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Past research

Introduced into statistics in a seminal paper by Daniels (1954).

Studied extensively during the last two decades, see e.g. Field
and Ronchetti (1990), Jensen (1995) and Butler (2007).

Quite complex theory but fairly straightforward use in practice.

Main advantage: The high accuracy with which they can
approximate intractable densities and tail probabilities, even for
extremely small sample sizes (Davison, 2003).
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Basic idea: From Taylor series to Saddlepoints

(Goutis and Casella, 1999)

Consider a positive function f (x) and suppose that our aim is to
approximate its value at some point x0.

Let h(x) = log f (x)⇒ f (x) = exp h(x)

Taylor series expansion:

f (x) ≈ exp
{

h(x0) + (x− x0)h
′
(x0) +

(x− x0)
2

2
h
′′
(x0)

}
.

If x0 = x̂, then h
′
(x̂) = 0 and the second terms disappears, i.e.

f (x) ≈ exp
{

h(x0) +
(x− x0)

2

2
h
′′
(x0)

}
(1)

Equation (1) is exact if h(x) is a quadratic equation.
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Basic idea: From Taylor series to Saddlepoints (con’t)

Laplace approximation

Equation (1) can be useful for computing integrals of positive
functions:∫

f (x)dx ≈
∫

exp
{

h(x̂) +
(x− x̂)2

2
h
′′
(x̂)
}

dx (2)

If x̂ is a maximum, h
′′
(x̂) < 0 and (2) is equivalent to∫

f (x)dx ≈ exp{h(x̂)}
(
− 2π

h′′(x̂)

)1/2

(3)
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Basic idea: From Taylor series to Saddlepoints (con’t)

Saddlepoint approximation
Combine (1) and (3), i.e. try to approximate a function by a
Laplace type approximation of an integral:

Write the function f as f (x) =
∫

m(x, u)du, for some positive

m(x, u).
By defining k(x, u) = log m(x, u), consider the Laplace
approximation of the integral of exp k(x, u) with respect to u.
Hence, for any fixed x,

f (x) ≈
∫

exp

{
k(x, û(x)) +

(u− û(x))2

2
∂2k(x, u)
∂u2

∣∣∣∣
û(x)

}
du

= exp {k(x, û(x))}

− 2π
∂2k(x,u)
∂u2

∣∣∣
û(x)


1/2

(4)

Equation (4) is a saddlepoint approximation of f (x) and û(x) is
the saddlepoint that maximizes k(x, u).
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(u− û(x))2

2
∂2k(x, u)
∂u2

∣∣∣∣
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Basic idea: From Taylor series to Saddlepoints (con’t)

For a density f (x), using the inversion formula, it can be proved
that

k(x, u) = KX(u)− ux

where KX(u) is the cumulant generating function, i.e.

KX(u) = log MX(u) = log
∫ +∞

−∞
exp(ux)f (x)dx,

whith MX(u) denoting the moment generating function.
The saddlepoint is the point û(x) that satisfies

K
′
X(u) = x.

After some tedious calculations, the saddlepoint approximation
to f (x) proves to be

fX(x) ≈
(

1
2πK′′X(û(x))

)1/2

exp {KX(û(x))− û(x)x} .
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Basic idea: The saddlepoint method in a time series
framework

Let {Xt, t ∈ Z} be a discrete–valued time series with available
conditional pmf fXt|Xt−1,...,Xt−p(xt) and cumulant generating function
(cgf)

Kt(u) = log E(exp(uXt)|Xt−1, . . . ,Xt−p),

for some p ≥ 1. Then, the saddlepoint approximation (SPA) to the
conditional pmf of Xt given Xt−1, . . . ,Xt−p, is given by

f̃Xt|Xt−1,...,Xt−p(xt) =

{
1

2πK′′t (ũ)

}1/2

exp{Kt(ũ)− ũtxt}, (5)

where K
′
t (u) and K

′′
t (u) denote the first and second order derivatives

of Kt(u) with respect to u, and ũt is the unique value of u satisfying
K
′
t (u) = xt, for t = p + 1, p + 2, . . .
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Basic idea: The saddlepoint method in a time series
framework (con’t)

Expression (5) is the leading term of a saddlepoint density
approximation, but further terms can be included.
For instance, a second-order approximation is

f̃Xt|Xt−1,...,Xt−p
(xt) =

{
1

2πK′′t (ũ)

}1/2

exp {Kt(ũ)− ũtxt}
{

1 +

(
1
8
κ̃
(4)
t −

5
24

[κ̃
(3)
t ]2

)}
,

where κ̃(r)t = K(r)
t (ũ)/{K′′t (ũ)}r/2, r ≥ 3 is the r-th order

standardized cumulant of Xt (Butler, 2007).

