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ABSTRACT
Recently, cellular networks have witnessed major develop-
ments pertaining to user mobility, rich multimedia service
offering and a melange of network access options including
3G/4G, WiFi, WiMAX, etc. As a result, sessions are ex-
pected to last longer and users are more likely to roam be-
tween access technologies and to other networks. As archi-
tectural design is advancing in all-IP cellular systems such
as the Long Term Evolution (LTE), the question we pro-
pose to address is whether the established results on hand-
off and roaming statistics used in cellular theory still apply.
To this end, we revisit the theory for handoff statistics and
take up the challenge on extending the current model under
general assumptions for session distributions, user mobil-
ity, network coverage and access technology. We show that
the derived model yields estimates of handoff frequency and
roaming statistics which cannot be obtained otherwise. The
key strength of the proposed analysis is offering closed form
results, which are easy to use and can lead to more accurate
conclusions about the signaling load and the observed QoS,
as a direct function of handoff statistics.

Categories and Subject Descriptors
C.4 [Performance of System]: Performances attributes

General Terms
Theory, Performance

1. INTRODUCTION
Recently, cellular networks have witnessed major develop-
ments pertaining to user mobility, rich multimedia service
offering and a melange of network access options including

3G/4G, WiFi, WiMAX, etc. As a result, sessions are ex-
pected to last longer and users are expected to generate
more usage anytime and on the move. In such systems,
mobility between cells, groups of cells, gateways managing
different cells, or even cells belonging to different radio tech-
nologies can trigger various sets of control plane signaling
procedures at the radio and IP levels over numerous pro-
tocol interfaces [1, 2]. Although numerous mobility aware
protocols are standardized within such systems for hand-
off management, policy and QoS authorization, the handoff
and roaming statistics remain as key performance indica-
tors as they generally reflect the amount of IP and higher
layer signaling as well as the likelihood of session dropping.
Thus, the fundamental question we pose in this article is
whether the established results on handoff statistics used
in the current cellular research still cover emerging cellular
deployment scenarios.

Most of the current results on handoff statistics have ob-
tained the mean number of handoffs during a call by the
ratio of the mean session duration to the cellular residence
time, under the assumption of infinite network size and iden-
tically distributed cell residence times. This was achieved
by using complex analysis as in [3–5], probability generat-
ing function derivatives as in [6], or by assuming Gamma
fits for the residence time as in [7]. Such homogeneous res-
idence time assumptions were used extensively in the eval-
uation and the optimization of latency performance of mo-
bility protocols such as Mobile IP as in [8, 9]. However,
recent studies [10] have shown by simulations that irregu-
lar cell boundaries, which are common in practice, affect
the residence time in a cell, and hence impact the estimated
handoff rate in the system. Irregularities are indeed an issue
when considering different radio access technologies such as
3G, 4G, and WiFi in which cell sizes and shapes vary con-
siderably. This aspect motivated the researchers in [20] to
address the handoff rate in heterogenous 3G-WLAN inte-
grated systems. They studied one 3G cell including some
WLAN hot spots and used a phase type distribution, where
the different phases are used to model different exponentially
distributed residence times. Their generalized Coxian phase
model allows to approximate more general distribution with
the disadvantage of a possible state explosion. The rigorous
estimation of the handoff statistics in the context of new cel-
lular architectures requires a more generic approach beyond



current methods as they entail unsuitable assumptions of in-
finite network size [5] or single cell [20] arrangements which
nullify the possibility of roaming between networks and ig-
nore the geographic user distribution.

In this article, we derive, for the first time, closed form ex-
pressions for the mean number of handoffs and roaming like-
lihood under generic assumptions of session and residence
times, network coverage, and mobility. This is a non-trivial
extension as it involves not only the consideration of tem-
poral factors of session and residence times, but also spa-
tial aspects of area/gateway arrangements and mobility pat-
terns between them and to other technologies and networks.
Our framework incorporates both aspects using a two di-
mensional Markovian mobility model and offers closed form
results using complex analytic techniques. The closed form
solution and the generality of our assumptions makes it easy
to use the model by plugging in all needed parameters from
accounting records which are readily available at the au-
thentication, authorization, and accounting (AAA) systems
or at the downstream billing systems. In our results section,
we rigorously prove and show that modeling the number of
handoffs as the ratio of the mean session to residence time
can be inaccurate for a wide range of scenarios, as it is in
fact a non-linearly increasing function of this ratio. The de-
rived expression can be used to evaluate number of handoffs
belonging to different access technologies as well as deploy-
ment scenarios that consider non-uniform user concentra-
tions, which have not been addressed to date. The rest of
the paper is organized as follows. In Section 2, we present a
case study of an emerging network architecture and define
the mobility model as well as the related residence times in
terms of the spatial arrangement of the network. In Section
3, we generalize the commonly known handoff probability
to consider non-identically distributed residence times. In
Section 4, we incorporate the area layout and mobility pat-
terns using a transient Markov chain and derive closed form
solutions. Section V presents the numerical results.

