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© Motivation from real data of U.S. inflation rates

@ Definitions and models for bivariate long-range dependent (LRD) time
series

© New parametric bivariate LRD model with general phase and
estimation

© Application to U.S. inflation rates

The talk is based on: Kechagias, S. and Pipiras, V. (2015a), ‘A bivariate
long-range dependent time series model with general phase’, Preprint.
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Motivation from real data

Sample act for inflation

T e

Figure: Annualized monthly U.S. inflation rates for goods (top) and services (bottom)
from February 1956 to January 2008.

@ Slow decay of the two acfs suggests LRD.

@ Services inflation appears to have stronger LRD than goods inflation.
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Motivation m real data

Sample crosscorrelation Imaginary part of cross periodogram

S(L2(N)

Figure: Left: Sample crosscorrelation function of U.S. inflation rates in goods and
services. Right: Imaginary part of cross periodogram.

@ Note asymmetry in crosscorrelation of the bivariate time series (for
large lags), also reflected in S(h2(A)) # 0 (for A close to 0)
@ Bivariate LRD models that allow for general asymmetric behavior?
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Definitions of bivariate LRD series

A bivariate stationary time series { X, }nez={(X1,n, X2,n)’ }nez is LRD if,
for the so-called LRD parameters di, d» € (0,1/2),!

Time domain: As h — oo, its autocovariance matrix y(h) satisfies

v(h) = < m1(h) ~12(h) > N ( Ry h2h—1  Ry,hc2—1 >
721(’7) 722(’7) Rzlhdu_l R22h2d2—1 )

where dip = di + d> and R = (Rjk)jk=1,2 is some 2 x 2 real matrix.

Spectral domain: As A\ — 07, its spectral density matrix f(\) satisfies

PRSI QT CVEICY I - P S grpeid A~z
o\ i(N) F2(N) groe oA~z gy, \ 202 :

where gi1, g12, 822 € R and the phase parameter ¢ € (—m, 7).

Note: The spectral domain definition has 6 parameters.

'Robinson (2008), AoS; Kechagias and Pipiras (2015b),-JTSA
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Definitions of bivariate LRD series

Remark 1: The phase parameter is unique to LRD. Indeed, for
short-range dependent (SRD) series f(\) = (2m) 1Y 32 e ~(n)
and £(0) = (27)71 3272 ~(h) has real entries.

Remark 2: Under mild assumptions (and letting Gi» = g12e'?)

7(12()\))\N+ G2 & ~pp(h) ~ Rph®e™l

—0 h—oo

R12 — Ra1 <7Td12> }
= —atan tan .
¢ { Ri> + Ro1 2

Remark 3: ¢ =0 < Ry2 = Rp1. This corresponds to v(h) being
symmetric at the two tails, that is, vy12(h) oy Y21(h) = v12(—h).
— 00

with
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Bivariate LRD models

@ A common model for bivariate LRD series is the VARFIMA(O, D, 0)
defined as

o= < Xo,n > B ( (I - B)_d2772,n = (I =B) "= (I = B)""Qyep,
where D = diag(d1, d2), {n,} ~ WN(0,X), ¥ = Q+Q;L and
{en} ~ WN(O, /).

@ Fact: The spectral density matrix of the VARFIMA series above
satisfies

g2 groe oA +
f(A) ~ ( F12e Az gy 2k , as A— 07,

with the special phase parameter ¢ = 7(d1 — da).

Question: Can one define a bivariate LRD model that allows for general

phase parameter? Would it make any difference (e.g. in prediction)?
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Bivariate LRD models

Local Whittle estimates of LRD parameters Local Whittle estimates of phase parameter
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Figure: Left: Local Whittle estimates of d1, d> for the inflation data plotted as functions
of a tuning parameter m = N%% ... N°° where N is the sample size. Right: Local
Whittle phase estimates, one corresponding to the VARFIMA (dashed line) and one
estimated directly from the data (solid line).
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1-sided VARFIMA(0, D, 0)

@ The VARFIMA(0, D, 0) series X, = (I — B) P Q. ¢, has a I-sided
linear representation of the form

Xn = Z VY imén—m,

mel

where | = Z7F, {€,} ~ WN(0, ) and the entries (Yjk,m)j k=12 of
{V 1} mes have a power-law behavior

41

, + +
Yik,m o~ ajk|m , for some o € R.

@ Fact: The 1-sided bivariate series with power-law coefficients always
have the special phase ¢ = 5(d1 — d>).

Question: How can one modify the 1-sided series with power-law
coefficients to obtain a series with general phase?
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General phase LRD models

@ Result 1: A bivariate LRD series with general phase can be
constructed by taking the index / = 7Z and coefficients ¢y m having
different power-law behaviors as m — oo and m — —oo (2-sided
series).

@ Result 2: A 1-sided bivariate LRD series with general phase can be
constructed by taking trigonometric power-law coefficients

Vik.m = cjgm ™% cos(2rm?) + Byem B sin(2rm?), m >0,

whereajk,ﬂjkE]R,0<a<1,%<bj§1—%a,j:1,2.