In the classical setting, Xt is taken to be an average of m
independent observations, and then it may be shown that its true
and approximate densities f and f̃ are related by
f (xt) = f̃ (xt){1 +O(m−1)}.
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Remarks

f̃Xt|Xt−1,...,Xt−p(xt) is always positive, but it does not sum to one
exactly. Hence, it is often renormalized, a practice which also
improves the relative order of the approximation, see e.g. Field
and Ronchetti (1990) and Kolassa (2006). Renormalization is
not possible when considering conditional probabilities.

Approximation (5) is based on the normal distribution but
alternative approximations based on other distributions, such as
the Gamma and inverse Gaussian distributions, are also available
(Wood et al., 1993).

The saddlepoint approximation requires that the cgf exists.



Saddlepoint techniques INAR(p) processes SPA for INAR(p) processes Simulations Application References

Remarks

f̃Xt|Xt−1,...,Xt−p(xt) is always positive, but it does not sum to one
exactly. Hence, it is often renormalized, a practice which also
improves the relative order of the approximation, see e.g. Field
and Ronchetti (1990) and Kolassa (2006). Renormalization is
not possible when considering conditional probabilities.

Approximation (5) is based on the normal distribution but
alternative approximations based on other distributions, such as
the Gamma and inverse Gaussian distributions, are also available
(Wood et al., 1993).

The saddlepoint approximation requires that the cgf exists.



Saddlepoint techniques INAR(p) processes SPA for INAR(p) processes Simulations Application References

Remarks

f̃Xt|Xt−1,...,Xt−p(xt) is always positive, but it does not sum to one
exactly. Hence, it is often renormalized, a practice which also
improves the relative order of the approximation, see e.g. Field
and Ronchetti (1990) and Kolassa (2006). Renormalization is
not possible when considering conditional probabilities.

Approximation (5) is based on the normal distribution but
alternative approximations based on other distributions, such as
the Gamma and inverse Gaussian distributions, are also available
(Wood et al., 1993).

The saddlepoint approximation requires that the cgf exists.



Saddlepoint techniques INAR(p) processes SPA for INAR(p) processes Simulations Application References

Model

Definition
A sequence of random variables {Xt, t ∈ Z} is an integer–valued
autoregressive, INAR(p), process if it satisfies a difference equation of
the form

Xt =

p∑
i=1

αi ◦ Xt−i + εt, (6)

where αi ∈ [0, 1) are fixed constants and {εt} is a sequence of
uncorrelated non–negative integer–valued random variables having
mean µε and finite variance σ2

ε . The sequence {εt} is called the
innovation process (McKenzie, 1985; Al–Osh and Alzaid, 1987).
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Model (con’t)

Definition (6) is based on the notion of binomial thinning.

The binomial thinning operator ‘◦’ is defined by

α ◦ X =

X∑
j=1

Yj

where Yj are i.i.d. Bernoulli random variables with
P(Yj = 1) = 1− P(Yj = 0) = α.

The binomial thinning operations involved in (6) are
independent, so the INAR(p) process has the classical AR(p)
correlation structure.