2. OVERVIEW AND MODELING
2.1 Example of all-IP Cellular Networks
To illustrate the complexity of the control plane, we con-
sider the scenario in Figure 1 which illustrates a simplified
all-IP cellular network [1, 2] of two operators, one support-
ing two different access technologies (e.g., 3GPP LTE and
non-3GPP such as WiMAX or EVDO), and the other as
the roaming partner. The operator’s network under consid-
eration consists of the radio access network which includes
base stations and a myriad of core network components.
Core network components include serving gateways (S-GW)
which route the data traffic between the radio access and the
packet data network gateway (P-GW). The Mobility Man-
agement Entity (MME) handles users’ mobility between S-
GWs and within location or paging areas consisting of a few
cells served by the S-GW. In addition, the S-GW and the
P-GW interact with the Policy and Charging Rules Func-
tion (PCRF) to authorize QoS and obtain charging rules
for services as users initiate sessions or move between cells,
location areas, or S-GW regions. In non-3GPP networks,
Access Gateways (AGW) are used to achieve similar func-
tionality to the S-GW. When users roam to other operators,
more complex signaling is needed to handle mobility and
authorize QoS. In such architecture, the handoff event has a
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Figure 1: Simplified All-IP cellular network archi-
tecture. [AS: Application Server, PCRF: Policy and
Charging Rules Function, HSS: Home Subscriber
Subsystem, S-GW: Serving Gateway, MME: Mobil-
ity Management Entity, P-GW: Packet data network
Gateway, AGW: Access Gateway].

broader meaning beyond movement between cells and layer
2 signaling to cover mobility events of movements between
location areas or even gateways serving different radio ac-
cess technologies. The handoff event in its broader meaning
impacts more components that manage mobility, policy, and
user credit. For instance, suppose that we have a location
based service where users are charged differently depending
on their location areas (see [12]). In this case, the policy
system (i.e., PCRF) is contacted to generate new charging
rules whenever the users move between location areas during
the sessions. When the user is prepaid, the billing system
is also contacted for service rating purposes. From this ex-
ample, it is clear that the residence time within cells and
thus within location areas can not be assumed identical due
to coverage (e.g., 4G cells are usually smaller than 3G cells)
and usage behavior which will have a significant impact on
the observed number of handoffs between areas during the
session. For simplicity, let us use the term ”area”to generally
refer to a cell or a cellular region like a location area.

2.2 Solution Methodology
In a nutshell, the derivation steps for the handoff and roam-
ing statistics solution are structured as follows: First, we
formally define the mobility model as well as the related res-
idence times in terms of the spatial arrangement of the net-
work areas. Then, we generalize the commonly known hand-
off probability [4] to consider non-identically distributed res-
idence times. Afterwards, we incorporate the area layout
and mobility patterns between gateways using a transient
Markov chain. Finally, using complex analysis theory, we
derive an easy-to-use closed form solution for the mean num-
ber of handoffs and the roaming likelihood.

In our analysis, the user mobility inside an area is mod-
eled by the residence time. Since handoff signaling is rel-
evant to active sessions, we use in-session residence time
measurements (see [19, 25]) which can be easily obtained
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Figure 2: Sample network topology with (n = 5) ar-
eas. Borders are marked a, b, c, ... with mobility tran-
sition probabilities and residence times for a session
starting in Area 3 and another already established
session entering Area 2 through its border d.

from network components for all users. In fact our method
parameters can be obtained from accounting records at the
AAA system which includes complete record of the session
movement events and usage counters as it moves in the net-
work including information such as the serving base station,
the serving gateway, the session duration, the time duration
between handoff events (see [16] for instance). This infor-
mation was also used in [23] for designing an online mecha-
nism which optimizes the reliability of accounting traffic.
Our model can also accommodate theoretical models for
residence time for cells and for areas composed of differ-
ent cells as in our work in [14]. Unlike current work, we
allow non-identically distributed residence times and relate
them to any arbitrary mobility pattern between areas. This
is achieved by considering the residence time depending on
the entry and exit borders of the serving area according to
the mobility pattern (e.g. residence time R2de denotes the
time needed to enter from border d and exit from border e
in Area 2, see Fig.2).

To characterize mobility patterns between areas, we use a
Markovian 2D chain as its parameters can be obtained from
the AAA accounting records - see [21] for an overview on
mobility modeling. In our Markovian model, when a mobile
node enters an area its future movement is described by a set
of transition probabilities, which are denoted as pjxy, where
j denotes the area, x and y define the entering and the exit-
ing borders respectively (see Fig.2 for instance). As such, the
model is able to characterize correlated movement pattern.
The advantage of our model is that it directly applies to the
pixel based mobility models developed for realistic network
planning and simulation [13], as well as to the Pedestrian and
Manhattan-like Urban Deployment model and the Vehicu-
lar Environment Deployment model standardized by ETSI
[22]. Notice that since accounting records pertaining to a
session show the sequence of areas traversed by a mobile,
the probabilities, pjxy, can be obtained accordingly.

2.3 Definitions and Model parameters
Before we start, let us list our assumptions,

• The session duration, S, has density fS(t), a rational
Laplace transform f∗

S(s) and a mean of Es.

• The (in-session) residence time R is generally distributed
with an existing Laplace transform f∗

R(s). Subsequent
residence times are independent.

• For simplicity, we assume that sessions are always re-
sumed after handoffs. The inclusion of blocking is
straightforward and can be carried out as in [3].

