition of an RVE. In the present
study, local periodicity of the interface is assumed. Moreover, the RVE considered in the following does
not consider the influence of the primer and resin layers but only includes the superficial layer of concrete
underneath the FRP sheet. In order for a detailed and realistic geometry to be described, experimental
quantitative observations are needed and are possible extensions of the present work.

Note that the existence itself of an RVE for materials exhibiting softening behavior (and thus localiza-
tion) has been questioned by several authors, see e.g. Gitman et al. (2007a,b) and Nguyen et al. (2010).
However, the multiscale approach adopted in the present work is not a bulk homogenization scheme leading
to a homogenized stress-strain relationship, but rather a cohesive interface homogenization scheme, deriving
macroscopic relationships between stresses and relative displacements across the interface. As a result, the
objectivity of results with respect to the RVE dimensions is not compromised, see also Verhoosel et al. (2010).
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Consider two macroscopic domains ΩMi ⊂ R2, i = {1, 2} with external boundaries ΓMi , see Figure 9.
The external boundaries are subjected to displacements ûMi and tractions t̂Mi at ΓMui and ΓMti , respectively,
whereas the portion ΓMcoh represents the interface between the domains. Thus the total external boundaries
are given by ΓMi = ΓMti ∪ ΓMui ∪ ΓMcoh, with ΓMti ∩ ΓMui ∩ ΓMcoh = ∅. The response in a material point of the
cohesive interfacial boundary is connected to the lower-scale response of a heterogeneous, mesoscopic domain
Ωm ⊂ R2 . This is represented by a thin concrete layer with explicit representation of the largest aggregates.
For establishing a connection between formulations at the macro- and mesoscale levels, it is assumed that
the mesoscopic domain can be considered as an RVE. Discussion on the dimensions of the RVE will follow
in Section 4.1.

3.1. Governing equations at the macroscale
The equilibrium condition for an arbitrary material point in the macroscopic domains ΩMi depicted in

Figure 9 is

div
(
σM

)
= 0 in ΩMi (15)

where σM represents the Cauchy stress tensor, and the body forces have been omitted. The boundary
conditions for the macroscopic domains are given by

σM · nMi = t̂Mi on ΓMti (16)

uM = ûMi on ΓMui (17)

where t̂Mi and ûMi are respectively the imposed tractions and the imposed displacements on the external
boundaries ΓMti and ΓMui with outward unit normal nMi . Across the cohesive boundary ΓMcoh (nM1 = −nM2 =
nM ) the tractions tM are related to σM through the equilibrium condition

σM · nM = tM
(
JuM K

)
on ΓMcoh (18)

where JuM K denotes the displacement discontinuity between the domains ΩM1 and ΩM2 across the cohesive
interface. The macroscopic boundary value problem further includes the kinematic relations, which e.g.
under the small-strain assumption read

εM = ∇symuM (19)

with εM as the macroscopic strain tensor and ∇sym as the symmetric part of the gradient operator, and
the constitutive relations σM

(
εM
)
in ΩMi and tM

(
JuM K

)
on ΓMcoh. The aim of this paper is to derive the

latter relations by means of the homogenization method discussed in Sections 3.3 and 3.4. Note that the
framework proposed in this paper is independent of the considered macroscale formulation for discrete crack
modelling. The two most commonly used approaches for modelling quasi-brittle failure are the use of interface
elements (Camacho and Ortiz 1996) and, more recently, partition of unity-based methods (Wells and Sluys
2001, Moës and Belytschko 2002). Any of these approaches may be used in conjunction with the proposed
homogenization method, provided a relationship such as tM

(
JuM K

)
is needed.

3.2. Governing equations at the mesoscale
The two-dimensional domain Ωm shown in Figure 10, i.e. a rectangular domain of width w and thickness

t, is studied on the mesoscale. Although the geometry of the mesoscale overall domain is regular, the material
is highly heterogeneous. At this scale, displacements and displacement gradients are assumed to be small,
thereby allowing for a linear kinematics description.