A unique strictly stationary and ergodic solution of (6) exists if
p∑

i=1

αi < 1.
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Example: p = 1

Let α ∈ [0, 1) and let {εt} be a sequence of i.i.d. non–negative integer
valued random variables with E[εt] = µε and Var[εt] = σ2

ε . The
integer–valued autoregressive process of order 1, INAR(1),
{Xt, t ∈ Z} is defined by the equation

Xt = α ◦ Xt−1 + εt,

where α ◦ Xt−1 is the sum of Xt−1 Bernoulli random variables all of
which are independent of Xt−1.
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Example: p = 1 (con’t)

It can be shown that

E [Xt] = µε/(1− α),
Var [Xt] = (αµε + σ2

ε )/(1− α2)

the autocovariance function evaluated at lag k, c(k), is given by

c(k) ≡ Cov [Xt,Xt−k] = αkc(0). (7)

Consequently, the autocorrelation function, ρ(k), is

ρ(k) =
c(k)
c(0)

= αk, (8)

so that ρ(k) decays exponentially with the lag k as in AR(1), but
unlike the autocorrelation of a stationary AR(1) process, it is always
positive for α ∈ (0, 1).
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Saddlepoint Approximation for INAR processes

Proposition

Let {Xt} be the INAR(p) process defined by (6). For large values of

xt−i and if 0 <
p∑

i=1

αi < 1, the exact and approximate densities are

related by

fXt|Xt−1,...,Xt−p(xt) = f̃Xt|Xt−1,...,Xt−p(xt)

{
1 +O

(
1∑p

i=1 xt−i + 1

)}
=

{
1

2πK′′t (ũt)

}1/2

exp {Kt(ũt)− ũtxt}

×
{

1 +O
(

1∑p
i=1 xt−i + 1

)}
.

(9)
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Inference

Maximum likelihood estimation (MLE)
Let θ = (α1, α2, . . . , αp, µε)

T be the unknown parameter vector. The
maximum likelihood estimator of θ is calculated by maximizing the
conditional log likelihood function

`(θ) =

n∑
t=p+1

log P(Xt = x | Xt−1 = xt−1, . . .Xt−p = xt−p),

that is θ̂MLE = arg max
θ
`(θ).
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Inference (con’t)

Example
An important special case is that of Poisson INAR(1) process
Xt = α ◦ Xt−1 + εt, with {εt} a sequence of i.i.d. Poisson random
variables with mean µε. The conditional distribution of Xt given Xt−1
is

P(Xt = x|Xt−1 = xt−1) = xt−1! exp(−µε)
m∑

i=1

αi(1− α)xt−1−iµx−i
ε

i!(xt−1 − i)!(x− i)!
,

where m = min(xt−1, x).
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Inference (con’t)

Example
Under a Poisson INAR(p) process,

P(Xt = x|Xt−1 = xt−1, . . .Xt−p = xt−p) =

min(xt−1,x)∑
i1=0

(xt−1

i1

)
α

i1
1 (1− α1)

xt−1−i1

×
min(xt−2,x−i1)∑

i2=0

(xt−2

i2

)
α

i2
2 (1− α2)

xt−2−i2

. . .

min(xt−p,x−(i1+...+ip))∑
ip=0

(xt−p

ip

)
α

ip
1 (1− αp)

xt−p−ip

×
exp(−µε)µ

x−(i1+...+ip)
ε

(x− (i1 + . . .+ ip))!
.
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Motivation

Maximization of `(θ) is quite cumbersome, owing to the nested
summations involved in its computation, and the numerical
difficulties that can arise when summing up many small
probabilities.

Alternative approach: Approximate the log–likelihood of the
INAR(p) model by the saddlepoint method.
The saddlepoint approximation (SPA),

circuvments computational difficulties,
provides simple and highly accurate approximations
to the conditional maximum likelihood estimators even for
complicated INAR models.
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Generalities

Key observation
Conditional on Xt−p = xt−p, . . . ,Xt−1 = xt−1, Xt is a sum of
independent binomial variates with parameters (xt−i, αi), plus the
innovation term εt. Therefore, its conditional cgf is

Kt(u) =
p∑

i=1

xt−i log{1− αi + αi exp(u)}+ Kεt(u),

where Kεt(u) denotes the cumulant-generating function of εt.

Remarks:

The domain of Kt(u) is the same set as the domain of Kεt(u).
This is the entire real line for Poisson innovations, and an
interval of form (−∞, c) for negative binomial innovations.

Kt(u) is a sum of convex functions and thus itself convex.



