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Entropically regularized optimal transport
We consider the entropically regularized Kantorovich problem of
optimal mass transport between two given probability measures
µ ∈ RM and ν ∈ RN, with non-negative cost c ∈ RM×N and
regularization strength γ > 0,

inf
π∈RM×N

〈c, π〉+ γ〈π, log π − 1〉

s.t. π1 = µ

π>1 = ν,

(P)

where 1 and 1 denote vectors and matrices of all ones.

Dual problem
By Fenchel-Rockafellar duality, the primal problem (P) is associated
with the dual problem

sup
α∈RM, β∈RN

−〈µ, α〉 − 〈ν, β〉 − γ〈e−
c
γ, e−

α1>+1β>
γ 〉, (D)

where the exponential function is applied componentwise to the
respective matrices.
In the following, we abbreviate K := e−

c
γ ∈ RM×N and use the

symbol � to denote the Hadamard product.

Optimality conditions
The primal and the dual problems are connected via the optimality
conditions

π = K� e−
α1>+1β>

γ (1)

µ = e−
α
γ � Ke−

β
γ (2)

ν = e−
β
γ � K>e−

α
γ. (3)

The first condition implies that the optimal transport plan π is the
componentwise product of K and a low-rank matrix induced by the
dual variables α and β.
The second and third conditions are the constraints of (P) with π

replaced by the right-hand side of (1).

Newton step
Our approach is to solve (2) and (3) simultaneously by applying
Newton’s method to the function

G(α, β) :=

 µ− e−
α
γ � Ke−

β
γ

ν− e−
β
γ � K>e−

α
γ

 . (4)

The associated Newton step can be written in the form of

1
γ

[
Diag(π1) π

π> Diag(π>1)

]
︸ ︷︷ ︸

=DG(α,β)

(
δα

δβ

)
= −

(
µ− π1

ν− π>1

)
︸ ︷︷ ︸

=G(α,β)

, (5)

where (1) is used to simplify both G(α, β) and DG(α, β).

Properties
For α, β > −∞, DG(α, β) is symmetric positive
semi-definite, and its kernel is ker(DG(α, β)) =
span

{(
1

−1
)}

. Hence, we can use a (precondi-
tioned) conjugate gradient method to solve (5),
which operates on the orthogonal complement
of the kernel as long as the initial point satisfies
∑i α0

i = ∑j β0
j .

A cheap diagonal preconditioner is provided by
DG(α, β) without the off-diagonal blocks.
If the initial point (α0, β0) is chosen sufficiently
close to a solution of (2)–(3) and if the optimal
transport plan satisfies π ≥ ε1 for some ε > 0,
then the Newton iteration converges quadratically.
After a substitution, a Sinkhorn-Knopp step ap-
proximates (5) by neglecting the off-diagonal
blocks of DG(α, β) and solving separately for both
variables.

Numerical Experiments
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Figure 1: Exemplary performance of Sinkhorn (S) and Newton (N) iterations measured by constraint
violation (viol.), distance to optimal transport costs (cost) and distance to optimal transport
plan (plan). Left: Erros over CG iterations. Right: Errors over run time in seconds.
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Figure 2: Convergence behavior of Newton for different mesh sizes N (with M = N), measured by
constraint violation. Left: Errors over CG iterations. Right: Errors over run time in seconds.
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