The equilibrium requirement for a material point within Ωm can be expressed as

div (σm) = 0 in Ωm (20)

with the boundary conditions

σm · nm = t̂m on Γmt (21)
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um = ûm on Γmu (22)

Here, σm is the mesoscale Cauchy stress tensor, and t̂m and ûm are respectively the imposed tractions and
the imposed displacements on the external boundaries Γmt and Γmu with outward unit normal nm. The total
external boundary of the RVE is given by Γm = Γmu ∪Γmt . The macroscopic boundary value problem further
includes the kinematic relations, which in this work follow the small-strain assumption and thus read

εm = ∇symum (23)

with εm as the mesoscale strain tensor, and the constitutive relations σm (εm) in Ωm. In this contribution,
the damage processes taking place at the mesoscale are described using a local damage model (Section 2.3).
However, alternative formulations such as interface elements or partition of unity methods could be used
equally well also at the mesoscale.

The principle of virtual work at the mesoscale leads to
ˆ

Ωm
σm : δεmdΩm =

ˆ
Γmt

t̂m · δumdΓmt (24)

which must be satisfied for any admissible variational mesoscale displacement δum satisfying δum = 0 on
Γmu .

3.3. RVE boundary conditions
In order to establish a connection between the responses of the macroscale and mesoscale domains shown

in Figure 9, the mesoscale displacement field um is expressed in terms of the macroscale displacement field
uM and a fluctuating displacement field ũ as

um
(
xM ,xm

)
= uM

(
xM
)

+ ũ (xm) (25)

where xM and xm respectively denote the locations of the macroscale and mesoscale material points at
which uM and ũ are evaluated. The fluctuating displacement field ũ accounts for the displacement variations
generated by the mesostructural heterogeneities, as measured with respect to the (average) macroscopic
displacement of the mesoscale RVE. The boundary conditions for the mesoscopic model are then given in
terms of the mesoscopic fluctuation fields ũ. The displacements of the four corner nodes 1-4 (Figures 9,
10) of the mesoscale RVE correspond to the (uniform) macroscopic deformation of a material point in the
macroscopic cohesive interface ΓMcoh, hence the displacement fluctuations there are equal to zero, i.e.

ũn = 0 with n ∈ {1, 2, 3, 4} (26)

Moreover, due to the consideration of the sample as a periodic cell along the xm1 direction, periodic boundary
conditions for the fluctuation field are applied to the left (L) and right (R) edges of the RVE, as follows

ũL (s2) = ũR (s2) t̂m,L (s2) = −t̂m,R (s2) (27)

whereas a zero fluctuation field is assumed on the top (T ) and bottom (B) edges of the RVE, i.e.

ũT (s1) = 0 ũB (s1) = 0 (28)

In the above equations, s1 is a local coordinate along the ΓmT and ΓmB boundaries of the RVE, and s2 is a
local coordinate along the ΓmL and ΓmR boundaries. As a result of Eq. (25), Eqs. (27) and (28) lead to

uM,R = uM,L + u2 − u1 uM,T = u4 uM,B = u1 (29)

Consistently with the above assumptions, the RVE is here subjected to the boundary conditions depicted
in Figure 10. Periodic boundary conditions are applied on the lateral sides, due to the assumed local
periodicity. The lower edge is considered fixed, whereas the upper edge is subjected to a monotonically
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increasing uniform displacement. Hence the macroscopic displacement jump across the macroscale cohesive
interface can be related to the displacement difference of two opposite corner nodes at the top and bottom
surfaces of the RVE as

JuM K = uM,T − uM,B = u4 − u1 = u3 − u2 = u4 = u3 = ûmα (30)

where ûmα is the displacement applied to the top surface of the RVE along the desired angle α (Figure 10).
Depending upon the direction of this applied displacement, pure mode-I, mode-II or mixed-mode conditions
with a desired mode mixity (here intended as a “displacement-based” mode mixity) can be obtained.

