
Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049

www.elsevier.com/locate/cma
Algorithms for strong coupling procedures

Hermann G. Matthies *, Rainer Niekamp, Jan Steindorf

Institute of Scientific Computing, Technische Universität Braunschweig, D-38092 Brunswick, Germany

Received 1 April 2004; received in revised form 8 November 2004; accepted 15 November 2004
Abstract

This paper considers algorithms for computing the response of a coupled problem with a partitioned approach. One

important example treated here is fluid–structure interaction (FSI). Often procedures or even software exists to solve

each sub-problem separately, and one wants to couple both. This setting seems to allow only the so-called weak cou-

pling which is not sufficient for some problems. The so-called strong coupling is often a totally implicit formulation,

where the system components are evaluated at the same time level. This usually requires an iterative procedure. The

FSI problem is cast as an abstract differential algebraic equation (DAE), for which the coupling procedures are devel-

oped. With the partitioned approach, one simple and frequently used computational procedure is similar to a block-

Gauss–Seidel iteration. It is shown why this approach may experience difficulties, and how they may be circumvented

with Newton-like methods still staying in the partitioned framework. The functional and software engineering require-

ments for the simulation interface are described and analysed. Some simple coupled example problems demonstrate

how the proposed procedures work.

� 2005 Elsevier B.V. All rights reserved.

Keywords: Partitioned methods; Strong coupling; Block-Newton methods; Quasi-Newton methods; Fluid–structure interaction
1. Introduction

Fluid–structure interaction (FSI) problems arise in a number of scientifically interesting and technolog-

ically important settings [1]. These often show strong interplay between the fluid and the structure [1–7], e.g.

in the design of aircraft [8,9] and in many other situations [10].

The FSI problem is viewed here as an example of an abstract class of coupled interaction problems. This

has the advantage that algorithms developed in one setting may be used in other situations where coupled

problems arise [11], e.g. thermo-mechanical [12] coupling, or soil–pore fluid interaction [13], to name but a
0045-7825/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.cma.2004.11.032

* Corresponding author. Fax: +49 531 391 3003.

E-mail address: wire@tu-bs.de (H.G. Matthies).

mailto:wire@tu-bs.de

H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049 2029
few. There are different ways to tackle a coupled interaction problem, cf. [14–17]. One possibility is to de-

velop new software and solution methods for each of these coupled applications, as without doubt will hap-

pen in some areas. This is referred to as a monolithical approach [18], or sometimes as the direct method

[19]. On the other hand, one may assume that the methods and software systems which have been

developed for either application will continue to be used, in this instance the fluid or structural software.
Therefore partitioned methods [20,21,14,6,22,23] are considered, also known as iterative methods [19] for

fluid–structure interaction, i.e. separate solvers are used for the fluid and the structure [24,25]. In [28–30]

one may find descriptions of such explicit staggering schemes, in [28] they are analysed in terms of their

order of consistency in the coupling. They may be designed serially or in parallel [24,28]. Here we follow

[25,26] and formulate the FSI problem in an abstract setting as a system of differential algebraic evolution

equations (DAEs), coupled by an algebraic condition. The term algebraic is to be understood in the way

that the coupling has no time evolution of its own, and will only involve differential operators in space.

For stability reasons, often a fully implicit formulation has to be used [7,19,30]. In this approach, one has
to solve a large system of nonlinear equations, preferably with the use of the (iterative) solvers for the sub-

systems. Commonly this is performed with block-Jacobi, block-Gauss–Seidel or related relaxation methods

[31,30].

These simple methods sometimes fail [14,32,25,33–36] rather unexpectedly. We will introduce here supe-

rior approximative Newton-like methods [37,25,33–36], which are not plagued by such occasional failures,

but still retain the partitioned approach on a software level.

Apart from the FSI setting, these ideas can be applied in a multitude of other areas such as general multi-

field/multi-physics phenomena [14,9], co-simulation and multi-numerics [38,39,32,40], domain-decomposi-
tion [41], wave-form relaxation [42], and are in line with efforts of parallelisation and modularisation of

software for distributed simulation.

Algorithms derived from Newton�s method have been considered in [43,44] for such coupled problems.

Certain parts of the Jacobian of the implicit iteration may not be accessible explicitly [37,38,25,26], making

the direct application of Newton�s method difficult. Luckily, the Jacobian is not needed explicitly here, one

only has to solve linear equations with it as system matrix. In a matrix-free approach with an inner Krylov-

type linear solver only the action of the matrix on a vector is needed. In this case the action of the missing

parts of the Jacobian can be suitably approximated. In some instances it also helps not to solve the equi-
librium equations, but an equivalent, numerically better conditioned system [37,38,25,33–36,26]. This sub-

ject will be taken up later in the paper.

The plan of the paper is as follows. In Section 2 the example of a FSI problem is introduced in a simple

way which adopts the ALE-setting [4]. In Section 3 an abstract setting of coupled subsystems is described

following [25,26]. The time evolution is assumed to be given by an abstract ordinary differential equation

for each subsystem. One may distinguish between pure differential coupling, and a coupling by an ‘‘alge-

braic’’ constraint or coupling condition. In the latter case it does not add much complexity to allow the

subsystems to be modelled by DAEs. Actually for the incompressible Navier–Stokes equation the incom-
pressibility constraint is like an ‘‘algebraic’’ constraint. Upon time discretisation by some finite difference

method, one distinguishes between explicit and implicit methods, where this refers to the total system. It

is the implicit methods that require solutions over the global system.

In Section 4 the FSI formulation is shown to fit the abstract setting after some manipulation. The solu-

tion of the global system is first addressed in Section 5, where nonlinear block-Jacobi and block-Gauss–Sei-

del methods are an obvious possibility. Their occasional failure is described and explained, and a superior

family of block-Newton-like methods is proposed. As pointed out already, the difficulty here is that parts of

the Jacobian of the global system, including the cross-derivatives, are not always accessible explicitly. Some
recipes for treating this question are given in Section 5.

Sections 6 and 7 give some view behind the used software-architecture, which is based on the definition

of a simulation interface and an abstract communication middle-ware called Component Template Library

2030 H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049
(CTL). This architecture suggests a standardisation of simulation codes in order to yield an optimal re-

usability for partitioned simulation. The requirements on the various solvers described in Section 5 for

the global iteration are also given.

A simple structure–structure coupling and a simple FSI example in Section 8 show the effectivity of the

proposed methods. The final Section 9 concludes with an outlook on similar problems and possible future
work.
2. Description of fluid–structure interaction

Before describing in the abstract setting of the following Section 3 how to solve coupled systems numer-

ically by using the subsystem solvers, the fluid–structure interaction (FSI) problem is formulated. It in-

cludes the necessary modifications due to the fact that the fluid is usually described in an Eulerian
setting, whereas the structure is commonly described in a Lagrangian formulation. These have to be made

to fit, at least at the common interface, and therefore the fluid formulation is in an arbitrary Lagrangian–

Eulerian (ALE) frame. In this way parts of the fluid domain may change in time, and at the interface to the

structure they can fit the actual displacement (Lagrangian frame) [4,47].

2.1. The fluid

Assume the fluid to be incompressible Newtonian, and satisfying the appropriate Navier–Stokes equa-
tion. Allowing compressibility or non-Newtonian constitutive models would change the details of the fluid

movement, but not the abstract coupling formulation in Section 3, nor the algorithms derived from it.

However it is the example of an incompressible fluid which makes it more challenging in one respect, as

the incompressibility condition is an ‘‘algebraic’’ constraint. The Navier–Stokes equation in an arbitrary

Lagrangian–Eulerian (ALE) [4,47,48] framework in the moving spatial fluid domain Xf is
.fð _vþ ððv� _XÞ � rÞvÞ � divrþrp ¼ rf ; ð1Þ
2r ¼ mðrvþ ðrvÞTÞ; divv ¼ 0. ð2Þ
The boundary oXf we assume to be divided into three disjoint parts oXf = Cv [Cq [Cc where on Cv the
velocity is prescribed, on Cq the traction is given, and Cc is the coupling boundary, where the coupling con-

ditions will be specified below. As the first two kinds of boundary conditions are completely standard, their

detailed description is skipped. Here .f is the fluid density, v the velocity, and the superimposed dot denotes

the time derivative _v :¼ otv ¼ ov=ot. The viscous stress is r, X is the position of the reference ALE-coordi-

nate system, and _X its velocity. The fluid shear viscosity is denoted by m, p is the pressure, rf the body force

in the fluid, and the differential operators are in the spatial frame.