Let us define BI = {1, 2, ..., n} as set of all areas and the
lexograhically ordered set of entry borders of all areas as B =
{1a, 1b, 1c, ..., na, nb, ...}. Then the transition probabilities
can be arranged into the one step transition matrix MN and
vector MA. The columns and rows of MN are numbered
according to the set B. The matrix, MN, describes the
movement of a session between areas using all probabilities,
pjxy. For example, a session entering Area 2 through its
border d as shown in Fig.2 correspondents to the row (2d)
of the matrix MN given below, where the state numbering
is added on top and to the right side for clarity. A session
leaving Area 2 through border e enters Area 5 at border a
with probability p2de (see the example below and Fig.2).

Aaacb 5311

dadedcdb p,dppp 2222 20 AN MM

To simplify the notation and without loss of generality, we do
not differentiate movements to different roaming partners,
and hence consider one network entry border denoted as A.
Thus for an area at the network boundary there is only one
”roaming”border and all transitions to the roaming partners
are listed in the 1 × n column vector MA (e.g. a session
entering Area 2 through border d and leaving it at border
a, will leave the network with probability p2da, see Fig.2).

Similarly, new sessions starting in Area j and leaving at bor-
der y are described by the transition probabilities pIjy (e.g.
see Fig.2), which are arranged in the matrix MNI. MNI has
mNI(i,j), i ∈ BI , j ∈ B elements. Again, all transitions to
roaming partners are combined in the column vector MAI.
In summary, the mobility transition probabilities are given
as,

MN , MA , MNI , MAI (1)

When structures are regular (e.g., a network build by rect-
angularly arranged areas), the matrices can be formulated
by simple rules as has been shown in [13]. Finally let us de-
note the row vector of the session initialization probabilities
for a session starting in area i ∈ BI as

PI = {pI(1), ..., pI(i), ..., pI(n)} (2)

Using the same notation, we define the residence time Rkxy

for a session entering Area k through its border x and leaving
it through border y. Thus, they are related to each possible
movement direction as shown in Fig.2, and are summarized



in matrices RN and RA. Since a new session starts inside an
area, the corresponding residence times in the initial areas
are different from the subsequent ones1. The corresponding
residence times are represented by the matrix RNI and the
vector RAI. In our analysis, we frequently use the Laplace
transform of the densities of the residence times, denoted as,

R∗
N(s) , R∗

A(s) , R∗
NI(s) , R∗

AI(s) (3)

For roaming sessions coming from other operators, the model
still applies, by replacing the session duration by its remain-
ing lifetime and adjusting the session initial probabilities to
reflect only entering from network borders (see [15]).

To further simplify the notation, we order the set B such
that each state representing an area entry border is mapped
to the set of integers. For example, for the network in
Fig.2 we have B = {1a, 1b, 1c, 2a, 2b, 2c, 2d, 2e, 3a, ...} ⇔
{1, 2, 3, 4, 5, 6, 7, 8, 9, ...}. This allows us to write the mobil-
ity probabilities (1) and the residence times in the generic
form,

xi,j =

⎧⎪⎪⎨
⎪⎪⎩

xN(i,j) = ‖XN‖i,j , (i, j) ∈ B
xNI(i,j) = ‖XNI‖i,j , i ∈ BI , j ∈ B
xA(i) = ‖XA‖i , i ∈ B, j = A
xAI(i) = ‖XAI‖i , i ∈ BI , j = A

(4)

where we can set X ≡ M, or X ≡ R respectively. As an ex-
ample refer to Fig.2, where we have mN(7,17) =‖ MN ‖7,17=
p2de and mA(7) =‖ MA ‖7= p2da. The Laplace transform of
the residence time density is similarly given as R∗

N(7,17)(s) =‖
R∗

N (s) ‖7,17= R∗
2de(s).

3. HANDOFF PROBABILITIES FOR NON-
IDENTICAL RESIDENCE TIMES

In this section, we derive the probability, PH , that a session
makes one more handoff given that it made k handoffs. Our
challenge is to generalize current results for PH ([5]) because
we consider non-identically distributed residence times. We
derive PH , first over a single movement path and then over
all possible paths.

3.1 A Single Path Analysis
All movement patterns related to a handoff can be repre-
sented by a simple Trellis diagram as in Fig.3. We use the
sets BI and B to define the states related to a movement
inside the network. On the other hand, we use the state A
(shown twice for clarity) as destination for a session roam-
ing outside the network. Each state transition is associated
with two variables, the mobility transition probabilities and
the corresponding residence times according to the notation
in (4).

Using the Trellis in Fig.3, we define a set W of ordered pairs
w = (o, d). o ∈ BI indicates the area in which a session
originates, and d ∈ B defines the entry border of the current
area in which the session is served. The set of all possible
paths Υ(o,d)(k) is hence the sequence of areas, a session may
have visited, after k handoffs and is associated with each

1In the absence of measurements the initial residence time
can be evaluated by RIky =

∑
x∈Bk

pkxyR̃kxy, where R̃ de-

notes the residual of the residence time, which has density

fR̃ (t) =
1−fR(t)
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Figure 3: Trellis diagram with mobility transition
probabilities (MNI, MN, MAI, MA) and residence
times (RNI, RN, RAI and RA) for a linear arrange-
ment of 3 areas (state A is shown twice to keep the
diagram simple).