3.4. Derivation of the macroscopic interfacial traction
In order to establish an expression for the macroscopic traction, tM , in a material point at the macroscale

cohesive interface ΓMcoh, Hill’s averaging principle is applied. This principle states that the spatial average of
the virtual work at the mesoscale, δWm, needs to be equal to the virtual work in a local material point of
the macroscale cohesive interface, δWM

coh, i.e.,

δWM
coh = δWm (31)

where

δWM
coh = tM · δJuM K = tM · δu4 (32)

due to Eq. (30), and

δWm =
1

w
δWm =

1

w

ˆ
Ωm
σm : δεmdΩm (33)

Note from the above expression that the averaging procedure is performed by dividing the total virtual work
of the mesoscale RVE by its width w. The height of the RVE does not need to be taken into account, since
the macroscale geometrical object is a cohesive surface ΓMcoh with zero thickness (Cid Alfaro et al. 2010). The
detailed derivation, deferred to the Appendix, leads to the final expression

tM =
1

w

ˆ
ΓmT

t̂m,T dΓmt (34)

Obviously, within an FE discretization the integral term in the right-hand side of Eq. (34) is approximated
by the summation of the nodal forces at the top edge of the RVE. Thus the macroscopic tractions in the two
directions are obtained as the summation of the reaction forces in the same directions at all the nodes of the
upper edge of the RVE.

4. NUMERICAL RESULTS

4.1. Identification of the RVE
In the previous section, a mesomechanical problem has been defined on which computational homogeniza-

tion is carried out. In order for results of the homogenization process to be valid, the sample must qualify
as an RVE. First of all, in order for the underlying assumption of scale separation to hold, thickness and
width of the RVE must be suitably larger than the maximum aggregate size. A further basis for the choice of
the thickness is the experimental observation that the layer of concrete involved by the damage mechanisms
during debonding tests of FRP-concrete joints typically features a thickness between 20 and 50 mm (see e.g.
Ferracuti et al. 2007).

In order to determine an appropriate width of the sample, simulations have been performed for variable
widths ranging from 50 to 100 mm, under both mode-I and mode-II conditions. In these analyses we
considered a thickness of 30 mm. Results are illustrated in Figures 11 and 12. Each numerical test has been
repeated three times, obtaining three different geometries due to the random generation of the mesostructure.

Figure 11 shows the macroscopic cohesive behavior obtained from the RVE under pure mode-I loading.
Figures 11a,c,e refer to the specimens directly obtained by the geometry procedure illustrated earlier. As
aggregates are automatically generated at a minimum distance from the boundary of the domain, a superficial
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layer of mortar is produced. As a result, failure tends to be localized in this layer. If the superficial elements
in the FE model are removed so that some aggregate particles are present in the outer layer (Figures 11b,d,f),
the damage distribution involves a thicker material region and the mode-I strength and fracture energy of the
interface are consequently increased. For this reason, all subsequent numerical results have been obtained by
removing the superficial layer of elements. (Note that, in real applications, it is quite common to remove the
superficial mortar layer and expose the underlying aggregates e.g. through sandblasting in order to increase
the interface strength). In any case, the results of the homogenization procedure in terms of cohesive response,
peak normal stress, and mode-I fracture energy (i.e., area underneath the mode-I cohesive response) appear
reasonably stable with increasing specimen width. As expectable, larger widths tend to lead to less scatter in
results from the three different realizations. Similar results are obtained under mode-II loading conditions,
as shown in Figure 12. Upon this round of numerical tests, a width of 100 mm has been chosen as the RVE
width and has been used in all subsequent simulations.