The movement of the ALE-coordinate system XðtÞ is not specified yet, this will be done after considering

the discretisation.
2.2. The structure

The structure is described in a Lagrangian framework in a fixed material domain Xs. For the sake of

simplicity it is assumed that the constitutive model is a St. Venant material, hence the equilibrium equation

takes the following form:
.s€u�DIVðFSÞ ¼ rs; F ¼ I þGRADu; ð3Þ
S ¼ kðtrEÞI þ 2lE; 2E ¼ ðC � IÞ; C ¼ F TF . ð4Þ

H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049 2031
The boundary oXs is generally divided into three disjoint parts oXs = Cu [Ct [Cc, where on Cu the dis-

placements u are prescribed, on Ct the tractions, and Cc is the coupling boundary with the fluid. The first

two boundary conditions are again completely standard, hence their description is again skipped. The other

quantities in Eq. (3) are the structure density .s, the displacement gradient F, the second Piola–Kirchhoff

stress S, and the body load rs. The Lamé moduli are denoted by k and l, and E is the Lagrange–Green
strain, derived from the Cauchy–Green tensor C, and the capitalised differential operators are in the mate-

rial frame.

Again here it would be possible to assume othermodels for the solid, e.g. non-elastic oneswith internal vari-

ables such as plasticity or damage, they would still fit into the general setting to be introduced in Section 3.

2.3. The interface

On the coupling boundary Cc let a unique normal n be defined in the spatial frame. Supposing a vanish-
ing initial displacement uðX0; t0Þ ¼ 0, where X0 ¼ Xðt0Þ, the coupling conditions at a later time t may be

expressed by coincident velocities of the fluid v and structure _u at the spatial location XðtÞ ¼ X0 þ uðX0; tÞ:
vðXðtÞ; tÞ ¼ _uðX0; tÞ. ð5Þ
Eq. (5) ensures in this strong formulation also the coincidence of the positions at time t > t0.

Additionally the tractions from fluid and structure have to balance each other:
ðr� pIÞ � n ¼ � 1

J
FSF T � n; J ¼ det F . ð6Þ
3. Abstract coupled systems

In this section a general abstract formulation for coupled systems is presented, and in the following Sec-

tion 4 it will be shown how the FSI problem fits this abstract setting. In order to keep the formulation sim-

ple, only a global system composed of two subsystems will be considered. It is no problem to extend the

ideas and methods presented here to more than two coupled subsystems, but this makes it more difficult

to convey the basic ideas, which may be seen already in the simplest case of two subsystems.

The case of pure differential coupling is a good point to start in Section 3.1. This is a situation where

some variables in both subsystems may be directly identified. Often the coupling will introduce additional

variables, as will be seen in the FSI example, together with algebraic equations in addition to the subsystem
equations. It leads to systems of coupled DAEs in Section 3.2.
3.1. Pure differential coupling

Assume that the time evolution of the first subsystem is given by a differential equation of the form
_x1 ¼ f1ðx1; x2Þ; ð7Þ
where x1 2 X1, x2 2 X2 are elements of some Banach-spaces. The spaces X1 and X2 may be spaces of func-

tions, and f1 may be a differential operator, so that Eq. (7) may describe subsystems modelled by partial

differential equations, such as fluid flow. The variables x2 are not further specified in this model, they pro-

vide the coupling to the second subsystem, which is described completely analogous to Eq. (7):
_x2 ¼ f2ðx2; x1Þ. ð8Þ

2032 H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049
The coupled system equations (7) and (8) are nothing but a larger evolution system for the combined vector

ðx1; x2Þ 2 X1 �X2, and actually may come from splitting a larger system into smaller ones for parallelisa-

tion, such as in wave-form relaxation [42]. All variables have differential evolution equations, and therefore

we refer to this case as pure differential coupling. In a later Section 3.2 the case when the coupling is mod-

elled by ‘‘algebraic’’ equations will be considered, and the subsystems themselves may be DAEs.
With this simple set-up already a number of solution concepts may be defined which have been used fre-

quently (e.g. [16]) in such coupled simulations, but which also occur in other contexts as with an artificial

splitting for computational purposes [42]. In [28] is a recent overview over several such coupling procedures,

see also [30] for a ‘‘closed system’’ view of the coupling problem.

3.1.1. Explicit coupling

Assume that both subsystem equations (7) and (8) have been discretised in time with some appropriate

method. If the methods for the individual subsystems are both explicit, it is probably most natural to stay
explicit also for the coupled system. For the sake of simplicity of exposition assume that both subsystems

have the same time step Dt. Otherwise one subsystem may be sub-cycling. Then what is referred to as one

step for that system here is really a number of steps, and one considers the interval between synchronisation

points. Denoting the discrete approximation to the solution of Eqs. (7) and (8) at step n by xðnÞ| , (| = 1,2),

the explicit integration algorithms for the two subsystems may be expressed as
xðnÞ1 ¼ u1ðx
ðn�1Þ
1 ; y2Þ; ð9Þ

xðnÞ2 ¼ u2ðx
ðn�1Þ
2 ; y1Þ; ð10Þ
where dependence on time t or the time step Dt has been omitted, and the two functions y|(t), (| = 1,2) are
assumed given. They are to represent the variables of the other subsystem in the time interval of length

Dt = tn�tn�1, but of course these are not yet known. Staying explicit, one may extrapolate these by some

function W|ðxðn�1Þ
| Þ, (| = 1,2) of the past values of the approximate solution, in the simplest case one

may assume the value at tn�1 as constant throughout the interval, i.e. y|ðtÞ ¼ W|ðxðn�1Þ
| Þ � xðn�1Þ

| ,

(| = 1,2). This leads to the simplest case of weak or loose coupling, the so-called staggering method

[22,45,28], here with explicit subsystem integrators:
xðnÞ1 ¼ u1ðx
ðn�1Þ
1 ;W2ðxðn�1Þ

2 ÞÞ ¼ u1ðx
ðn�1Þ
1 ; xðn�1Þ

2 Þ; ð11Þ
xðnÞ2 ¼ u2ðx

ðn�1Þ
2 ;W1ðxðn�1Þ

1 ÞÞ ¼ u2ðx
ðn�1Þ
2 ; xðn�1Þ

1 Þ. ð12Þ
With this, the method is completely specified. The single system integrators are most likely going to have an

associated critical time step Dtc|, (| = 1,2), and by coupling the systems in this explicit fashion the critical

time step for the global system will be not more than min|Dtc|. The two sub-steps in Eqs. (11) and (12) can

be performed in parallel. If some of this inherent parallelism is sacrificed, a partly implicit method may be

formulated: First perform Eq. (11), to be followed by
xðnÞ2 ¼ u2ðx
ðn�1Þ
2 ;W1ðxðn�1Þ

1 ÞÞ ¼ u2ðx
ðn�1Þ
2 ; xðnÞ1 Þ; ð13Þ
where the new value
xðnÞ1 ¼ W1ðxðn�1Þ
1 Þ :¼ u1ðx

ðn�1Þ
1 ; xðn�1Þ

2 Þ ð14Þ

is already used. This is how the staggering method is mostly applied. Of course the combined method is still

explicit, but only ‘‘half as much’’ as before. It is sometimes called the ‘‘Conventional Serial Staggered

(CSS)’’ scheme [28].

In case that the subsystem integrators are implicit, they may still be combined in an explicit fashion [26].

For the system as a whole this is still explicit, and will again introduce limitations connected with a critical

H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049 2033
time step associated to the global system [30]. To circumvent this, generally one has to introduce a global

coupling, although there are methods to retain at least the linear stability characteristics in the staggered

approach [21,14,46].

3.1.2. Implicit coupling

To alleviate the time step restriction just mentioned, one may formulate the whole system in an implicit

way, extrapolating y|ðtÞ ¼ W|ðxðn�1Þ
| Þ � xðnÞ| , (| = 1,2) with the constant and yet unknown value of the

approximate solution at the end of the time step. Again here some more elaborate approximation is pos-

sible, but we restrict ourselves to this simplest and most used case for the sake of brevity. The equation sys-

tem to be solved at each time step now reads
xðnÞ1 ¼ /1ðx
ðnÞ
1 ; xðn�1Þ

1 ;W2ðxðn�1Þ
2 ÞÞ ¼ /1ðx

ðnÞ
1 ; xðn�1Þ

1 ; xðnÞ2 Þ; ð15Þ

xðnÞ2 ¼ /2ðx
ðnÞ
2 ; xðn�1Þ

2 ;W1ðxðn�1Þ
1 ÞÞ ¼ /2ðx

ðnÞ
2 ; xðn�1Þ

2 ; xðnÞ1 Þ. ð16Þ
This is a case of strong or tight coupling, and the results from this are completely equivalent to what

would be achieved by a monolithical formulation, although this here is the result of a partitioned approach.
Eqs. (15) and (16) are a coupled system, and cannot be solved independently of each other. Hence, even if

methods to solve each equation separately are available, this does not solve the system equations (15) and

(16), a global iteration is needed.