pair w ∈ W . Let us define ν(k) ∈ Υ(o,d)(k) as an ordered
set of elements, ν(k) = {(o, i), (i, l), ..., (j, d)}, describing a
specific path of length k ≥ 1 from state o to state d, and
ν(0) = ∅. Let us denote the ith ordered pair in the path as
ν(k, i), i = 1, ..., k. Using these definitions, the probability
that a session will take a specific path after k handoffs, is
determined by the mobility transition probability (X ≡ M
in (4)) as,

πν(k) =
∏

(i,j)∈ν(k)

mi,j =
k∏

l=1

mν(k,l) (5)

Similarly, the sum of residence times incurred over a specific
path ν(k) ∈ Υ(o,d)(k) since the session start until the kth

handoff event is given as,

Rν(k) =
∑

(i,j)∈ν(k)

Ri,j =
k∑

l=1

Rν(k,l) (6)

and has density fRν(k) (t). We simply refer to (6) as the path
residence time. Since the residence times are assumed to be
independent, the Laplace transform of fRν(k) (t) is given as,

f∗
Rν(k) (s) =

∏
(i,j)∈ν(k)

f∗
Ri,j

(s), k ≥ 1. (7)

Let us define the handoff probability, PH(ν(k),(d,n)), as the
probability that a session, which has already incurred k
handoffs over the path ν(k) and has entered the current
area from border d, is long enough to include at least one
more handoff (the (k+1)th) to the next area’s border n ∈ B
as,

PH(ν(k),(d,n)) (k + 1) = P
{
Rν(k) + Rd,n ≤ S

∣∣Rν(k) ≤ S
}

=
P

{
Rν(k) + Rd,n ≤ S

}
P

{
Rν(k) ≤ S

} , k ≥ 1 (8)

For k = 0, (8) simplifies to PH(ν(0),(d,n)) (1) = P {Rd,n ≤ S}.
Using complex analysis as in [4,5] and the Laplace transform
(7), the probability P{Rν(k) ≤ S} is given as the solution of



the complex contour integral as,

P{Rν(k) ≤ S} =
1

2πj

∫ σ+j∞

σ−j∞
f∗

Rν(k)(s)
f∗

S (−s)

s
ds (9)

= −
∑

sP ∈ΞS−

Res
s=sp

f∗
Rν(k) (s)

f∗
S (−s)

s
(10)

where it is assumed that the set of poles ΞS− of f∗
S (−s)

only contains poles sp in the right half side of the complex
plane. If f∗

S (s) is a rational function (e.g. Hyper Erlang
distribution), (10) has a simple closed form solution [17].

3.2 Generalized Handoff Probability
Up to now we have focused on the properties of a single
path in the Trellis diagram. Let us now consider the possible
aggregation of the mobility behavior from all possible paths
a session can take. Let us assume that a session has entered
an area through its entry border j ∈ B at the kth handoff
event. Using (2) and (5), the probability to be in state
j ∈ B, taking into account all possible paths of length k, is
given as,

πDj(k) = ‖PD(k)‖j =
∑
i∈BI

∑
ν(k)∈Υ(i,j)(k)

pI(i)πν(k), (11)

where the probability row vector, PD(k), can be written as,

PD(k) = PIMNIMN
k−1. (12)

The matrix multiplication starting with MNI for the initial
movement, takes into account all possible paths from the
initial set of states BI to the final destination states j ∈ B.
Using (6) and (11), the weighted path residence time over
all possible paths of length k to the destination state j ∈ B
is given as,

RDj (k) =
∑
i∈BI

∑
ν(k)∈Υ(i,j)(k)

pI(i)πν(k)

πDj(k)
Rν(k) (13)

Proposition 3.1. Let us assume that the paths are cho-
sen from the set ∪iΥ

(i,j)(k) of all paths from the initial states
to state j ∈ B are independently selected. Then, the prob-
ability of making k or more handoffs over all possible paths
is,

P{RDj(k)≤S}=
∑
i∈BI

∑
ν(k)∈Υ(i,j)(k)

pS(i)πν(k)

πDj(k)
P{Rν(k)≤S}

(14)
The proof is obviously using (13).

Eq. (14) gives us two alternatives to derive the probabil-
ity P{RDj(k) ≤ S}. In the first method, we calculate the
weighted path residence time and then compare it to the
session time. Alternatively, we can take the weight over the
individual path survival probabilities P{Rν(k) ≤ S}.

Next we consider the probability for a session to arrive at
a specific state over a single path, depending on both mo-
bility and session time. As shown in Fig.4, for a session
starting (k = 0) in Area i, the transition probability to
state l ∈ B is given by the product of mNI(i,l) for the
initial mobility movement and the initial handoff proba-
bility, PH(ν(0),(i,l)) (1) = P{RNI(i,l) ≤ S}, because session
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Figure 4: Partial Trellis diagram for the movement
of a single session

statistics and mobility are assumed to be independent. For
k = 1, the transition probability from state l to state j is
then given by mN(l,j)PH(ν(1),(l,j)) (2) = mN(l,j)P{RNI(i,l) +
RN(l,j) ≤ S}/P{RNI(i,l) ≤ S} and depends on the whole
residence time history. Finally the path probability follows
from the multiplication of all one step transition probabili-
ties included in that path.

