A Sinkhorn-Newton method for entropic optimal transport
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Entropically regularized optimal transport

m We consider the entropically regularized Kantorovich problem of
optimal mass transport between two given probability measures
u € RMand v € RV, with non-negative cost c € RM*N and
regularization strength v > 0,

inf (¢, ) + y(m, logm — 1)

S.t.

where 1 and 1 denote vectors and matrices of all ones.
Optimality conditions

m The primal and the dual problems are connected via the optimality
conditions
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Dual problem

m By Fenchel-Rockafellar duality, the primal problem (P) is associated
with the dual problem

sup  —(u,a) — (v, B) —yle 7,e

a€RM, BeRN

where the exponential function is applied componentwise to the
respective matrices.

m |n the following, we abbreviate K = e 7 € RMXN and use the
symbol © to denote the Hadamard product.

Newton step

m Our approach is to solve (2) and (3) simultaneously by applying
Newton’s method to the function

a1 4187

mn=K®e 7

G(a, B) =

m The associated Newton step can be written in the form of

-Diag(rcl) 7T [ u—m
- \v—m'1

m The first condition implies that the optimal transport plan 7t is the

| (o
componentwise product of K and a low-rank matrix induced by the m'  Diag(m'1) 5,5)
dual variables « and B.

=DG(a,p)

m The second and third conditions are the constraints of (P) with 7T
replaced by the right-hand side of (2).
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m Fora, B > —oo, DG(a, B) is symmetric positive
semi-definite, and its kernel is ker(DG(a, f)) =
span{( _1)}. Hence, we can use a (precondi-
tioned) conjugate gradient method to solve (5),
which operates on the orthogonal complement
of the kernel as long as the initial point satisfies 107
Y] =Y /5?-

m A cheap diagonal preconditioner is provided by
DG(«, B) without the off-diagonal blocks.

m If the initial point (&, B°) is chosen sufficiently
close to a solution of (2)<3) and if the optimal
transport plan satisfies w1 > ¢l for some ¢ > 0,
then the Newton iteration converges quadratically.
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Figure 1: Exemplary performance of Sinkhorn (S) and Newton (N) iterations measured by constraint
violation (viol.), distance to optimal transport costs (cost) and distance to optimal transport
plan (plan). Left: Erros over CG iterations. Right: Errors over run time in seconds.
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m After a substitution, a Sinkhorn-Knopp step ap- i
proximates (5) by neglecting the off-diagonal o
blocks of DG («, B) and solving separately for both
variables.

200 400 800 1,000

Figure 2: Convergence behavior of Newton for different mesh sizes N (with M = N), measured by
constraint violation. Left: Errors over CG iterations. Right: Errors over run time in seconds.
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