Thus although the formulation of the partitioned but strongly coupled approach is equivalent to a mono-

lithical approach, the methods to solve the coupled system will be different: In the monolithical approach all

the information desired about the subsystems is at disposal, and the solution methods are sometimes

termed as direct [19], although the actual solution process may very well be iterative.

In the partitioned approach, not all the information desired about the subsystems is available, and there
has to be some kind of iteration across the subsystems. Therefore this approach is sometimes termed the

iterative [19] method.
3.2. Differential and algebraic coupling

Eqs. (15) and (16) in the last Section 3.1.2 are a global system to be solved at each time step. It will turn

out that the case of two coupled differential algebraic equations (DAEs) is no more difficult conceptually, so

this situation is considered next [32].
Assume that the two subsystems are DAEs of index 1, denoted by
_x1 ¼ f1ðx1; x2; y1; y2; zÞ; ð17Þ
0 ¼ g1ðx1; x2; y1; y2; zÞ. ð18Þ
The description is similar to Eq. (7), only that now there is additionally a local algebraic variable y1 2 Y1

and a global one z 2 Z. Again Y1 and Z are some suitable Banach spaces. As with the evolution law f1 in

Eq. (17), also the function g1 in the ‘‘algebraic’’ Eq. (18) may be a spatial differential operator. Completely
analogous, just by switching indices, we model the second subsystem by
_x2 ¼ f2ðx2; x1; y2; y1; zÞ; ð19Þ
0 ¼ g2ðx2; x1; y2; y1; zÞ; ð20Þ
with y2 2 Y2 in some appropriate Banach space Y2.

The two subsystems are now not only coupled by the variables (x|,y|) (| = 1,2) as before, but one may

additionally allow for a global algebraic coupling

2034 H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049
0 ¼ hðx1; x2; y1; y2; zÞ; ð21Þ

through the global algebraic variable z 2 Z.

The assumption that each subsystem, the system equations (17), (18) and (21) with x2, y2 given as known

functions, the system equations (19), (20) with x1, y1 given as known functions, and also the global system is

a DAE of index 1 is equivalent to the condition that the operator matrices
Dy|g|;
Dy|g| Dzg|
Dy|h Dzh

" #
; ð| ¼ 1; 2Þ;

Dyg Dzg

Dyh Dzh

� �
ð22Þ
be regular, where Dq is the partial derivative w.r.t. q, and g = (g1,g2)
T and y = (y1,y2)

T. These matrices are

sometimes also called coupling matrices.

3.2.1. Implicit DAE coupling

Differential algebraic equations are usually solved with implicit methods, assume that here the algebraic

constraint is satisfied in each step, this will also be followed here. Upon discretising Eqs. (17), (18) and Eqs.
(19), (20) in time with an implicit method, one arrives at an equation to be solved for each subsystem.

Treating also the global algebraic condition Eq. (21) implicitly, the global system to be solved is:
xðnÞ1 ¼ U1ðxðnÞ1 ; xðn�1Þ
1 ; xðnÞ2 ; yðnÞ1 ; yðnÞ2 ; zðnÞÞ; ð23Þ

xðnÞ2 ¼ U2ðxðnÞ2 ; xðn�1Þ
2 ; xðnÞ1 ; yðnÞ2 ; yðnÞ1 ; zðnÞÞ; ð24Þ

0 ¼ hðxðnÞ1 ; xðnÞ2 ; yðnÞ1 ; yðnÞ2 ; zðnÞÞ. ð25Þ
The last Eq. (25) is usually subsumed with one of the subsystems Eq. (23) or Eq. (24). This fits into the

framework of Section 3.1.2, and the situation is as described by Eqs. (15) and (16), in that a global system

has to be solved, and only solvers for the subsystem are available.
4. Reformulation of FSI as a coupled DAE

Assume now that the fluid as described by Eqs. (1) and (2), the structure given by Eqs. (3) and (4), and
the interface specified by Eqs. (5) and (6) have been discretised in space. Everyone may use her favourite

discretisation, e.g. finite elements, finite volumes etc., e.g. [11,49,50]. The space-discretised variables from

those equations are denoted by the corresponding bold-face letter.

4.1. Semi-discrete form of FSI

The movement of the reference coordinate system in the fluid domain still has to be detailed. Several

possibilities exist [51–53,7], here the connections between the nodes in the fluid domain are modelled as elas-
tic springs [54]. This fictitious inertia-free elastic body has displacement loading from the moving structure,

on the outer boundaries it is fixed. The traction balance Eq. (6) introduces additional forces TT
f s on the

fluid, and the reaction force TT
s s on the solid, where s is the discretised traction vector on the interface

Cc. Hence for the fluid the complete semi-discrete equations of motion are [25]:
M f _vþN fðv� _XÞvþ K fvþ Bfp ¼ rf þ TT
f s; ð26Þ

BT
f v ¼ 0; ð27Þ

KgX ¼ Au. ð28Þ

H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049 2035
The terms in Eq. (26) are the discrete analogues of those in Eq. (1), the term rf includes the prescribed

boundary stresses, Mf is the mass matrix, the term involving Nf a nonlinear contribution from the convec-

tive acceleration, Kf the matrix of the viscous term, and Bf a discrete form of the gradient. In Eq. (27) we

may recognise the discrete form of the incompressibility condition, and Eq. (28) describes the movement

XðtÞ of the fluid domain, driven by the structure displacements u transferred to the common interface
Cc by the transfer matrix A, and the grid stiffness matrix Kg is due to the springs just mentioned between

the nodes in the fluid domain.

In a similar vein for the structure one obtains
M s€uþ K sðuÞu ¼ rs � TT
s s. ð29Þ
Here Ms is the mass matrix, Ks the possibly displacement dependent stiffness matrix, rs represents the body
and traction forces, and TT

s s is due to the forces of the fluid on the structure on the interface Cc as given by

Eq. (6). The coupling condition for the velocities Eq. (5) in discrete form is
T fv ¼ Ts _u; ð30Þ

where due to the variational formulation of the discretisation of Eq. (5) the transposes of the transfer matri-

ces in Eqs. (26) and (29) appear.

This combined set, Eqs. (26)–(28) and Eqs. (29), (30), is a system of 2nd order differential algebraic equa-

tions (DAEs) of index 2 in the time variable t, as can be easily verified. In order to allow for an easier

numerical treatment, and to make them fit the general formulation in Section 3.2, these equations will

be converted to index 1 by differentiation [25].

There are quite a few items we have glossed over in our quick description, as these are not central to our

issue. Nevertheless, for a proper implementation of FSI they have to be dealt with. This includes the prob-
lem of non-matching grids for fluid, structure, and possibly interface and the ALE-fluid domain. There are

different possibilities to tackle those problems, such as consistent interpolation and mortar elements, to

name but a few [55–58]. Another problem is a kind of consistency when moving the ALE-fluid mesh;

the numerical time stepping algorithm together with the spatial discretisation has to satisfy a property com-

monly referred to as the geometric conservation law (GCL) [51,59].
4.2. Index and order reduction

As the fluid by itself is a DAE of index 2, the index will be reduced by differentiation. Differentiating

Eq. (27) once gives BT
f _v ¼ 0. As Mf is non-singular, one may solve for _v from Eq. (26) and insert this into

the above relation, giving
BT
f M

�1
f ðrf þ TT

f s�N fðv� wÞv� K fv� BfpÞ ¼ 0; ð31Þ
where w :¼ _X is the grid velocity. In the same manner Eq. (28) for the grid movement is differentiated
Kgw� Aw ¼ 0; ð32Þ

where the new variables w :¼ _u, the structural velocities have been introduced.

With this relation the structural equation (29) can be reduced to a first order system in a standard

manner:
_u ¼ w; ð33Þ
M s _wþ K sðuÞu ¼ rs � TT

s s. ð34Þ
This index reduction may cause a drift-off from the algebraic constraint. Therefore stabilisation tech-

niques must be used, see [63].

2036 H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049
4.3. The DAE correspondence

For the concrete application, the abstract equations (17) and (18) may now be identified with the follow-

ing terms [25]:
x1 ¼
v

X

� �
; y1 ¼

b

p

w

264
375; f1 ¼

b

w

� �
; z ¼ s; ð35Þ

g1 ¼
M fbþN fðv� wÞvþ K fvþ Bfp� rf � TT

f s

�BT
f M

�1
f ð�N fðv� wÞv� Bfp� K fvþ rf þ TT

f sÞ
Kgw� Aw

264
375; ð36Þ
so the first subsystem is the fluid with the ALE-grid. In Eq. (35,2) the new variable b :¼ _v, the fluid accel-

eration, has been introduced.