Now, we derive the probability for a session to be in state j
after making k handoffs, pj(k), which is obtained by weight-
ing the path probabilities over all possible paths ν(k) ∈
∪iΥ

(i,j)(k) to the destination state as pj(k) =
∑

i∈BI
pI(i)∑

ν(k)∈Υ(i,j)(k) πν(k)

∏k
l=1 PH(ν(l−1),ν(l,l)) (l). By extending

the path residence time Rν(l−1) + Rν(l,l) = Rν(l), we get∏k
l=1 PH(ν(l−1),ν(l,l)) (l) = P{Rν(k) ≤ S}, because the de-

nominator cancels out in (8). Using (11) and (14) we have

pj(k) =
∑
i∈BI

∑
ν(k)∈Υ(i,j)(k)

pI(i)πν(k)P{Rν(k) ≤ S}

= πDj(k)P{RDj(k) ≤ S} (15)

Notice that pj(k) is given by the product of the probability
πDj(k) which only considers spatial mobility aspects and
the weighted path delay P{RDj(k) ≤ S} which only in-
cludes temporal aspects. Now, we consider the case where
the movement path is extended for one more handoff (i.e.,
from state j to state n as in Fig.4) in the following proposi-
tion,

Proposition 3.2. Assuming that the session is in state
j after making k handoffs, then the transition probability to
state n at the (k + 1)th handoff instant is given as,

dj,n(k) = mj,nPH(j,n)(k + 1) (16)

where PH(j,n)(k + 1) is the handoff probability for a session
which made k handoffs and is currently in state j, to make
the next handoff to the neighboring area’s entry border n ∈
B,

PH(j,n) (k + 1) =
P {RDj (k) + Rj,n ≤ S}

P {RDj (k) ≤ S} (17)

The proof is given in Appendix A.

Note that for a session which incurred k handoffs, the tran-
sition probability dj,n(k) only depends on the the current
state j. Although the handoff probability of an individual
session must consider the complete movement history, the
handoff probability (17) only depends on the current state,
because the sum of the residence time of all individual paths
can be aggregated into the weighted path residence time
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RDj(k). Thus, our model behaves like a discrete time non
homogenous Markov chain.

4. GENERALIZED HANDOFF STATISTICS
4.1 Transient Markov Chain Formulation
In this subsection, the handoff statistics is derived using the
transient Markov chain shown in Fig.5. Compared to the
Trellis diagram of Fig.3 the additional absorbing state T is
added to model the session termination. Handoffs inside
the network are transitions between transient states (set of
states BI and B) and summarized in the matrices Dk, where
k gives the number of handoffs a session has already done
to reach the current state. D0 takes into account the initial
transitions. Using (16) - (17), the matrix elements are given
by

‖ Dk ‖j,n= dj,n(k) = mj,nPH(j,n)(k + 1) , k ≥ 0 (18)

Eq.(15) gives the probability, pj(k), that a session reaches
state j ∈ B with the kth handoff. Let us define the corre-
sponding row vector P(k). Than, from the properties of a
Markov chain and with the transition probabilities defined
in (18), it is obvious that this vector is alternatively given
by

P(k) = PI

k−1∏
j=0

Dj , k ≥ 1 ,P(0) = PI (19)

The analysis done for (16) - (17) can be extended to derive
the row vector Ak of the transition probabilities to absorb-
ing state {A}. Using the same notation its elements are
given by

‖ Ak ‖j= mj,APH(j,A)(k + 1) , k ≥ 0 (20)

Based on the result (19) and from Fig.5 it is easy to verify
that the probability for being absorbed into state A with the
kth handoff, which means that there are only k− 1 handoffs
inside the network (the last is the roaming one), is given as

PA(1) = PIA0, PA(k) = PI

k−2∏
j=0

DjAk−1, k ≥ 2 (21)

Finally the transition probability to the absorbing state T
results from the normalization. The row vector of transition
probabilities, Tk, has elements ‖ Tk ‖i= 1−∑

j∈B ‖ Dk ‖i,j

− ‖ Ak ‖i. Similar to (21), we define the probability of
session termination after the (k − 1)th handoff, PT (k), as,

PT (1) = PIT0, PT (k) = PI

k−2∏
j=0

DjTk−1, k ≥ 2 (22)

Equations (19) - (22) completely describe the statistics of
the handoff process.

4.2 The Mean Number of Handoffs
The mean number of handoffs (MNH) a session does until it
leaves the network or terminates is made up of two different
parts: the mean number of handoffs done inside the net-
work, E{N}, and the probability for the last handoff (the
chain goes to absorbing state A), which is the probability of
roaming, βA.

Let e = {1, 1, ..., 1} be a vector with a suitable dimension,
where eT denotes the transpose, then using (19) - (22), it is
easy to show that the mean number of handoffs made inside
the network (excluding the roaming one) can be written as,

E {N}=

∞∑
k=0

k ·[PA(k + 1) + PT (k + 1)] =
∞∑

k=1

P(k)eT (23)

For space limitations, we omit the derivation of (23). The
elements of the row vector

∑∞
k=1 P(k) can be interpreted as

the mean number of handoffs through area border j,

‖
∞∑

k=1

P(k)‖j = E {Nj} , j ∈ B (24)

Thus, the mean number of handoffs in the area under con-
sideration, is given by summing E {Nj} in (24) over all its
corresponding borders.