A further series of analyses was performed to verify the effect of the RVE thickness of results. Results are
reported in Figures 13 and 14. Once again each numerical test has been repeated three times, obtaining three
different geometries. The results in terms of cohesive response, peak normal stress, and mode-I and mode-II
fracture energy first vary with increasing specimen thickness and then approximately stabilize. Note that
the initial (elastic) stiffness of the mode-I response indefinitely decreases with increasing specimen thickness,
as it is reasonable to expect. The thickness effect is more pronounced for the mode-I quantities than for the
mode-II ones. From the reported results, a thickness of 40 mm seems to be the desirable value to attain nearly
stable results under mode-I conditions, whereas a thickness of 30 mm is sufficient under mode-II conditions.
For simplicity, all subsequent simulations have been conducted for a thickness of 30 mm.

4.2. Homogenized mixed-mode cohesive zone behavior

The macroscopic mixed-mode CZ behavior obtained from the homogenization procedure is illustrated in
Figure 15 for one of three tested numerical specimens. Both shear and normal interfacial stresses are plotted as
functions of shear and normal relative displacements at the interface. The observed behavior displays several
interesting features. The mode-II CZ response (shear stress vs. shear relative displacement for α = 0°, Figure
15a) appears qualitatively similar to the phenomenological laws often adopted in the literature, see also the
comparison in Section 4.3. It features a nearly linear ascending branch, followed by an abrupt but small
decrease in shear stress after a first peak, a subsequent increase with a second peak, and a final descending
branch. The mode-I CZ response (normal stress vs. normal relative displacement for α = 90°, Figure 15d)
displays an initial linear branch followed by a single distinct peak and a descending branch. The mixed-mode
responses feature both normal and shear stresses and relative displacements, whereby shear (normal) stresses
evolve similarly as in the pure mode-II (mode-I) response. For the lowest mixed-mode angles (15 to 45°) part
of the response leads to negative (i.e. compressive) stresses after the positive descending branch.

Figure 16 displays the peak stresses of the CZ responses in shear and peel and the relative fracture
energies as functions of angle α. Note that the mode-II (mode-I) fracture energy is computed as the area
subtended by the positive part of the shear (normal) CZ response curve. The mode-II fracture energy results
significantly larger than the mode-I value, which agrees well with previous experimental as well as theoretical
results (De Lorenzis and Zavarise 2008). Moreover, the value of the mode-II fracture energy is quantitatively
in agreement with the values found or adopted in previous investigations, see e.g. Yao et al. (2005) and Chen
et al. (2007). Figure 17 summarizes results in the form of failure envelopes, both in terms of stresses and
of fracture energies. Both envelopes have convex shapes, as expected from theoretical considerations. The
shape of the stress envelope is non-linear whereas that of the fracture energy envelope is nearly linear.

In Figures 18-19, normal and shear interfacial stresses are plotted as functions of the magnitude of the
imposed displacement ûmα . A few states are marked on each curve and the corresponding distributions of the
damage variable within the RVE are given in Figures 20 to 26. It is evident that lower mode-mixity angles
α lead to a more diffuse distribution of damage within the RVE, which translates into a larger dissipated
energy, whereas angles closer to 90° determine a simpler damage contour plot resembling a crack pattern
approximately perpendicular to the applied load, such as in the pure tensile test of Section 2.5. These
observations suggest that larger fracture energies can be obtained through more complex damage patterns
which in turn are induced by the heterogenous nature of the material as well as from the loading conditions.
One of the natural extensions of the proposed approach would thus be the possibility to tailor and optimize
the lower-scale features to achieve a desired macroscale response.
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4.3. Comparison with available mode-II CZ models
As follows, the mode-II CZ laws obtained through the proposed homogenization procedure are compared