The second subsystem is the structure,
x2 ¼
u

w

� �
; y2 ¼ a; f 2 ¼

w

a

� �
; z ¼ s; ð37Þ

g2 ¼ M saþ K sðuÞu� rs þ TT
s s; ð38Þ
where no index reduction, but only a standard order reduction of the differential equation was needed. In

Eq. (37,2) the new variable a :¼ _w ¼ €u, the structural acceleration, has been introduced.

The final item to identify is the global coupling condition,
h ¼ T fb� Tsa; ð39Þ
which expresses the equality of the accelerations at the fluid–structure interface.

To verify the index 1 conditions Eq. (22) is a lengthy calculation [25], but the conditions are indeed sat-

isfied as long as Kg, Mf, and Ms are regular, here they can even be assumed to be symmetric positive

definite.
5. Numerical procedures for partitioned methods

The computational procedures are very dependent on the formulation chosen for the global system. If,

as was done here, the coupled system is formulated as a differential–algebraic equation, one is almost inev-

itably led to an at least partly implicit formulation, and such mixed time-discretisations have also been

investigated [60,61]. In the present example this already appears within the fluid subsystem. The incom-

pressibility condition is an algebraic constraint, and practically all discretisations have some implicit ele-
ments [50].

The equations describing the system are

• the fluid problem with the components

1. the Navier–Stokes Eq. (1), or its semi-discrete form Eq. (26) as an evolution equation.

2. the incompressibility condition Eq. (2), or its discrete form Eq. (27) as algebraic constraint.

3. the ALE-grid movement, here only formulated in discrete form as an additional algebraic constraint

Eq. (28).

• the structure problem in Eq. (3), or its semi-discrete form Eq. (29) as an evolution equation.

H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049 2037
• the coupling condition Eqs. (5) and (6) on the spatial interface Cc between the fluid and the structural

domain, or its discrete form Eq. (30) as an algebraic constraint.

The grid movement could very well be taken as a subsystem in its own right, but because it is so intimately

connected to the fluid problem, it is customarily treated simultaneously with the fluid.
Through index and order reduction the above problems have been reduced to the abstract coupled DAE

system equations (35)–(38). Assume that at least both subsystems have some implicit parts, something

which is true for the example and also in line with common numerical wisdom for the discretisation of

DAEs [63]. In the present partitioned and modular approach this also means that one has solvers for each

subsystem, written here in fixed point form (see Eqs. (44) and (45)), as they may be used during the iterative

solution process for each subsystem. This certainly includes also direct solvers, they may be simply regarded

as iterative solvers that only need one iteration.

After discretisation in time, one has to solve Eqs. (23)–(25). The first Eq. (23) solves for the variables
ðx1; y1Þ

T ¼ ðv;X; b; p;wÞT assuming the others are given, the second Eq. (24) solves for (x2,y2)
T = (u,w,a)T

assuming the others are given, and the last Eq. (25) solves for z = s assuming the others are given. For sim-

plicity, and as it is also customarily done that way, in the solution process the discrete coupling condition is

included with one of the other two subsystems, i.e. either with the fluid, meaning that on the coupling inter-

face the velocities are prescribed (Dirichlet data), and the interface tractions are passed from the fluid to the

structure (Neumann data); or the other way around. In the first case for the concise formulation of the iter-

ation denote the variables as
n :¼ ðx1; y1; zÞ
T ¼ ðv;X; b; p;w; sÞT; ð40Þ

f :¼ ðx2; y2Þ
T ¼ ðu;w; aÞT. ð41Þ
In the second case with Neumann data on the fluid and Dirichlet data on the structure the variable z = s is

included in f and not in n:
n :¼ ðx1; y1Þ
T ¼ ðv;X; b; p;wÞT; ð42Þ

f :¼ ðx2; y2; zÞ
T ¼ ðu;w; a; sÞT. ð43Þ
In order to concentrate on how to solve the coupled Eqs. (23)–(25), the time step counter is dropped, and

also the dependence on the previous time steps is suppressed. One may assume both iterative solution pro-

cesses are in fixed point form, i.e. the iteration
nj ¼ F1ðnj�1; fÞ; j ¼ 1; 2; . . . ð44Þ

converges for reasonable starting values n0 with given f. Similarly, the iteration process
fj ¼ F2ðfj�1; nÞ; j ¼ 1; 2; . . . ð45Þ

converges for reasonable starting values f0 with given n.

Other approaches may start directly from the equilibrium equation, which for a unified description may

also be assumed to be in fixed point form like Eqs. (44) and (45).

5.1. Non-linear block-Jacobi

The conceptually simplest way to use these two solvers F1 and F2 to solve the combined system is a non-

linear block-Jacobi process, or in the context of domain decomposition it would be called an additive or

parallel Schwarz procedure [41]. Given nj�1 and fj�1, perform the following iterative step:
nj ¼ Fm1
1 ðnj�1; fj�1Þ; ð46Þ

fj ¼ Fm2
2 ðfj�1; nj�1Þ ð47Þ

2038 H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049
meaning that in Eq. (46) the iteration Eq. (44) has been performed m1 times with a fixed fj�1, and in Eq. (47)

the iteration Eq. (45) has been performed m2 times with a fixed nj�1. Very often one takes m1 = m2 = 1. The

starting values n0 and f0 are provided by the extrapolation mapping Eq. (14). One iteration here is similar to

one step in Eqs. (9) and (10) in the purely explicit coupling in Section 3.1.1.

5.2. Non-linear block-Gauss–Seidel

It is well known, that usually the corresponding Gauss–Seidel process converges faster [31], and so we

are led to: Given nj�1 and fj�1, do
nj ¼ Fm1
1 ðnj�1; fj�1Þ; ð48Þ
and then, with the newly computed nj, do
fj ¼ Fm2
2 ðfj�1; njÞ. ð49Þ
This uses the new information as soon as it is available, and in the context of domain decomposition it

would be called a multiplicative or serial Schwarz procedure [41]. The starting values n0 and f0 are again

given by the extrapolation mapping Eq. (14). This is the most commonly used procedure [30], and one iter-

ation here is similar to one step in Eqs. (11) and (13) in Section 3.1.1.

Naturally, for both Eqs. (46), (47) and Eqs. (48), (49) one has to ask the question whether the iterative

process converges. In this situation it is useful to note the following result [32,40,25,26].

Theorem 1. In case the coupling equation is included in the first subsystem, let
a ¼ max
t2½0;T �

kðDy2g2Þ
�1Dzg2ðDy1hðDy1g1Þ

�1Dzg1Þ
�1Dy2hk; ð50Þ
and in case the coupling is included in the second subsystem, let
a ¼ max
t2½0;T �

kðDy2hðDy2g2Þ
�1Dzg2Þ

�1ðDy1hðDy1g1Þ
�1Dzg1Þk; ð51Þ
and let L be the Lipschitz constant of the extrapolation Eq. (14). Assume that a < 1, and that at least j iter-

ations of the block-Gauss–Seidel scheme Eqs. (48) and (49) are performed, such that Laj < 1, and that Dt is
small enough. Then the global block-Gauss–Seidel method converges, and the global error in the nth time step
dðnÞ ¼ kxðnÞ � xðtnÞk þ kyðnÞ � yðtnÞk þ kzðnÞ � zðtnÞk

is bounded by
dðnÞ 6 Cðlmaxf0;j�2gðdðnÞxÞ þ lj�1ðdðnÞyÞÞ þ eðnÞ1 þ eðnÞ2 . ð52Þ

Here eðnÞ1 and eðnÞ2 are the errors incurred by the single system integrators given in Eqs. (23)–(25), d(n)y and d(n)z
are the extrapolation errors, and l = a + O(Dt).

If a < 1 and Dt is such that l < 1, the iteration will converge. The contraction constant a is crucial, and

convergence depends strongly on the ordering of the subsystems in the block-Gauss–Seidel solution

strategy.

If enough iterations are performed, essentially only the error components from the single system integra-

tors remain. If eðnÞ1 ¼ OððDtÞpÞ and eðnÞ2 ¼ OððDtÞqÞ are the convergence orders for the single system integra-

tors, we obtain d(n) = O((Dt)min(p,q)), in contrast to the staggering scheme where we only have O(Dt) in the

simplest case. This may be the distinctive advantage of full coupling, even if the staggering scheme is stable.