Saddlepoint techniques INAR(p) processes SPA for INAR(p) processes Simulations Application References

Generalities

Key observation
Conditional on Xt−p = xt−p, . . . ,Xt−1 = xt−1, Xt is a sum of
independent binomial variates with parameters (xt−i, αi), plus the
innovation term εt. Therefore, its conditional cgf is

Kt(u) =
p∑

i=1

xt−i log{1− αi + αi exp(u)}+ Kεt(u),

where Kεt(u) denotes the cumulant-generating function of εt.
Remarks:

The domain of Kt(u) is the same set as the domain of Kεt(u).
This is the entire real line for Poisson innovations, and an
interval of form (−∞, c) for negative binomial innovations.

Kt(u) is a sum of convex functions and thus itself convex.



Saddlepoint techniques INAR(p) processes SPA for INAR(p) processes Simulations Application References

Generalities (con’t)

Approximate log–likelihood function

˜̀(θ) =
n∑

t=p+1

log f̃Xt|Xt−1,...,Xt−p(xt),

where f̃Xt|Xt−1,...,Xt−p(xt) =

{
1

2πK′′t (ũ)

}1/2

exp {Kt(ũ)− ũtxt}, is the

SPA to the conditional pmf of Xt (Daniels, 1954). The value θ̃
maximizing ˜̀(θ) is the saddlepoint maximum likelihood estimator
(SPMLE).
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Generalities (con’t)

Evaluation of ˜̀(θ)
It requires the computation of n− p values of ũ, one for each
term in the sum.
For xt = 0 the pmf need not to be approximated, since

P(Xt = 0 | Xt−1 = xt−1, . . .Xt−p = xt−p) = fεt(0)
p∏

i=1

(1−αi)
xt−i .

If the saddlepoint equation K
′
t (u) = xt cannot be solved

analytically, then ũt can be approximated numerically, e.g. using
the Newton-Raphson method of Lieberman (1994): linear
expansion of the saddlepoint equation in the neighborhood of an
initial value u0, i.e. K

′
t (u0) + K

′′
t (u0)(ũt − u0) ≈ xt, to provide

the update

ũt =
xt − K

′
t (u0)

K′′t (u0)
+ u0,

which is iterated until the approximation is adequate.



Saddlepoint techniques INAR(p) processes SPA for INAR(p) processes Simulations Application References

Asymptotic properties of the SPMLE

Established result (Bu et al., 2008):
√

n(θ̂ − θ0)
d→ N{0, I−1(θ0)}, n→∞, (10)

where θ̂ is the MLE of θ0 based on data X1, . . . ,Xn from a
stationary INAR(p) process, and I(θ0) is the Fisher information
in a single observation.
We have proved that

f̃ (xt | xt−1, . . . , xt−p) =
{ 1

2πσ2
t (θ)

}1/2
exp
[
−{xt − µt(θ)}2

2σ2
t (θ)

]
, (11)

which is the probability density function of a Gaussian random
variable with

µt(θ) = E(Xt | Xt−1, . . . ,Xt−p) =

p∑
i=1

αixt−i + µ,

σ2
t (θ) = Var(Xt | Xt−1, . . . ,Xt−p) =

p∑
i=1

αi(1− αi)xt−i + σ2
ε .
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Asymptotic properties of the SPMLE (con’t)

The conditional mean and variance can be used to construct a
quasilikelihood function for the estimation of θ, and the resulting
estimator is asymptotically normally distributed; see Theorem
3.2.23 of Taniguchi and Kakizawa (2000).

Empirical results indicate close agreement between the MLE θ̂
and the SPMLE θ̃.

Proposition 2.1 can be used to show that in the usual asymptotic
setting, with n→∞ and the parameters fixed, the SPMLE is
inconsistent. However, when the process assumes large values,
i.e., when the mean of process is growing, then it can be shown
that that the SPMLE is a consistent estimator of θ.
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SPA for Poisson INAR(p) processes

Assume that the error sequence {εt} consists of i.i.d. Poisson random
variables with mean λ. Then,

Kt(u) =
p∑

i=1

xt−i log (1− αi + αieu) + λ(eu − 1),

K
′
t (u) =

p∑
i=1

[
xt−i

αieu

αieu + (1− αi)

]
+ λeu,

K
′′
t (u) =

p∑
i=1

[
xt−i

αi(1− αi)eu

(αieu + (1− αi))2

]
+ λeu.
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SPA for Poisson INAR(p) processes (con’t)