with three phenomenological analytical models taken from the available literature on FRP-concrete bond.
These models (often referred to as “bond-slip models”) and their parameters are summarized in Table 4.
Here τ is the shear stress and s the tangential relative displacement, τmax is the mode-II cohesive strength,
ft is the concrete tensile strength, Gf is the mode-II fracture energy, and s0, βw, α and α1 are additional
parameters. In Figure 27, the mode-II CZ laws obtained through the proposed homogenization procedure are
plotted along with the analytical curves. Note that the analytical models are applied considering as material
properties for concrete those obtained from the compressive and tensile tests in Section 2.5.1. Considering
that the numerical and analytical curves stem from completely different approaches, the agreement can be
considered reasonably good. The model by Lu et al. (2005) is applied both with βw (width correction factor)
as given by Table 4, and with βw = 1. In the latter case, its cohesive strength predictions are quite close
to those of the homogenized model. Note that the comparison is approximate due to the 2D nature of the
proposed model, as opposed to the 3D experimental results used for calibration of the analytical models.
This justifies the presence of the width effects in the analytical formulae, which cannot be accounted for in
the present numerical context.

5. CONCLUSIONS

This paper proposes a multiscale approach through which CZ laws for FRP-concrete interfaces or other
interfaces in concrete under variable mode mixity can be derived through a detailed examination of the
mesoscale geometry and a suitable constitutive modeling of the constituent materials. A necessary inter-
mediate step for the proposed formulation has been the setup of a mesoscale concrete model. The results
show the capability and flexibility of the approach to translate the features of the mesoscale geometry into
macroscopic results, in terms of concrete tensile and compressive response, as well as of mixed-mode CZ
laws for the FRP-concrete interface under the assumption that failure is controlled by the properties of the
superficial concrete layer. Possible further extensions include the improvement of the material model (e.g.
by adopting a mesh-insensitive constitutive description for the matrix as well as the ITZ), and the analysis
of the role of the aggregate shape, size and distribution on the macroscopic results. Moreover, a detailed
examination of the mesostructure of the interfacial layer for FRP bonded to concrete reveals a more complex
nature than assumed herein, including layers of primer, resin, and the presence of resin-filled pores in the
concrete intersecting the crack path (De Lorenzis et al. 2001). Hence, the extension of the present work to
more realistic mesoscale geometries and to the 3D setting would be of significance. Finally, being able to shed
light on the role played by the mesoscale parameters on key quantitative aspects of the macroscopic response
such as the fracture energy under a given mode mixity, the proposed approach may allow for tailoring and
optimization of the lower-scale features to achieve a desired macroscale response.
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Material E0 (GPa) ν0 k0 At Bt Ac Bc
Aggregates 70 0.2 - - - - -
Matrix 20 0.2 3.5 · 10−4 1 2500 1 500
ITZ 20 0.2 2.5 · 10−4 1 2500 1 500

Table 1: Material parameters.

Ragg s Dmin (mm) Dmax (mm) λmin λmax δ γmin γmax
0.2, 0.3, 0.4 3 4 10 1 3 0.7 0.05 0.15

Table 2: Geometry parameters.

Specimen FRP Concrete Ultimate load (kN)
bf (mm) lb (mm) Ef (GPa) fc (MPa) bc (mm) Experimental Numerical

Yuan et al. (2004) 25 190 265 29.74 150 5.7 6.1
Takeo et al. (1997) 40 200 230 33.75 100 8.5 10.4

Tan (2002) 50 130 235 37.6 100 9.2 12.0
Wu et al. (2001) 40 250 390 72.0 100 23.5 11.0
Ueda et al. (1999) 100 200 230 57.4 500 38.0 33.4

Table 3: Comparison between experimental and numerical failure loads.

Reference Ascending branch s ≤ s0 Descending branch s > s0 τmax s0 βw Gf α α1

Nakaba et al. (2001) τ(s) = τmax

(
s
s0

)[
3/

(
2 +

(
s
s0

)3)]
3.5f0.19c 0.065

Savoia et al. (2003) τ(s) = τmax

(
s
s0

)[
2.86/

(
1.86 +

(
s
s0

)2.86)]
3.5f0.19c 0.051

Lu et al. (2005) τ(s) = τmax

√
s

As0
τ(s) = τmaxexp [−α(s/s0 − 1)] α1βwft 0.0195βwft

√
2.25−bf/bc
1.25+bf/bc

0.308β2
w

√
ft

1
Gf

s0τmax
− 2

3

1.50

Table 4: Analytical mode-II CZ models for the FRP-concrete interface.
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(a) (b) (c)

Figure 1: Numerical concrete specimen with different aggregate ratios: Ragg = 0.2 (a), 0.3 (b), 0.4 (c).