In the following a summary is given for FSI as how the solution strategy, the grouping of the subsystems
and algebraic constraint equations, and the order in the Gauss–Seidel process determine the contraction

constant a. The computations leading to this are a bit tedious but straightforward, and are omitted [25,26].

H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049 2039
• Assume the subsystems and ordering are first fluid and coupling conditions, and second the structure.

Then the contraction constant in Eq. (50) is
a ¼ kM�1
s TT

s ðT f
cM�1

TT
f Þ

�1
Tsk; ð53Þ
where cM�1

¼ M�1
f ðM f � Bf

fM pB
T
f ÞM�1

f is a Schur complement, and fM p ¼ ðBT
f M

�1
f BfÞ�1

is a trans-

formed mass matrix acting on pressures.

• Now assume the subsystems and ordering are first structure and coupling conditions, and second the
fluid. The contraction constant in Eq. (50) is
a ¼ kcM�1

TT
f ðTsM

�1
s TT

s Þ
�1
T fk; ð54Þ
which looks ‘‘inverse’’ to the previous relation Eq. (53).

• Assume the ordering and subsystems as first the fluid, and second the structure and coupling conditions.

Then the contraction constant Eq. (51) is
a ¼ kðTsM
�1
s TT

s Þ
�1ðT f

cM�1
TT

f Þk. ð55Þ

• Finally, assume the following subsystems and ordering: First the structure, and second the fluid and the

coupling conditions. Here the contraction constant Eq. (51) is
a ¼ kðT f
cM�1

TT
f Þ

�1ðTsM
�1
s TT

s Þk; ð56Þ

which is the norm of the inverse of the matrix in Eq. (55).

These relations show how the block-Gauss–Seidel process depends on the ordering and grouping of the

equations. As cM scales with the fluid density .f, andMs scales with the structural density .s, the contraction
constant a is essentially determined by the density ratio .f/.s in Eqs. (53) and (56), respectively, the inverse

.s/.f in Eqs. (54) and (55), something which has often been observed by practitioners.

In our view this strong dependence on ordering and grouping in the Gauss–Seidel process calls for strong

or tight coupling methods which will converge unconditionally provided the time step is small enough; this

would roughly be a situation similar for the single system implicit integrator. With block-Gauss–Seidel

methods there is no easy way of achieving this, although there are possibilities of preconditioning [32].

5.3. Inexact block-Newton

Such an algorithm can be sought in the group of Newton-like methods, the full Newton–Raphson method

is considered here. It is also in this context the more challenging, as it requires the solution of a global system

of linear equations in each iteration, and especially as in the partitioned approach one has no recourse to the

cross-coupling parts of the system matrix. With the Newton algorithm one has a robust method, where the

convergence behaviour does not depend on

• in which subsystem the coupling is included,

• and in which order the subsystems are solved.

Usually one would start from Eqs. (23)–(25), the ‘‘equilibrium’’ equations; however it has been noted

[37] that the solutions of Eqs. (23)–(25) are solutions of the fixed point problem Eqs. (44) and (45) and vice

versa, but the latter are numerically much better conditioned as they implicitly already have the effect of the

single system solvers in them. Hence, performing the Newton–Raphson iteration on the equations n =
F1(n,f), f = F2(f,n) corresponds to the iteration Eq. (57), with Dnj :¼ nj+1 � nj and Dfj :¼ fj+1 � fj,

and the iteration counter j:

2040 H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049
I � DnF1 �DfF1

�DnF2 I � DfF2

� �
Dnj
Dfj

� �
¼ �

nj � F1ðnj; fjÞ
fj � F2ðfj; njÞ

� �
. ð57Þ
In the proposed approach one only wants to use the existing solvers, i.e. the iteration mappings F1 and F2

from Eqs. (44) and (45). In particular, there is often no direct access to the cross terms in the global system

matrix in Eq. (57). However if the system equation (57) is solved by a Krylov-type method [39,25,35,36], all

one needs is a way to compute the product of the Jacobian matrix in Eq. (57) with an arbitrary vector, at

least approximately. This can be viewed as a directional derivative. Briefly this can be described as follows:

An approximation of the application of the diagonal blocks in Eq. (57) can be achieved by applying the

subsystem solvers Eqs. (44) and (45). Application of the off-diagonal blocks to a vector can be approxi-

mated simply by finite differences, again using the subsystem solvers. A detailed description of one imple-
mentation of the block-Newton method can be found in [25,26].

5.4. Quasi-Newton

Another approach to realise a strong coupling is to apply a quasi-Newton solver like the Broyden–

Fletcher–Goldfarb–Shanno (BFGS) [68–71,66,67] method directly to the equilibrium Eqs. (23)–(25). By

having a preconditioner respectively starting matrix H0 corresponding (see Eqs. (58) and (59)) to the

block-Jacobi matrix, this is almost equivalent to using the BFGS-method on the iteration fixed point
Eqs. (44) and (45) with the identity as preconditioner respectively starting matrix. This method has an iter-

ation scheme very similar to the Newton–Raphson-method, but instead uses approximations of the Jaco-

bian. These approximations are defined by the recursion:
starting matrix: H0 ð58Þ
H kþ1 :¼ Hk þ aka

T
k þ bkb

T
k ðk P 0Þ; ð59Þ
where the ak and bk are vectors computed inexpensively from changes in the approximate solution and the

equation residual in the iteration process. If the operation H�1
0 is available, then, by the Sherman–Morri-

son–Woodbury formula, the operation of H�1
k on a vector is also easily computed, cf. [68–71,66,67], and is

given by a formula analogous to Eq. (59). For large-scale computations it is also important not compute the

updated matrix explicitly (it would be a full matrix), but to keep the factors of the dyadic or tensor products

in Eq. (59) as individual vectors, as the explicit matrix is never needed, but only its action on a vector.

The main advantage of the BFGS algorithm is, that it needs only the residual and no derivatives. There-

fore one has only to implement the total residual function, resp. one call for the subsystem solvers. Further-

more this method can use the subsystem solver or—if present—the preconditioners of the simulations in

order to improve the convergence of the nonlinear iteration.
A potential disadvantage is that the vectors ak and bk need to be stored. However, this can be alleviated

by restarting [66], i.e. periodically ‘‘forgetting’’ all update vectors, or just replacing the old ones, once a cer-

tain number of updates has been reached.
5.5. Parallelisation

The parallelisation aspects of the solvers correspond in many ways to the well-known analogous prop-

erties of the solution of linear systems. The computation of the residuals can in all cases naturally be per-
formed in parallel.

The block-Jacobi iteration, cf. Section 5.1, can be naturally parallelised, it corresponds to an additive

Schwarz-method. Each block of the iteration can be performed independently of the others, and may itself

be a—lower level—parallel code.

H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049 2041
As is well known, the block-Gauss–Seidel iteration, cf. Section 5.2, uses the solvers F1 and F2 in a serial

manner, it corresponds to a multiplicative Schwarz-method. Each component solver by itself of course may

be a parallel code.

The inexact block-Newton, cf. Section 5.3, can also use the individual solvers in parallel, see [25].

The preconditioner in the BFGS iteration, cf. Section 5.4, which corresponds to one block-Jacobi iter-
ation, is the most time consuming part, and can therefore be performed in parallel. The sum of the action of

the tensor or dyadic products in Eq. (59) can again naturally be parallelised.

The used techniques for parallelisation are described in Section 7 in some detail. Comparisons of the

convergence and computational times using a simple example will be given in Section 8.1.
6. Simulation interface and its requirements

In this paper a partitioned (i.e. non-monolithic) approach to solve coupled systems is given. Hence we

need not only an algebraic formulation, but also a software realisation of the coupling of existing simula-

tion codes.

One purely synchronous approach is to insert communication points into the codes, where the needed

data transfer between the simulations is to be performed. In this case experts for both simulations compo-

nents are needed in order to find the correct lines in the source code of the programs.

We have chosen an asynchronous functional approach. This suggests a standardisation of simulation

codes in form of an interface definition, which has to be implemented by the different simulation codes.
It is designed for the case that an external solver like the block-Newton method or a Gauss–Seidel-iteration

can be applied to solve the coupled system of equations. Any access of such a solver to the individual sim-

ulations is done via methods of this interface, so that the simulations become exchangeable, or in other

words, arbitrary structural or fluid simulations implementing this interface can be coupled. The individual

subsystem codes appear globally as software objects in the sense of an object-oriented approach, imple-

menting certain methods.

6.1. The simulation interface

This interface is formulated in the interface definition language of the component library CTL briefly

described in Section 7. Therefore it can be used and implemented by C, Fortran, or C++ codes, and enables

remote method invocation needed for a distributed simulation.