The SPA to the log–likelihood is given by

˜̀(θ) =− 1
2

n∑
t=p+1

log

{ p∑
i=1

[
xt−i

αi(1− αi)eũt

(αieũt + (1− αi))2

]
+ λeũt

}

+

n∑
t=p+1

{[ p∑
i=1

[
xt−i log(αieũt + (1− αi))

]
+ λ(eũt − 1)

]
− ũt

}
,

evaluated for each time point t = p + 1, . . . , n, at u = ũt.
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Existence of a finite saddlepoint ũt

Theorem
Let X be a random variable supported on the possibly infinite interval
[−x1, x2], whose cumulant generating function KX(u) is defined on an
interval with endpoints −c1 and c2, and xi <∞ or ci =∞ for
i = 1, 2. Then a solution ũt of the saddlepoint equation exists for all
values of x ∈ (−x1, x2) if (Kolassa, 2006)

lim
u→−c1

K
′
X(u) = −x1, lim

u→c2
K
′
X(u) = x2.

For an INAR(p) process, Xt ∈ [0,∞) and hence x1 = 0 and
x2 =∞.
For the Poisson INAR(p) model, the existence of a unique
solution to the equation K

′
t (u) = xt is easily established, since

K
′
t (u) is strictly monotone increasing in u, and

lim
u→−∞

K
′
t (u) = 0, lim

u→∞
K
′
t (u) =∞.
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Quality of the approximation
Quality of the proposed approximation for four simulated series of length n = 50, shown in the left panel, generated from an
INAR(1) process with α = 0.2 or 0.8, λ = 2 or 5. The right panel shows the ratio of the true log–likelihood function to the
approximate log–likelihood obtained by the saddlepoint method. The relative error is at most±2.5%. All ratios fluctuate
around 1 indicating the high quality of the saddlepoint approximation. The accuracy increases for large mean values of the
generated process, when the convolutions involved in the transition probabilities become more awkward.
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Design

Simulation experiments under the assumptions of INAR(2) and
INAR(4) processes with Poisson and negative binomial
innovations.

Estimation methods Sample sizes
CLS MLE SPA n

INAR(2) X X X 50 500
INAR(4) X X 100 500

Logit and log transformations to avoid inadmissible parameter
estimates:

ξ = log(α/(1− α))  α = exp(ξ)/(1 + exp(ξ))

η = log(µ)  µ = exp(η)

1000 replicate simulations in each setting.
Use of the optim() function in R for the minimization of the
least squares and negative log likelihoods.
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Results for INAR(2) processes

Poisson INAR(2) with (α1, α2, λ) = (0.3, 0.4, 5)
Bias×100 MSE×100

CLS MLE SPA CLS MLE SPA
n = 50 α̂1 -3.0 -1.6 -1.6 1.9 2.4 2.2

α̂2 -5.4 -3.6 -3.8 1.9 2.2 2.1
λ̂ 126.7 76.7 79.3 577.5 379.5 390.0

n = 500 α̂1 -0.4 -0.2 0.1 0.2 0.2 0.2
α̂2 -0.6 -0.3 -0.6 0.2 0.1 0.1
λ̂ 15.8 7.9 10.9 47.8 32.9 34.2

INAR(2)–NegBin innovations with (α1, α2, µ, r∗) = (0.5, 0.3, 2, 3)
Bias×100 MSE×100

CLS MLE SPA CLS MLE SPA
n = 50 α̂1 4.1 0.8 1.7 2.3 0.9 1.0

α̂2 -5.7 -1.2 -0.9 2.1 1.0 1.2
µ̂ 87.7 2.1 -8.7 280.8 37.0 42.2

n = 500 α̂1 -0.2 0.1 0.9 0.2 0.1 0.1
α̂2 -0.9 -0.2 0.6 0.5 0.1 0.1
µ̂ 10.1 0.1 -14.9 15.5 4.0 6.6

∗ r is kept fixed
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Results for INAR(2) processes (con’t)
Normal Q–Q plots for the MLE and SPA estimates obtained from a Poisson INAR(2) model
(n = 500) with true parameter values (α1, α2, λ) = (0.3, 0.4, 5). Results have been obtained
after 1000 simulation replicates.
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Results for INAR(2) processes (con’t)
Scatterplots between the MLE and SPA estimates obtained from an INAR(2)
model with negative binomial innovations and true parameter values
(α1, α2, µ, r) = (0.5, 0.3, 2, 3).
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Data

Weekly number of meningococcal disease cases in Germany for
the years 2001–2006 (n = 312).