From Fig.5 it is obvious that the probability of roaming is
given by the summation over all the probabilities of being
absorbed into state A. Using (21) we have,

βA =
∞∑

k=1

PA(k) =
∞∑

k=0

P(k)Ak (25)

Although (23) and (25) gives the solution for the MNH, it
implies an infinite summation. Thus in a practical imple-
mentation the summation has to be truncated to a reason-
able size, which on the other side may result in a lower
accuracy. In the following subsection we derive a closed for-
mulation which avoids the infinite summation.

4.3 Closed Form Solution
Let us define the element wise multiplication

X = Y 
 Z ⇔ xi,j = yi,jzi,j (26)

This allows us to formulate the following Proposition.

Proposition 4.1. Using (26), let us combine the matri-
ces of the Laplace transforms of the residence times (3) and



the mobility matrices (1) as

Q∗
NI(s) = MNI 
 R∗

NI(s) , Q∗
N(s) = MN 
 R∗

N(s) (27)

Than, the probability to be in a transient state j ∈ S with
the kth handoff is given by the row vector

P(k) =
1

2πj

∫ σ+j∞

σ−j∞
PIQ

∗
NI(s) [Q∗

N(s)]
k−1 f∗

S (−s)

s
ds (28)

The proof is given in Appendix B.

Now with (28) and using (23), the mean number of handoffs
inside the network can be derived as

E {N} =
1

2πj

∫ σ+j∞

σ−j∞
PIQ

∗
NI(s)M

∗
R (s) eT f∗

S (−s)

s
ds (29)

where the infinite geometric sum results into the matrix

M∗
R (s) = (I − Q∗

N(s))
−1

= (I − MN 
 R∗
N(s))

−1
(30)

and I is the identity matrix. Eq.(29) and (30) highlight
the relationship between the spatial effects of mobility and
the related residence times on one side and the session du-
ration on the other side. The direction of movement and
the observed residence time is correlated, which results in
the strong relationship given by the matrix operation MN

R∗

N(s). On the other hand, the sequence of residence times
a session incurs during its lifetime is assumed to be inde-
pendent. This reflects on a product form of the individual
residence times of a sample path in the Laplace domain.
Both effects imply the elementwise multiplication defined
for this matrix operation.

Let us apply the same analysis to the roaming probability.
From Fig.5 we notice that the absorbing state A is reached
by expanding the path from every transient state j ∈ B to
state A. Thus the analysis derived for (28) can be applied
to PA(k) if the matrices (27) relevant for the last transient
movement are replaced by the column vectors Q∗

AI(s) if k =
0, and Q∗

A(s) if k ≥ 1 respectively. This yields

Q∗
AI(s) = MAI 
 R∗

AI(s) , Q∗
A(s) = MA 
 R∗

A(s) (31)

Using (21), the probability for being absorbed into state A
after the session has done k handoffs can be written as,

PA(1) =
1

2πj

∫ σ+j∞

σ−j∞
PIQ

∗
AI(s)

f∗
S (−s)

s
ds (32)

PA(k) =
1

2πj

∫ σ+j∞

σ−j∞
PIQ

∗
NI(s) [Q∗

N(s)]
k−2

Q∗
A(s)

f∗
S (−s)

s
ds

Now with (32) and (25) the final result for βA is given as

βA = PA(1) (33)

+
1

2πj

∫ σ+j∞

σ−j∞
PIQ

∗
NI(s)M

∗
R (s) Q∗

A(s)
f∗

S (−s)

s
ds

4.4 Analytical Example
Let us assume that the session time is hyper-Erlang dis-
tributed, because it is able to approximate any continu-
ous density function with vanishing error (Theorem 1 out
of [24]). Its Laplace transform is given by

f∗
S (s) =

J∑
j=1

αj

(
μj

s + μj

)mj

. (34)

The poles of f∗
S (−s) are located at sPj = μj > 0 and we

can use (10) to solve each vector component of the complex
integral (29), which yields

E {Nj}= −
J∑

j=1

αj (−μj)
mj

(mj − 1)!
PI lim

s→μj

dmj−1

dsmj−1 MV (s)

where we have set MV (s) = Q∗
NI(s)M

∗
R (s) /s. For the

practically interesting case of mj = 2, where first and second
moment matching is straightforward to calculate [24], the
required derivatives can be easily obtained as,

dM∗
V (s)

ds

∣∣∣∣
μj

=
1

μj

[
MNI 
 dR∗

NI(s)

ds

∣∣∣∣
μj

]
M∗

R (μj) +

1

μj
[MNI 
 R∗

NI(μj)]

[
dM∗

R(s)

ds

∣∣∣∣
μj

− M∗
R(μj)

μj

]

dM∗
R (s)

ds

∣∣∣∣
μj

= M∗
R (μj)

[
MN 
 dR∗

N(s)

ds

∣∣∣∣
μj

]
M∗

R (μj)

The matrix R∗
N(s) summarizes the Laplace transform of

all residence times, which are assumed to be Gamma dis-
tributed with mean E{Ri,j} = αi,jθi,j , coefficient of varia-
tion cRi,j = 1/

√
αi,j and transform

‖R∗
N(s)‖i,j = f∗

Ri,j
(s) =

1

(1 + θi,js)αi,j
(35)

For f∗
Ri,j

(s) it is straight forward to derive the residual resi-

dence time required for R∗
NI(s) and the required derivatives

as well. The main numerically expensive part is the deter-
mination of the matrix M∗

R (μj), because it requires matrix
inversion. The matrix has size |B| × |B| where |B| is pro-
portional to the number of considered areas times the mean
number of borders per area. It should be noted that the nu-
merical complexity of our model is reasonable and compara-
ble to the recent model in [20] which assumes exponentially
distributed residence times and a single cell layout.