#define CTL_Class simuRI

#include CTL_ClassBegin

// init simulation with ��filename�� as starter file

define CTL_Method1 void, init,\

(const string / * filename * /), 1

// get state variables into x

define CTL_Method2 void, getstate,n
(arrayhreal8i/ * x * /) const, 1

// set state variables to x

define CTL_Method3 void, setstate,n
(const arrayhreal8i/ * x * /), 1

// set load of system

define CTL_Method4 void, setload,n
(const arrayhreal8i/ * load * /), 1

2042 H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049
// get coupling indices i and values y

// (bound.cond.or load or . . .)
define CTL_Method5 void, getcoupling,n

(arrayhint4i/ * i * /, arrayhreal8i/ * y * /) const, 2

// set coupling values y (bound.cond.or load or . . .)
define CTL_Method6 void, setcoupling,n

(const arrayhreal8i/ * y * /), 1

// compute res.at given state and write it into r

define CTL_Method7 void, residual,n
(arrayhreal8i/ * r * /) const, 1

// solve with given load + coupling values

// with at least accuracy

// set new state and write it into x

define CTL_Method8 void, solve,n
(const real8 / * accuracy * /, arrayhreal8i/ * x * /), 2

// compute a preconditioning step on r

// write result into pr

define CTL_Method9 void, precond,n
(const arrayhreal8i/ * r * /,n
arrayhreal8i/ * pr * /) const, 2

// compute the directional derivative in x0

// in direction dx and write it into dr

define CTL_Method10 void, dirderivative,n
(const arrayhreal8i/ * x0 * /,n
const arrayhreal8i/ * dx * /,n
arrayhreal8i/ * dr * /) const, 3

...

#include CTL_ClassEnd

The CTL uses the C-preprocssor for the generation of the code which handles all needed communica-

tions. Therefore the syntax of this interface uses #define and #include directives. Here a new class

named simuRI is defined, which has the ten methods declared between line #include CTL_ClassBe-

gin and #include CTL_ClassEnd.

The C++ representation of the defined class would look like

class simuRI

{
void init(const string &filename);

void getstate(vectorhdoublei&x) const;

...

}

and the Fortran representation like

subroutine simu_init(size, filename)

integer * 8 size

character filename(size)

H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049 2043
subroutine simu_getstate(size, x)

integer * 8 size

real * 8 x(size)

...

.

Requirements to a simulation code are that its functionality can be split into the functions listed in the

interface above, and—due to the functional approach—that a method invocation has no more side-effects

than those given in the comments to this method. This implementation assumes that the simulation com-

ponents know about the coupling, i.e. they have the information in which manner which degrees of freedom

are coupled. Therefore the coupling solver itself can be formulated in purely algebraic terms.

6.2. Requirements of the solver

Beside the block-Newton method we implemented—formulated in the interface above—the Broyden–

Fletcher–Goldfarb–Shanno algorithm (BFGS) and an inexact Newton method as solver for the coupled

system. These solvers have different requirements to the simulations.

• the BFGS-algorithm only needs the residual (via residual) and optionally preconditioning (via

precond),

• Jacobi- and Gauss–Seidel iteration access the internal solver of the simulation (via solve),
• the block-Newton method needs the residual and for the linear iterative solver directional derivatives of

the residual (via dirderivative).

• the inexact Newton method the residual and optionally preconditioning and for the linear iterative solver

directional derivatives of the (preconditioned) residual (via dirderivative).

If precond is not implemented by a simulation code no preconditioning is performed, if the implementa-

tion of dirderivative is missing the needed directional derivatives are approximated by finite differences.
7. Software architecture

The middle-ware used to implement the coupling is the Component Template Library (CTL), a recent

development of our institute. This library serves as an easy to use programming environment for distributed

applications in an abstract manner. It allows to define a new component, e.g. a simulation instance, using

the functionality of an existing library without need of change nor recompilation of the library. Hence, if

there is a library version of a simulation code, there is the possibility to reuse this code without having to
know every detail of it.

Fig. 1 shows the dependency graph of the partitioned simulation. The building dependencies on the bot-

tom level are given by compilation and linkage, the upper dependencies by file inclusion. There are three

main parts, the simulations simuA and simuB, and the solver between them. All dependencies of these

parts are centrally located in the interface header simuInterface.h. The header simuA.h and

simuB.h are used by the sources simuALink.cc and simuBLink.cc in order to link the functionality

of the simulations to the interface.

At run-time the solver component coupleSolver.exe is linked to the simulation components either
by remote method invocation using the simuA.exe/simuB.exe or by dynamic linkage using the

simuA.so/simuB.so. The latter variant should be chosen if computation in parallel is not possible, as

in the Gauss–Seidel iteration.

simuInterface.h

communication
by function call

communication
by function call

coupleSolver.cc/.c/.fsimuALink.cc simuBLink.cc

simuB.exe/.so

simuA.a/.so simuB.a/.so

simuA.exe/.so

simuA.h simuB.h

ctl.h

coupleSolver.exe

Fig. 1. Source dependencies of the coupling architecture.

2044 H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049
The inexact Newton and the BFGS algorithm use a slightly different architecture. In this case there are

two solver instances each linked to a simulation simuA.so/simuB.so. The solver instances communicate

with each other in order to compute global residuals and scalar products.

This architectures give an easy exchangeability of the simulation components without change nor recom-

pilation of the solver as well as the possibility for distributed simulations. Using the functional approach

and the described software architecture, the implementation of a coupling solver is very similar to serial

programming. The complexity of message passing libraries like MPI or PVM is completely hidden.
8. Numerical examples

8.1. Simple example of a non-linear coupling

The simple structural example points out the limits of the coupling Jacobi- and Gauss–Seidel iterations.

This system might arise in the simulation of a gasket consisting of plastic ring as the left and a metallic ring
as the right part.

The lower left half of the left part is fixed by a homogeneous Dirichlet condition, whereas the right side

of the right part is uniformly loaded.

H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049 2045
Due to the boundary conditions the left partial structure is much more distorted and was simulated with

a geometrically nonlinear formulation. For the right part a linear formulation was chosen.
El = 105, Er = 5 · 104 El = 105, Er = 106 El = 5 · 104, Er = 106

iter cpu [t] iter cpu [t] iter cpu [t]

Jacobi 18 10.9 1 – 1 –

Gauss–Seidel 14 7.9 28 16.0 1 –

BFGS 56 6.8 44 4.8 110 13.4

Newton 3 13.5 3 13.7 12 52.0
In the Dirichlet–Neumann coupling of the partial structures the left part must be coupled by Neumann

conditions and the right one by Dirichlet conditions. Otherwise the partial right system is not regular. For

different elasticities we tried to solve the coupled system with the Jacobi-, Gauss–Seidel-, quasi-Newton,

and the inexact Newton iteration. In the case E1 = 5 · 104, Er = 106 weak coupling does not work. This

can be explained by the contractivity constant a which is in this coupling proportional to Er/El. The reason

for the increased iteration numbers of the other solver is the stronger non-linearity in the left part due to the

smaller modulus. For all applied solvers the convergence behaviour can be improved by preconditioning of

the global system [32].

8.2. Rigid block with elastic appendage in incompressible viscous flow

The DAE-formulation and the block-Newton method will be demonstrated [25] on a small two-dimen-

sional example, introduced in [48] and already published in [26,27].

It is a rigid block with a thin elastic appendage, placed in an incompressible viscous flow coming from

the left. The bluff shape of the square block causes separation and vortices, which are transported along the

elastic appendage. Although the setup is symmetric, the vortices develop unsymmetrically, alternating from
top and bottom. The pressure variations in the vortices interact with the elastic appendage, which in turn
1 1.5 2 2.5 3 3.5 4
–1.5

–1

–0.5

0

0.5

1

1.5

Simulation–time: dt = 0.02

y–
D

is
pl

ac
em

an
t a

t t
he

 r
ig

ht
 e

nd
 o

f s
tr

uc
tu

re

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
–4

–3

–2

–1

0

1

2

3

Simulation–time: dt = 0.02

y–
D

is
pl

ac
em

an
t a

t t
he

 r
ig

ht
 e

nd
 o

f s
tr

uc
tu

re

Fig. 2. Vortex shedding and pressure field.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

2

4

6

8

10

12

14

16

18

20

Simulation–time: dt = 0.02

N
um

be
r

of
 It

er
at

io
ns

Approximative Block–Newton
Block–Gauß–Seidel

Fig. 3. Iteration count for block-Gauss–Seidel and block-Newton.

2046 H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049
starts oscillating. This situation is shown in Fig. 2, together with the pressure field in the flow. More of the

numerical behaviour of the coupling algorithm is shown in [26,27].