Source: the German national surveillance system for notifiable
diseases, administered by the Robert Koch Institute (RKI).

Significant overdispersion present in the data (mean 10.09,
variance 27.83) Need for a more flexible distribution than the
Poisson distribution, e.g. negative binomial.
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Data (con’t)
Time series and acf plots for the weekly number of meningococcal disease cases in Germany,
2001–2006.
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Modelling

Let Xt denote the number of meningococcal disease cases at time
t = 1, . . . , 312.
Xt is defined as an INAR(p) process of the form,

Xt =

p∑
i=1

αi ◦ Xt−i + εt, εt ∼ NegBin(µt, r).

To account for seasonality,

log(µt) = β0 +

S∑
s=1

(β1;ssin(ωst) + β2;scos(ωst)),

where S is the number of harmonics to include and ωs are Fourier
frequencies of the form ωs = 2πs/52 (see also Paul et al., 2008).
Challenges: Model selection & parameter estimation through the
application of the SPA technique.
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Results

INAR(p) models fitted to the meningococcal disease data. logL denotes the approximate
maximized log–likelihood obtained from the saddlepoint approximation.

Model p r S logL AIC
1. 1 0.5 1 −858.11 1724.2
2. 1 0.5 2 −857.73 1727.5
3. 1 1 1 −862.11 1732.2
4. 1 1 2 −861.80 1735.6
5. 2 0.5 1 −851.51 1713.0
6. 2 0.5 2 −851.21 1716.4
7. 2 1 1 −869.01 1748.0
8. 2 1 2 −868.62 1751.2
9. 3 0.5 1 −844.95 1701.9

10. 3 0.5 2 −844.49 1705.0
11. 3 1 1 −859.08 1730.2
12. 3 1 2 −859.09 1734.2
13. 4 0.5 1 −845.46 1704.9
14. 4 0.5 2 −858.95 1731.9
15. 4 1 1 −845.55 1709.1
16. 4 1 2 −862.46 1742.9



Saddlepoint techniques INAR(p) processes SPA for INAR(p) processes Simulations Application References

Results

INAR(p) models fitted to the meningococcal disease data. logL denotes the approximate
maximized log–likelihood obtained from the saddlepoint approximation.

Model p r S logL AIC
1. 1 0.5 1 −858.11 1724.2
2. 1 0.5 2 −857.73 1727.5
3. 1 1 1 −862.11 1732.2
4. 1 1 2 −861.80 1735.6
5. 2 0.5 1 −851.51 1713.0
6. 2 0.5 2 −851.21 1716.4
7. 2 1 1 −869.01 1748.0
8. 2 1 2 −868.62 1751.2
9. 3 0.5 1 −844.95 1701.9

10. 3 0.5 2 −844.49 1705.0
11. 3 1 1 −859.08 1730.2
12. 3 1 2 −859.09 1734.2
13. 4 0.5 1 −845.46 1704.9
14. 4 0.5 2 −858.95 1731.9
15. 4 1 1 −845.55 1709.1
16. 4 1 2 −862.46 1742.9



Saddlepoint techniques INAR(p) processes SPA for INAR(p) processes Simulations Application References

Results (con’t)

Parameter estimates and standard errors (s.e.) obtained after fitting model 9 to the
meningococcal disease data.

Saddlepoint approximation CLS estimation
estimate s.e. estimate s.e.

α1 0.189 0.052 0.216 0.057
α2 0.196 0.051 0.096 0.059
α3 0.185 0.049 0.092 0.057
β0 1.419 0.092 1.749 0.140
β1;1 0.334 0.083 0.284 0.061
β2;1 0.324 0.079 0.380 0.058
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Results (con’t)

Time series and acf plots for the SPA and CLS residuals, et = Xt −
3∑

i=1

α̂iXt−i − µ̂t , obtained

after fitting model 9 to the meningococcal disease data.
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