Question: What about a parametric 2-sided bivariate LRD model with
general phase?
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2-sided VARFIMA(0, D, 0)

@ Define the bivariate 2-sided VARFIMA(O, D, 0) series as
Xo = ((1=B)°Qu + (1 - B7)7°Q ) o,
where Q4+, Q_ are two real-valued 2 x 2 matrices.

@ Result 3: The 2-sided VARFIMA(O, D, 0) series can have a general
phase. Moreover, its autocovariance function has an explicit form.

@ The 2-sided VARFIMA(O, D, 0) series has 10 parameters. This causes
identifiability problems as the same ¢ can be obtained by more than
one choice of Q4, Q_.
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2-sided VARFIMA(0, D, 0)

@ Taking {1y} ~ WN(0,X) with ¥ = Q4 Q',, and

c 0
o—ca. c=(§ °).

leads to the 2-sided VARFIMA(O, D, 0) series
Xn = AC(B)_lnm
Ac(B)t=(-B)yP+@1-B1HPcC

@ Result 4: For any ¢, € (—7/2,7/2), 3! ¢ € (—1,1) such that X, has
the phase parameter ¢ = ¢.. Moreover, ¢ has a closed form given by

_ 2(31 + 32) — \/Z
 2(a1 — a2 — tan(@c))(1 + araz)’

C

where a, = tan (”Tdk) and A = 16a1a; + 4(1 + ara)? tan?(¢.).
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Models with SRD components

@ Define the 2-sided VARFIMA(O, D, q) series as
Yy =Ac(B) OB, [= O(B)A(B) ]
where ©(B) = b +©1B + ...+ 04B9 is the MA matrix polynomial.

@ Result 5: The autocovariance matrix function of the 2-sided
VARFIMA(0, D, q) series has an explicit form.

@ Remark 5: 2-sided VARFIMA(O, D, q) series has a general phase, and
is identifiable.

Vladas Pipiras (UNC) Bivariate LRD time series August 30, 2015 13 /18



Models with SRD components

@ Define the 2-sided VARFIMA(p, D, q) and FIVARMA(p, D, q) series
as

®(B)Xy = A(B)'O(B)yn,  [=0O(B)A(B) 0
®(B)A(B)X, = ©O(B)n,,

where ®(B) =1 — ®;B — ... — d,BP is the AR polynomial.

@ Remark 6: 2-sided FIVARMA(p, D, q) has a general phase
parameter, and is identifiable if the same VARMA(p, g) model is also
identifiable.

@ Focus on models with diagonal ¢:

@ Motivation from VARMA literature

@ FIVARMA series can be written as VARFIMA series with diagonal ¢

o If ® is nondiagonal, VARFIMA(p, D, q) can be thought to exhibit a
form of fractional cointegration
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CLDL algorithm for 2-sided VARFIMA(p, D, q)

Let 6 = (dy, da, c, U,0')'.2 Write the VARFIMA(p, D, q) series as
OB)Xo= Yo Vo= Ac(B)O(B).
The likelihood function of {Y,}s=p+1,... N conditional on Xi,...,X,, ® is
L(®,0; Xl X1, ..., Xp) = L(0; ®(B)X,), n=p+1,...,N.

The conditional likelihood estimators of ® and 6 are then given by

~

(6,9) = argmax L(®,0; X, X1,..., Xp),
$.0eS

where S = {0 :0 < di,d» < 0.5, —1 < ¢ < 1} denotes the parameter
space for 6. For fixed ®, the likelihood is computed through the
multivariate Durbin-Levinson algorithm. (Tsay, 2010)

2y = U'U, where U is upper triangular
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Simulation-VARFIMA(O, D, 0)

Dll 012 DZZ
Figure: Sample size N = 200, 100 replications. Dotted lines indicate median over all
replications while black lines indicate true parameter values.
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Application to inflation data

o 1l-sided VARFIMA(1, D,0), Sela 2010

g = 0-3Ogt—1 + 0.4351-—1 + ,t,
St = _O-O2gt—1 — 0.315t—1 + 2,t5

with d; = 0.21,dy = 0.48 and Ao(B)n: ~ N(0,%,).
o 2-sided VARFIMA(L, D, 0)

8t = 0.18gt—1 + 0'0351_&_]_ + €1,t,
St == Ooggf—l - 0'495t—1 + 627t’

with di = 0.18,d» = 0.36, = 0.53 and A(B)e; ~ N(0,X). The
corresponding phase estimate is ¢ = —1.
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Application to inflation data

@ 2-sided models have smaller AIC and BIC values than 1-sided
counterparts

@ Models with nondiagonal ® have smaller AIC and BIC values
suggesting fractional cointegration between the two series

@ Preliminary results indicate better forecasting performance for 2-sided
models, especially for long-range forecast horizons
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