In another test, we compare the block-Gauss–Seidel method as described in Section 5.2 with the block-

Newton method from Section 5.3. For the same configuration as before, we show the number of iterations

of either method in each time step in Fig. 3. The superior convergence characteristic of the block-Newton

method is obvious.
9. Conclusion

For coupled but partitioned problems, we have proposed a strong or tight coupling method, which

achieves the same results as a monolithical approach. We have formulated this coupling problem as a dif-

ferential algebraic equation (DAE) following [40,32]. As usually appropriate to the numerical treatment of

DAEs, we consider globally implicit methods.

The global system to be solved in each time step is treated with the use of either the solvers or the resid-
ual function of the individual subsystems. The non-linear block-Jacobi and non-linear block-Gauss–Seidel

methods come very naturally, but they are sub-optimal and not robust. We have discussed the problems

which arise with this approach. We propose to solve the global implicit equations with a Newton-like

method, following [37–39,25,26,36]. The linear system which arises in each iteration is solved with a Krylov

iterative method.

We have demonstrated the methods on a fluid–structure interaction problem, first fitting it into the gen-

eral framework, and then applying the proposed procedures. Needless to say that the general ideas about

formulating and solving coupling problems are not specific to fluid–structure interaction and can be used in
other circumstances as well.

The partitioned approach offers modularity both in the formulation and modelling of physical phenom-

ena, and—a point of paramount practical importance—especially in the implementation of software [62].

H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049 2047
This allows the use of existing software packages for the subsystems, and this was how the computations

presented here were done. The structural solver was FEAP [64,11], and the flow solver used was FEAT-

FLOW [65,72], which could be taken as building blocks and only needed a small interface to be able to per-

form the coupling [25].

The overall software architecture is based on an interface definition for simulations together with a high
level programming environment designed to do the clerical work of managing the communication between

different software packets. The various solvers have different requirements as to which parts of this simu-

lation-interface has to be implemented by the simulation codes. With this kind of approach, the effort and

special knowledge and techniques which have gone into the design and implementation of software for spe-

cific application areas can be re-used, and the coupled simulation can benefit from this, and things do not

have to be designed from scratch again.

In closing, we would like to emphasise the fact that it is possible to have the above mentioned advantages

of the partitioned approach, and at the same time the superior robustness and convergence characteristics
of a monolithical approach—in our view this is the best of both worlds.
References

[1] H. Morand, R. Ohayon, Fluid–structure Interaction, John Wiley & Sons, Chichester, 1995.

[2] T. Belytschko, R. Mullen, Two-dimensional fluid–structure impact computations with regularization, Comput. Methods Appl.

Mech. Engrg. 27 (1981) 139–154.

[3] J.M. Kennedy, T. Belytschko, A survey of computational methods for fluid–structure analysis of reactor safety, Nucl. Engrg. Des.

69 (1982) 379–398.

[4] J. Donea, S. Giuliani, J.P. Halleux, An arbitrary Lagrangian–Eulerian finite element method for transient fluid–structure

interaction, Comput. Methods Appl. Mech. Engrg. 33 (1982) 689–723.

[5] K.-J. Bathe, H. Zhang, M.H. Wang, Finite element analysis of incompressible and compressible fluid flows with free surfaces and

structural interactions, Comput. Struct. 56 (1995) 193–213.

[6] S. Piperno, C. Farhat, B. Larrouturou, Partitioned procedures for the transient solution of coupled aeroelastic problems,

Comput. Methods Appl. Mech. Engrg. 124 (1995) 79–112.

[7] J. Mouro, P. Le Tallec, Fluid structure interaction with large structural displacements, Comput. Methods Appl. Mech. Engrg. 190

(2001) 3039–3067.

[8] C. Farhat, Parallel and distributed solution of coupled nonlinear dynamic aeroelastic response, in: M. Papadrakakis (Ed.),

Parallel Solution Methods in Computational Mechanics, John Wiley & Sons, Chichester, 1997.

[9] S. Rifai, Z. Johan, W.-P. Wang, J.-P. Grisval, T.J.R. Hughes, M. Ferencz, Multiphysics simulation of flow induced vibrations

and aeroelasticity on parallel computing platforms, Comput. Methods Appl. Mech. Engrg. 174 (1999) 393–417.

[10] K.-J. Bathe, H. Zhang, S.H. Ji, Finite element analysis of fluid flows fully coupled with structural interactions, Comput. Struct. 72

(1999) 1–16.

[11] O.C. Zienkiewicz, R.L. TaylorThe Finite Element Method, vol. 1–3, Butterworth Heinemann, London, 2001.

[12] J. Argyris, I.S. Doltsinis, P. Pimenta, H. Wüstenberg, Thermomechanical response of solids at high strains—natural approach,

Comput. Methods Appl. Mech. Engrg. 32 (1982) 3–57.

[13] O.C. Zienkiewicz, D.K. Paul, A.H.C. Chan, Unconditionally stable staggered solution procedure for soil–pore fluid interaction

problems, Int. J. Numer. Methods Engrg. 26 (1988) 1039–1055.

[14] K.C. Park, C.A. Felippa, Partitioned analysis of coupled systems, in: T. Belytschko, T.J.R. Hughes (Eds.), Computational

Methods in Transient Analysis, North-Holland, Amsterdam, 1983.

[15] K.C. Park, C.A. Felippa, Recent developments in coupled field analysis methods, in: R.W. Lewis, P. Bettes, E. Hinton (Eds.),

Numerical Methods in Coupled Systems, John Wiley & Sons, Chichester, 1984.

[16] O.C. Zienkiewicz, Coupled problems and their numerical solution, in: R.W. Lewis, P. Bettes, E. Hinton (Eds.), Numerical

Methods in Coupled Systems, John Wiley & Sons, Chichester, 1984.

[17] O.C. Zienkiewicz, A.H.C. Chan, Coupled problems and their numerical solution, in: I.S. Doltsinis (Ed.), Advances in

Computational Nonlinear Mechanics, Springer-Verlag, Berlin, 1989.

[18] F.J. Blom, A monolithical fluid–structure interaction algorithm applied to the piston problem, Comput. Methods Appl. Mech.

Engrg. 167 (1998) 369–391.

[19] S. Rugonyi, K.-J. Bathe, On the analysis of fully-coupled fluid flows with structural interactions—a coupling and condensation

procedure, Int. J. Comput. Civil Struct. Engrg. 1 (2000) 29–41.

2048 H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049
[20] C.A. Felippa, K.C. Park, Staggered transient analysis procedures for coupled mechanical systems: formulation, Comput.

Methods Appl. Mech. Engrg. 24 (1980) 61–111.

[21] K.C. Park, Partitioned transient analysis procedures for coupled-field problems: stability analysis, J. Appl. Mech. 47 (1980) 370–

376.

[22] S. Piperno, Explicit/implicit fluid–structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid

aeroelastic simulations, Int. J. Numer. Methods Fluids 25 (1997) 1207–1226.

[23] D.P. Mok, W.A. Wall, Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible

structures, in: W.A. Wall, K.-U. Bletzinger, K. Schweizerhof (Eds.), Trends in Computational Structural Mechanics, CIMNE,

Barcelona, 2001.

[24] J. Steindorf, H.G. Matthies, Efficient partitioned methods for the computation of fluid–structure interaction on parallel

computers, in: B.H.V. Topping (Ed.), Proceedings of the Third Euro-conference on Parallel and Distributed Computing for

Computational Mechanics, Civil-Comp Press, Edinburgh, 1999.

[25] J. Steindorf, Partitionierte Verfahren für Probleme der Fluid–Struktur Wechselwirkung, Doctoral thesis, Technische Universität

Braunschweig, Brunswick, 2002.

[26] H.G. Matthies, J. Steindorf, Strong coupling methods, in: W.L. Wendland, M. Efendiev (Eds.), Analysis and Simulation of

Multifield Problems, Springer-Verlag, Berlin, 2003.

[27] H.G. Matthies, J. Steindorf, Partitioned strong coupling algorithms for fluid–structure interaction, Informatik-Bericht 2002-4,

Technische Universität Braunschweig, Brunswick, 2002.

[28] S. Piperno, C. Farhat, Design of efficient partitioned procedures for the transient solution of aeroelastic problems, Rev. Eur.

Élements Finis 9 (6–7) (2000) 655–680.

[29] E. Lefrantois, G. Dhatt, D. Vandromme, Numerical study of the aeroelastic stability of an overexpanded rocket-nozzle, Rev. Eur.

Élements Finis 9 (6–7) (2000) 727–762.

[30] P. Leyland, V. Carstens, F. Blom, T. Tefy, Fully coupled fluid–structure algorithms for aeroelasticity and forced vibration

induced flutter: applications to compressor cascade, Rev. Eur Élements Finis 9 (6–7) (2000) 763–803.

