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Outline

1 Motivation from real data of U.S. inflation rates

2 Definitions and models for bivariate long-range dependent (LRD) time
series

3 New parametric bivariate LRD model with general phase and
estimation

4 Application to U.S. inflation rates

The talk is based on: Kechagias, S. and Pipiras, V. (2015a), ‘A bivariate
long-range dependent time series model with general phase’, Preprint.
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Motivation from real data
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Sample acf for inflation rate in goods
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Sample acf for inflation rate in services

Figure: Annualized monthly U.S. inflation rates for goods (top) and services (bottom)
from February 1956 to January 2008.

Slow decay of the two acfs suggests LRD.

Services inflation appears to have stronger LRD than goods inflation.
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Motivation from real data
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Figure: Left: Sample crosscorrelation function of U.S. inflation rates in goods and
services. Right: Imaginary part of cross periodogram.

Note asymmetry in crosscorrelation of the bivariate time series (for
large lags), also reflected in =(I12(λ)) 6= 0 (for λ close to 0)

Bivariate LRD models that allow for general asymmetric behavior?
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Definitions of bivariate LRD series

A bivariate stationary time series {Xn}n∈Z={(X1,n,X2,n)
′}n∈Z is LRD if,

for the so-called LRD parameters d1, d2 ∈ (0, 1/2),1

Time domain: As h → ∞, its autocovariance matrix γ(h) satisfies

γ(h) =

(
γ11(h) γ12(h)
γ21(h) γ22(h)

)
∼

(
R11h

2d1−1 R12h
d12−1

R21h
d12−1 R22h

2d2−1

)
,

where d12 = d1 + d2 and R = (Rjk)j ,k=1,2 is some 2 × 2 real matrix.

Spectral domain: As λ→ 0+, its spectral density matrix f (λ) satisfies

f (λ) =

(
f11(λ) f12(λ)
f21(λ) f22(λ)

)
∼

(
g11λ

−2d1 g12e
iφλ−d12

g12e
−iφλ−d12 g22λ

−2d2

)
,

where g11, g12, g22 ∈ R and the phase parameter φ ∈ (−π, π].

Note: The spectral domain definition has 6 parameters.

1Robinson (2008), AoS; Kechagias and Pipiras (2015b), JTSA
Vladas Pipiras (UNC) Bivariate LRD time series August 30, 2015 5 / 18



Definitions of bivariate LRD series

Remark 1: The phase parameter is unique to LRD. Indeed, for
short-range dependent (SRD) series f (λ) = (2π)−1

∑
∞

h=−∞
e−ihλγ(n)

and f (0) = (2π)−1
∑

∞

h=−∞
γ(h) has real entries.

Remark 2: Under mild assumptions (and letting G12 = g12e
iφ)

f12(λ) ∼
λ→0+

G12λ
−2d12 ⇔ γ12(h) ∼

h→∞

R12h
d12−1,

with

φ = −atan

{
R12 − R21

R12 + R21
tan

(
πd12

2

)}
.

Remark 3: φ = 0 ⇔ R12 = R21. This corresponds to γ(h) being
symmetric at the two tails, that is, γ12(h) ∼

h→∞

γ21(h) = γ12(−h).
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Bivariate LRD models

A common model for bivariate LRD series is the VARFIMA(0,D, 0)
defined as

Xn =

(
X1,n

X2,n

)
=

(
(I − B)−d1η1,n

(I − B)−d2η2,n

)
= (I − B)−Dηn = (I − B)−DQ+εn,

where D = diag(d1, d2), {ηn} ∼ WN(0,Σ), Σ = Q+Q
′

+ and
{εn} ∼ WN(0, I ).

Fact: The spectral density matrix of the VARFIMA series above
satisfies

f (λ) ∼
(

g11λ
−2d1 g12e

−iφλ−d12

g12e
iφλ−d12 g22λ

−2d2

)
, as λ→ 0+,

with the special phase parameter φ = π
2 (d1 − d2).

Question: Can one define a bivariate LRD model that allows for general
phase parameter? Would it make any difference (e.g. in prediction)?
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Bivariate LRD models
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Figure: Left: Local Whittle estimates of d1, d2 for the inflation data plotted as functions
of a tuning parameter m = N0.25

, . . . , N0.9, where N is the sample size. Right: Local
Whittle phase estimates, one corresponding to the VARFIMA (dashed line) and one
estimated directly from the data (solid line).
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1-sided VARFIMA(0, D, 0)

The VARFIMA(0,D, 0) series Xn = (I − B)−DQ+εn has a 1-sided
linear representation of the form

Xn =
∑

m∈I

Ψmεn−m,

where I = Z
+, {εn} ∼ WN(0, I ) and the entries (ψjk,m)j ,k=1,2 of

{Ψm}m∈I have a power-law behavior

ψjk,m ∼
m→∞

α+
jk |m|dj−1, for some α+

jk ∈ R.

Fact: The 1-sided bivariate series with power-law coefficients always
have the special phase φ = π

2 (d1 − d2).

Question: How can one modify the 1-sided series with power-law
coefficients to obtain a series with general phase?
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General phase LRD models

Result 1: A bivariate LRD series with general phase can be
constructed by taking the index I = Z and coefficients ψjk,m having
different power-law behaviors as m → ∞ and m → −∞ (2-sided
series).