Aggregate 

ITZ 

Matrix 

Figure 2: Meshing of the mesomechanical geometry with indication of the different phases.
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Figure 3: Analytical and numerical stress-strain curves of the matrix in uniaxial tension (a,b) and compression (c,d) for the model
parameters in Table 1. Figures (a,c) illustrate calibration of the pseudo time-step for a mesh with 2 elements and Figures (b,d)
demonstrate the mesh sensitivity effect resulting from the local damage modeling approach (∆t = 10−3 in tension, ∆t = 10−2

in compression).

v

Figure 4: Geometry of a numerical concrete specimen subjected to tensile testing.
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Figure 5: Analytical and numerical stress-strain curves of the concrete specimen in uniaxial tension (a,b) and compression (c,d)
for the model parameters in Tables 2 and 1 with varying aggregate ratio Ragg . Figures (a,c) are obtained with no consideration
of the ITZ, whereas Figures (b,d) consider an ITZ consisting in one layer of elements around each aggregate.
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Figure 6: Damage variable distribution within the concrete sample (Ragg = 40% with ITZ) under uniaxial tension at the stages
of loading indicated with the markers in Figure 5b.
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Figure 7: Damage variable distribution within the concrete sample (Ragg = 40% with ITZ) under uniaxial compression at the
stages of loading indicated with the markers in Figure 5d.
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Figure 8: Pull–push shear test: geometry of a numerical concrete specimen (a) and damage variable distribution within the
concrete sample at failure (b).
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Figure 11: Effect of sample width on the mode-I cohesive behavior for samples with (a,c,e) and without (b,d,f) superficial
matrix layer. Normal stress - relative displacement relationship for one representative specimen (a,b). Cohesive strength (c,d)
and Mode-I fracture energy (e,f) as functions of the sample width for the three tested specimens.
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Figure 12: Effect of sample width on the mode-II cohesive behavior. Tangential stress - relative displacement relationships for
two specimens (a,b). Cohesive strength (c) and Mode-II fracture energy (d) as functions of the sample width for the three tested
specimens.
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Figure 13: Effect of sample thickness on the mode-I cohesive behavior. Normal stress - relative displacement relationships for
two specimens (a,b). Cohesive strength (c) and Mode-I fracture energy (d) as functions of the sample thickness for the three
tested specimens.
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Figure 14: Effect of sample thickness on the mode-II cohesive behavior. Tangential stress - relative displacement relationships
for two specimens (a,b). Cohesive strength (c) and Mode-II fracture energy (d) as functions of the sample thickness for the
three tested specimens.
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Figure 15: Mixed-mode cohesive behavior. Tangential stress vs. tangential (a) and normal (b) relative displacement relationships,
and normal stress vs. tangential (c) and normal (d) relative displacement relationships for one of the numerical tests.
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Figure 16: Mode-II cohesive strength (a) and fracture energy (b), mode-I cohesive strength (c) and fracture energy (d) as
functions of the mixed-mode angle.
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Figure 17: Mixed-mode cohesive strength (a) and fracture energy (b) failure envelopes.
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Figure 18: Mixed-mode cohesive behavior. Tangential (T) and normal (N) stresses vs. total opening displacement for one of
the numerical tests for a mixed-mode angle of 0° (a), 15° (b), 30° (c), 45° (d).
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Figure 19: Mixed-mode cohesive behavior. Tangential (T) and normal (N) stresses vs. total opening displacement for one of
the numerical tests for a mixed-mode angle of 60° (a), 75° (b), and 90° (c).
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Figure 20: Damage variable distribution within the concrete sample under loading at a mixed-mode angle of 0° (pure mode II)
at the stages of loading indicated with the markers in Figure 18a.
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Figure 21: Damage variable distribution within the concrete sample under loading at a mixed-mode angle of 15° at the stages
of loading indicated with the markers in Figure 18b.
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Figure 22: Damage variable distribution within the concrete sample under loading at a mixed-mode angle of 30° at the stages
of loading indicated with the markers in Figure 18c.
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Figure 23: Damage variable distribution within the concrete sample under loading at a mixed-mode angle of 45° at the stages
of loading indicated with the markers in Figure 18d.
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Figure 24: Damage variable distribution within the concrete sample under loading at a mixed-mode angle of 60° at the stages
of loading indicated with the markers in Figure 19a.
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Figure 25: Damage variable distribution within the concrete sample under loading at a mixed-mode angle of 75° at the stages
of loading indicated with the markers in Figure 19b.
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Figure 26: Damage variable distribution within the concrete sample under loading at a mixed-mode angle of 90° (pure mode I)
at the stages of loading indicated with the markers in Figure 19c.
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Figure 27: Comparison between mesomechanically-derived and analytical mode-II CZ laws.