5. NUMERICAL RESULTS
Recall that our model relaxes two major assumptions of
what we refer to as the homogenous model : the identically
distributed residence times in all areas and the infinite net-
work size without roaming. In this section, we validate our
general model in (29), (33) by simulations by considering
an exemplary region of 16 areas and compare our results to
the homogeneous model. In our C++ event based simula-
tions, we follow the guidelines in [13, 18] for session gener-
ation and mobility behavior. The number of handoffs per
area is collected and confidence intervals are determined us-
ing the mean batch method (5% significance levels). In our
scenario, the central four areas (e.g., downtown area) be-
long to a 4G technology (e.g., LTE) and the others belong
to a 3G technology (e.g., EVDO). The residence time fol-
lows a Gamma distribution as it is known to match the
lognormal distribution which is observed in measurement
studies [25]. Unless specified otherwise, the residence time
has a coefficient of variation of cR = 1.2 and a mean of
RLTE = 20 mins in the LTE zone and REVDO = 80 mins
in the EVDO zone to reflect the coverage differences be-
tween technologies. The average residence time is defined
as ERavg = 0.75REVDO + 0.25RLTE = 65 mins. We consider 3
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Figure 6: EVDO and LTE zones with arbitrary mo-
bility pattern

mobility patterns: random movement (4×4) areas, directed
mobility in a linear arrangement of the areas, and arbitrary
pattern (see Fig.6). In random mobility all directions of
movement are equally likely. In the directed movement,
once a direction is picked at the session start, it is main-
tained until termination. For the arbitrary mobility pattern
in Fig.6,we have assumed mixtures of 2-way and 4-way ran-
dom mobility as well as directed movement. The session du-
ration is assumed to be Erlang distributed with coefficient
of variation of

√
0.5 and a variable mean of ES to reflect

different mobility ratios (i.e., ES/ERavg [3, 6]). The session
initialization probability vector PI is used to represent users’
concentrations within areas, because PI can be assumed to
be proportional to the session arrival rate times the service
penetration rate times the user density of each area.

Let us first study the impact of the mobility ratio by varying
the mean session duration. We consider the three mobility
patterns above and compare them to our general model us-
ing average residence time ERavg in all areas, referred as gen.
model (approximation) and to the homogenous model. As
shown in Fig.7(a), we see that the mobility pattern highly
impacts the observed mean number of handoffs (MNH) dur-
ing the session. For instance, the random mobility results in
the lowest number of handoffs due to its localized movement
effect while the directed movement results in the highest
number of handoffs. Notice the large error in the homoge-
nous model (thick solid line) as sessions become longer (i.e.,
higher mobility ratio). We also see that using the average
residence time in all areas can lead to inaccuracies of the
order of 20% (see dashed and solid lines).

The effect of user concentrations using the initial session
starting probabilities is shown in Fig.7(b). In addition to
a uniform concentration we consider the case of 50% user
concentration in the LTE zone. If we neglected the different
user concentrations, as in the homogenous model, we may
underestimate the number of handoffs observed as in the
case of the directed movement pattern (by approx. 30%)
when traffic is concentrated in the LTE zone and also largely
overestimate handoffs otherwise. We notice that ignoring
the users concentration can lead to around 20% estimation
error in our example. For completeness, we also compared
areas with irregular shapes as in Fig.2 with the 4x4 topology.

The results (not shown for space) revealed similar trends as
Fig.7(a)-7(b), as expected.

In Fig.7(c) we consider the effect of the residence time ratio
RLTE/REVDO on the MNH, where REVDO is fixed at 65 mins.
Varying RLTE changes the mean residence time and thus the
mobility ratio, which is shown in Fig.7(c) for completeness.
For both the random mobility and the arbitrary pattern and
for different values of cR we observe a quite similar behavior
of the MNH if we compare the exact general model with the
approximate one (using ERavg ). For the arbitrary pattern
in Fig.6, we observe that the results from the exact and
approximate model match well in the range of ratios of 0.8 <
RLTE/REVDO < 3. On the other hand, the error increases as the
ratio deviates from one. For the range RLTE << REV DO,
the MNH estimates of the general model strongly increases
over those of the approximate model because more handoffs
are incurred in the LTE zone. For the range RLTE >> REVD0,
we observe a similar behavior, but in this case due to the
low residence time in the EVDO zone. For random mobility
this effect is not as pronounced because a random movement
averages out the differences in the residence times, however
with error in the order of 20−30%. In our example, we also
see that in all cases the MNH decreases as the coefficient
of variation of the residence time increases (i.e. cR = 1
establishes an upper bound).