Result 2: A 1-sided bivariate LRD series with general phase can be
constructed by taking trigonometric power-law coefficients

ψjk,m = αjkm−bj cos(2πma) + βjkm−bj sin(2πma), m ≥ 0,

where αjk , βjk ∈ R, 0 < a < 1, 1
2 < bj ≤ 1 − 1

2a, j = 1, 2.

Question: What about a parametric 2-sided bivariate LRD model with
general phase?
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2-sided VARFIMA(0, D, 0)

Define the bivariate 2-sided VARFIMA(0,D, 0) series as

Xn =
(
(I − B)−DQ+ + (I − B−1)−DQ−

)
εn,

where Q+, Q− are two real-valued 2 × 2 matrices.

Result 3: The 2-sided VARFIMA(0,D, 0) series can have a general
phase. Moreover, its autocovariance function has an explicit form.

The 2-sided VARFIMA(0,D, 0) series has 10 parameters. This causes
identifiability problems as the same φ can be obtained by more than
one choice of Q+,Q−.
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2-sided VARFIMA(0, D, 0)

Taking {ηn} ∼ WN(0,Σ) with Σ = Q+Q ′

+, and

Q− = CQ+, C =

(
c 0
0 −c

)
,

leads to the 2-sided VARFIMA(0,D, 0) series

Xn = ∆c(B)−1ηn,

∆c(B)−1 = (I − B)−D + (I − B−1)−DC .

Result 4: For any φc ∈ (−π/2, π/2), ∃! c ∈ (−1, 1) such that Xn has
the phase parameter φ = φc . Moreover, c has a closed form given by

c =
2(a1 + a2) −

√
∆

2(a1 − a2 − tan(φc))(1 + a1a2)
,

where ak = tan
(

πdk

2

)
and ∆ = 16a1a2 + 4(1 + a1a2)

2 tan2(φc).

Vladas Pipiras (UNC) Bivariate LRD time series August 30, 2015 12 / 18



Models with SRD components

Define the 2-sided VARFIMA(0,D, q) series as

Yn = ∆c(B)−1Θ(B)ηn, [= Θ(B)∆c(B)−1ηn]

where Θ(B) = I2 + Θ1B + . . .+ ΘqB
q is the MA matrix polynomial.

Result 5: The autocovariance matrix function of the 2-sided
VARFIMA(0,D, q) series has an explicit form.

Remark 5: 2-sided VARFIMA(0,D, q) series has a general phase, and
is identifiable.
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Models with SRD components

Define the 2-sided VARFIMA(p,D, q) and FIVARMA(p,D, q) series
as

Φ(B)Xn = ∆c(B)−1Θ(B)ηn, [= Θ(B)∆c(B)−1ηn]

Φ(B)∆c(B)Xn = Θ(B)ηn,

where Φ(B) = I − Φ1B − . . .− ΦpB
p is the AR polynomial.

Remark 6: 2-sided FIVARMA(p,D, q) has a general phase
parameter, and is identifiable if the same VARMA(p, q) model is also
identifiable.

Focus on models with diagonal Φ:

Motivation from VARMA literature
FIVARMA series can be written as VARFIMA series with diagonal Φ
If Φ is nondiagonal, VARFIMA(p,D, q) can be thought to exhibit a
form of fractional cointegration
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CLDL algorithm for 2-sided VARFIMA(p, D, q)

Let θ = (d1, d2, c ,U,Θ
′)′.2 Write the VARFIMA(p,D, q) series as

Φ(B)Xn = Yn, Yn = ∆c(B)−1Θ(B)ηn.

The likelihood function of {Yn}n=p+1,...,N conditional on X1, . . . ,Xp, Φ is

L(Φ, θ;Xn|X1, . . . ,Xp) ≡ L(θ; Φ(B)Xn), n = p + 1, . . . ,N.

The conditional likelihood estimators of Φ and θ are then given by

(Φ̂, θ̂) = argmax

Φ,θ∈S

L(Φ, θ;Xn|X1, . . . ,Xp),

where S = {θ : 0 < d1, d2 < 0.5, −1 < c < 1} denotes the parameter
space for θ. For fixed Φ, the likelihood is computed through the
multivariate Durbin-Levinson algorithm. (Tsay, 2010)

2Σ = U ′U, where U is upper triangular
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Simulation-VARFIMA(0, D, 0)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

5

10

15

20

25

d̂1

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

5

10

15

20

25

30

d̂2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

ĉ
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Figure: Sample size N = 200, 100 replications. Dotted lines indicate median over all
replications while black lines indicate true parameter values.
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Application to inflation data

1-sided VARFIMA(1,D, 0), Sela 2010

gt = 0.30gt−1 + 0.43st−1 + η1,t ,
st = −0.02gt−1 − 0.31st−1 + η2,t ,

with d̂1 = 0.21, d̂2 = 0.48 and ∆̂0(B)ηt ∼ N(0, Σ̂η).

2-sided VARFIMA(1,D, 0)

gt = 0.18gt−1 + 0.03st−1 + e1,t ,
st = 0.09gt−1 − 0.49st−1 + e2,t ,

with d̂1 = 0.18, d̂2 = 0.36, ĉ = 0.53 and ∆̂c(B)et ∼ N(0, Σ̂e). The
corresponding phase estimate is φ̂ = −1.
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Application to inflation data

2-sided models have smaller AIC and BIC values than 1-sided
counterparts

Models with nondiagonal Φ have smaller AIC and BIC values
suggesting fractional cointegration between the two series

Preliminary results indicate better forecasting performance for 2-sided
models, especially for long-range forecast horizons
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