AppendixA. Derivation of the macroscopic interfacial traction

Invoking Eq. (24) and the displacement decomposition (25), Eq. (33) can be rewritten as

δWm =
1

w

ˆ
Γmt

t̂m · δumdΓmt =
1

w

(ˆ
Γmt

t̂m · δuMdΓmt +

ˆ
Γmt

t̂m · δũdΓmt

)
(A.1)

The first integral term in the right-hand side of Eq. (A.1) is developed as

ˆ
Γmt

t̂m · δuMdΓmt =

ˆ
ΓmL

t̂m,L · δuM,LdΓmL +

ˆ
ΓmR

t̂m,R · δuM,RdΓmR +

+

ˆ
ΓmT

t̂m,T · δuM,T dΓmT +

ˆ
ΓmB

t̂m,B · δuM,BdΓmB (A.2)

=

ˆ
ΓmR

t̂m,R ·
(
δuM,R − δuM,L

)
ds2 +

+

ˆ
ΓmT

t̂m,T · δuM,T dΓmT +

ˆ
ΓmB

t̂m,B · δuM,BdΓmB (A.3)
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=
(
δu2 − δu1

)
·
ˆ

ΓmR

t̂m,Rds2 + δu4 ·
ˆ

ΓmT

t̂m,T ds1 + δu1 ·
ˆ

ΓmB

t̂m,Bds1

= δu4 ·
ˆ

ΓmT

t̂m,T ds1 (A.4)

where first the periodicity conditions given by Eqs. (29) and then the boundary conditions of the mesoscale
RVE δu1 = δu2 = 0 have been used. The second integral term on the right-hand side of Eq. (A.1) can be
developed as

ˆ
Γmt

t̂m · δũdΓmt =

ˆ
ΓmL

t̂m,L · δũLdΓmL +

ˆ
ΓmR

t̂m,R · δũRdΓmR +

ˆ
ΓmT

t̂m,T · δũT dΓmT +

ˆ
ΓmB

t̂m,B · δũBdΓmB

=

ˆ
ΓmR

t̂m,R ·
(
δũR − δũL

)
ds2 +

ˆ
ΓmT

t̂m,T · δũT ds1 +

ˆ
ΓmB

t̂m,B · δũBds1

= 0 (A.5)

where the boundary conditions Eq. (27-28) are used. Inserting Eqs. (A.4) and (A.5) into Eq. (A.1) gives

δWm =
1

w
δu4 ·

ˆ
ΓmT

t̂m,T dΓmt (A.6)

Substituting Eqs. (32) and (A.6) into (31) leads to

tM =
1

w

ˆ
ΓmT

t̂m,T dΓmt (A.7)
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