We proceed by estimating the number of handoffs within
each area and for each technology using (24). This feature
is very useful as it allows estimating the signaling load to
the core network from each area separately. In Fig.8(a) we
show the portion of the mean number of handoffs in all areas
for the arbitrary mobility pattern under uniform user distri-
bution. Clearly, the LTE zones are likely to incur more
handoffs due to their relatively short residence time (i.e.,
RLTE= 20 min) while the EVDO network (i.e., REV DO=
80 min) exhibits relatively uniform behavior among all ar-
eas. The little deviation in the EVDO network in areas 2,
3, 14, 15 is due to their non-homogeneous mobility pattern
(see Fig.6). We proceed in Fig.8(b) by comparing the num-
ber of handoffs per technology as function of the incurred
residence times as well as the projected user concentrations
in their regions. The latter is interesting as it can reflect the
deployment phase of a given technology. In our example, we
consider uniform user concentration as a baseline, and also
evaluate initial LTE deployment with 10% user concentra-
tion, as well as the case of 50% concentration which reflects
users adoption of the technology down the road. We set the
EVDO area residence time to 80 mins and vary its ratio to
LTE area from 2 to 8. We see the large impact of the de-
ployment profile on the observed mean number of handoffs
in the network. As in the previous cases, we also see that the
residence time ratio between LTE and EVDO highly affects
the number of handoffs.

Finally, in Fig.8(c) we investigate the roaming probabilities
to other operators as function of the mobility ratio reflect-
ing short and long session durations, mobility patterns, and
user concentrations. This is useful for estimating the inter-
domain signaling rate to the roaming partners [15]. As ex-
pected, we observe that the roaming likelihood is higher for
longer sessions (i.e., large mobility ratios). We see that the
user concentration has less impact on the roaming proba-
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bility than the number of handoffs in Fig.7(b). In addition,
we see that the random mobility assumption, can lead to
relatively high roaming likelihoods as it ignores the user be-
havior and attraction points (e.g., a central LTE zone in a
crowded region) while the linear arrangements exhibit the
least roaming likelihood as users are only allowed to leave
from the edge areas 1 and 16.

6. CONCLUSIONS
In this paper, we revisited the theory for handoffs and roam-
ing statistics under generic assumptions of mobility patterns,
spatial arrangement of gateways, as well as generic session
times and non-identically distributed residence times. Using
transient Markov chains and complex analysis techniques,
we derived a closed form solution which not only addresses
temporal aspects of session and residence times but also spa-
tial aspects of mobility and user concentrations. The results
show that significant estimation errors for the number of
handoffs, using current models, can be reduced when apply-
ing our general approach, especially in scenarios involving
multiple access technologies. Future work includes applying
our framework to evaluate performance measures relevant
to signaling protocols (e.g., Proxy MobileIP and Diameter)
such as the signaling load in the core network and the asso-
ciated signaling latency.
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APPENDIX
A. PROOF OF PROPOSITION 3.2
The joint probability to reach state j ∈ B with the (k)th

handoff and state n ∈ B with the (k + 1)th handoff can
be derived from (15), if all paths terminating at state j are
extended to state n. Using Proposition 3.1 this will give

pj,n(k + 1)=
∑
i∈BI

pI(i)
∑

ν(k)∈Υ(i,j)(k)

πν(k)mj,nP{Rν(k)+Rj,n ≤ S}

=πDj(k)mj,nP{
∑
i∈BI

∑
ν(k)∈Υ(i,j)(k)

pI(i)πν(k)(Rν(k)+Rj,n)

πDj(k)
≤ S}

Using (11), (13), (15) and the fact that πDj(k)Rj,n =∑
i∈SI

∑
ν(k)∈Υ(i,j)(k) pI(i)πν(k)Rj,n, we have

pj,n(k + 1) = πDj(k)mj,nP{RDj(k) + Rj,n ≤ S}

= pj(k)mj,n
P{RDj(k) + Rj,n ≤ S}

P{RDj(k) ≤ S}
= pj(k)mj,nPH(j,n)(k + 1) (36)

The transition probability to reach state n with the (k+1)th

handoff given that we are in state j after the (k)th handoff

follows to be dj,n(k) =
pj,n(k+1)

pj(k)
= mj,nPH(j,n)(k + 1).

B. PROOF OF PROPOSITION 4.1
Using the complex integral (9) for P{Rν(k) ≤ S} , the prob-
ability for a path (5) and the Laplace of its density (7), the
probability (15) to be in transient state j is given by

pj(k) =
∑
i∈BI

∑
ν(k)∈Υ(i,j)(k)

pI(i)
∏

(h,l)∈ν(k)

mh,l×

× 1

2πj

∫ σ+j∞

σ−j∞

∏
(h,l)∈ν(k)

f∗
Rh,l

(s)
f∗

S (−s)

s
ds

=
1

2π

∫ σ+j∞

σ−j∞

∑
i∈BI

∑
ν(k)∈Υ(i,j)(k)

pI(i)
∏

(h,l)∈ν(k)

mh,lf
∗
Rh,l

(s)
f∗

S (−s)

s
ds

The element wise multiplication for Q∗
NI(s) and Q∗

N(s) has
been defined in (27) and the summation over all paths in
(11). Then with (1) - (4) and adapting the matrix formu-
lation of (12), we get the elements of the row vector (28)
given as,

pj(k) =
1

2π

∫ σ+j∞

σ−j∞
‖PIQ

∗
NI(s) [Q∗

N(s)]
k−1 ‖j

f∗
S (−s)

s
ds.