[31] R. Codina, M. Cervera, Block-iterative algorithms for nonlinear coupled problems, in: M. Papadrakakis, G. Bugeda (Eds.),

Advanced Computational Methods in Structural Mechanics, CIMNE, Barcelona, 1996.

[32] M. Arnold, M. Günther, Preconditioned dynamic iteration for coupled differential–algebraic systems, BIT Numer. Math. 41

(2001) 1–25.

[33] H.G. Matthies, J. Steindorf, Efficient iteration schemes for non-linear fluid–structure interaction problems, in: B.H.V. Topping

(Ed.), Computational Mechanics: Techniques and Developments, Civil-Comp Press, Edinburgh, 2000.

[34] H.G. Matthies, J. Steindorf, How to make weak couplings strong, in: K.-J. Bathe (Ed.), Computational Fluid and Solid

Mechanics, Elsevier, Amsterdam, 2001.

[35] H.G. Matthies, J. Steindorf, Fully coupled fluid–structure interaction using weak coupling, Proc. Appl. Math. Mech. 1 (1) (2002)

37–38.

[36] H.G. Matthies, J. Steindorf, Partitioned strong coupling algorithms for fluid–structure interaction, Comput. Struct. 81 (2003)

1277–1286.

[37] S. Artlich, W. Mackens, Newton-coupling of fixed point iterations, in: W. Hackbusch, G. Wittum (Eds.), Numerical Treatment of

Coupled Systems, Vieweg, Brunswick, 1995.

[38] W. Mackens, J. Menck, H. Voss, Numerical system synthesis: concepts for coupling subsystem solvers, Technical Report,

Technische Universität Hamburg-Harburg, 1998.

[39] W. Mackens, J. Menck, H. Voss, Numerical coupling of subsystems, Zeitschr. Angew. Math. Mech. 79 (3) (1999) S871–S872.

[40] M. Arnold, Constraint partitioning in dynamic iteration methods, Zeitschr. Angew. Math. Mech. 81 (2001).

[41] B. Smith, P. Bjorstad, W. Gropp, Domain Decomposition, Cambridge University Press, Cambridge, 1996.

[42] K. Burrage, Parallel and Sequential Methods for Ordinary Differential Equations, Clarendon Press, Oxford, 1995.

[43] T.F. Chan, An approximate Newton method for coupled nonlinear systems, SIAM J. Numer. Anal. 22 (5) (1985) 904–913.

[44] U. Miekkala, O. Nevanlinna, An approximate Newton method for coupled nonlinear systems, SIAM J. Sci. Stat. Comput. 8

(1987) 459–482.

[45] C. Farhat, M. Lesoinne, Two efficient staggered algorithms for the serial and parallel solution of three-dimensional transient

aeroelastic problems, Comput. Methods Appl. Mech. Engrg. 182 (2000) 499–515.

[46] C. Farhat, K.C. Park, Y. Dubois-Pelerin, An unconditionally stable staggered algorithm for transient finite element analysis of

coupled thermoelastic problems, Comput. Methods Appl. Mech. Engrg. 85 (1991) 349–365.

[47] J. Donea, Arbitrary Lagrangian–Eulerian finite element methods, in: T. Belytschko, T.J.R. Hughes (Eds.), Computational

Methods in Transient Analysis, North-Holland, Amsterdam, 1983.

[48] W.A. Wall, E. Ramm, Fluid–structure interaction based upon a stabilized (ALE) finite element method, in: Proceedings of the 4th

World Congress on Computational Mechanics—new Trends and Applications, CIMNE, Barcelona, 1998.

[49] K.-J. Bathe, Finite Element Procedures, Prentice-Hall, Englewood Cliffs, NJ, 1996.

[50] J.H. Ferziger, M. Perić, Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, 1996.

H.G. Matthies et al. / Comput. Methods Appl. Mech. Engrg. 195 (2006) 2028–2049 2049
[51] P.D. Thomas, C.K. Lombard, Geometric conservation law and its application to flow computations on moving grids, AIAA J. 17

(10) (1979) 1030–1037.

[52] G. Dubini, R. Pietrabissi, F.M. Montevecchi, Fluid–structure interaction in bio-fluid mechanics, Med. Engrg. Phys. 17 (2) (1995)

609–617.

[53] C. Grandmont, V. Guimet, Y. Maday, Numerical analysis of some decoupling techniques for the approximation of the unsteady

fluid–structure interaction, in: Proceedings of the Second European Conference on Numerical Mathematics, Heidelberg, 1997.

[54] J.T. Batina, Unsteady Euler airfoil solutions using unstructured dynamic meshes, AIAA J. 28 (8) (1990) 1381–1388.

[55] J.R. Cebral, R. Löhner, Conservative load projection and tracking for fluid–structure problems, AIAA J. 35 (4) (1997) 687–692.

[56] C. Farhat, M. Lesoinne, P. Le Tallec, Load and motion transfer algorithms for fluid–structure interaction problems with non-

matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity,

Comput. Methods Appl. Mech. Engrg. 157 (1998) 95–114.

[57] N. Maman, C. Farhat, Matching fluid and structure meshes for aeroelastic computations: a parallel approach, Comput. Struct. 54

(1995) 779–785.

[58] B. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition, Lecture Notes in Computational

Science and Engineering, vol. 17, Springer-Verlag, Berlin, 2001.

[59] P. Le Tallec, S. Mani, Conservation laws for fluid–structure interactions, Technical Report CEREMADE, Université de Paris

Dauphine, 1999.

[60] T. Belytschko, R. Mullen, Stability of explicit–implicit mesh partitions in time integration, Int. J. Numer. Methods Engrg. 12

(1978) 1575–1586.

[61] C. Farhat, M. Lesoinne, N. Maman, Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field

formulation, geometric conservation law and distributed solution, Int. J. Numer. Methods Fluids 21 (1995) 807–835.

[62] C. Farhat, M. Lesoinne, P. Stern, High performance solution of three-dimensional nonlinear elastic problems via parallel

partitioned algorithms: methodology and preliminary results, Adv. Engrg. Software 28 (1997) 43–61.

[63] U.M. Ascher, L.R. Petzold, Computer Methods for Ordinary Differential Equations and Differential–algebraic Equations, SIAM,

Philadelphia, PA, 1998.

[64] R.L. Taylor, FEAP—A finite element analysis program, User Manual Version 6.3; Dept. of Civil and Environmental Engrg.,

University of California, Berkeley, CA, 1998.

[65] S. Turek, C. Becker, FEATFLOW User Manual, Release 1.2; Institut für Angewandte Mathematik, Universität Heidelberg,

Heidelberg, 1999.

[66] H. Matthies, G. Strang, The solution of nonlinear finite element equations, Int. J. Numer. Methods Engrg. 14 (1979) 1613–1626.

[67] J.E. Dennis, R.B. Schnabel, Numerical Methods for Unconstraint Optimization and Nonlinear Equations, SIAM, Philadelphia,

PA, 1996.

[68] C.G. Broyden, The convergence of a class of double-rank minimization algorithms 2, the new algorithm, J. Inst. Math. Appl. 6

(1970) 222–231.

[69] R. Fletcher, A new approach to variable-metric algorithms, Comput. J. 13 (1970) 317–322.

[70] D. Goldfarb, A family of variable-metric algorithms derived by variational means, Math. Comput. 24 (1970) 23–26.

[71] D.F. Shanno, Conditioning of quasi-Newton methods for function minimization, Math. Comput. 24 (1970) 647–656.

[72] S. Turek, Efficient Solvers for Incompressible Flow Problems: an Algorithmic Approach in View of Computational Aspects,

Lecture Notes in Computational Science and Engineering, vol. 6, Springer-Verlag, Berlin, 1999.

	Algorithms for strong coupling procedures
	Introduction
	Description of fluid ndash structure interaction
	The fluid
	The structure
	The interface

	Abstract coupled systems
	Pure differential coupling
	Explicit coupling
	Implicit coupling

	Differential and algebraic coupling
	Implicit DAE coupling

	Reformulation of FSI as a coupled DAE
	Semi-discrete form of FSI
	Index and order reduction
	The DAE correspondence

	Numerical procedures for partitioned methods
	Non-linear block-Jacobi
	Non-linear block-Gauss ndash Seidel
	Inexact block-Newton
	Quasi-Newton
	Parallelisation

	Simulation interface and its requirements
	The simulation interface
	Requirements of the solver

	Software architecture
	Numerical examples
	Simple example of a non-linear coupling
	Rigid block with elastic appendage in incompressible viscous flow

	Conclusion
	References

