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1 Introduction

Figure 1: EEG signals in a Flanker task
experiment with neutral stimuli on
electrode Cz. (Dambacher et al., Uni.
Konstanz)

Figure 2: EEG signals in a Flanker task
experiment with incongruent stimuli on
electrode Cz. (Dambacher et al., Uni.
Konstanz)
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1 Introduction

Existing literature:
In classical functional data analysis (FDA), the random curves are
assumed to be observed directly, see Ramsay and Silverman (2005),
Horváth and Kokoszka (2012).
In a more realistic setting, the random curves are discrete and may be
perturbed by random noise, for the case of iid errors, see Yao, Müller and
Wang (2005), Yao (2007).

We are focusing on:
For certain types of observations, (long range) dependence in the error
process can occur, see Beran and Liu (2014a, 2014b), Beran, Liu and
Telkmann (2015).
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2 Model

Observations include two independent samples: Y(1)
ij , Y(2)

ij .
For each sample, we observe n (omit superscript here) independent time
series Yi· = (Yi1, ...,YiN)(i = 1, ..., n) defined by

Yij = Xi(tj) + εi(j) (tj = jN−1, j = 1, ...,N). (1)

Random curves (X1(t), ...,Xn(t) ∼i.i.d. X(t)) of the form

Xi(t) = µ(t) +

p∑
l=1

ξilφl(t) (p ≤ ∞), (2)

with E[X(t)] = µ(t) and cov(X(s),X(t)) = C(s, t) =
∑

l λlφl(s)φl(t),
where ξil ∼i.i.d. N(0, λl) and

∑
λl <∞.

Error processes (εi(j))j∈N are stationary Gaussian with

γε(k) = cov (εi(j), εi(j + k)) ∼
k→∞

cγ |k|2d−1 (3)

for some 0 < cγ <∞ and d ∈
(
0, 1

2

)
.
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3 Estimators

Let ȳ·j = n−1∑n
i=1 Yij, the kernel estimator of µ(t) is defined by

µ̂(t) =
1

Nb

N∑
j=1

K1

(
t − tj

b

)
ȳ·j. (4)

Let Cijk = (Yij − µ̂(tj))(Yik − µ̂(tk)), the two-dimensional kernel
estimator of C(s, t) is defined as

Ĉ(s, t) =
1

(Nb)2

N∑
j,k=1

K2

(
s− tj

b
,

t − tk
b

)
n−1

n∑
i=1

Cijk. (5)

The eigenfunctions and eigenvalues of C(s, t) are estimated as solutions
of the equation

Ĉ(s, t) =
∑

l

λ̂lφ̂l(s)φ̂l(t). (6)
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4 Assumptions

(K1) K1 is a symmetric density function with support [−1, 1],

(K2) ‖K1‖2 =
∫

K2
1(t)dt <∞,

(K3) K1 ∈ C1 (R),

(K4) 0 <
∫

K1(t)t2dt <∞,

(K5) K2(s, t) = K1(s)K1(t),

(K6) For some v ∈ N,∫
K1(t)tjdt =

{
0 j = 1, ..., 2v− 1,
CK ∈ (0,+∞) j = 2v
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5 Notations

Here, “⇒” denotes weak convergence in C[0, 1] or C[0, 1]2 equipped
with the supremum norm.

Here, ζi, ζij, (i, j ∈ N) are iid standard normal random variables.
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6 Weak Convergence of µ̂(t)

Theorem 1

Suppose:

0) Yij be defined by (1), (2) and (3),

i) (K1), (K2), (K3), (K4) hold,

ii) µ ∈ C2[0, 1],

iii) n→∞, N →∞, b = bN → 0, such that

lim inf Nb1+2/(1−2d) > q ∈ R+.

Then:
√

n (µ̂(t)− E [µ̂(t)])⇒
∑p

l=1
√
λlφl(t)ζl (t ∈ [0, 1]).

Suppose in addition:

iv) nb4 → 0.

Then:
√

n (µ̂(t)− µ(t))⇒
∑p

l=1
√
λlφl(t)ζl (t ∈ [0, 1]).
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6 Weak Convergence of µ̂(t)

Remark 1
Condition iii) is used to prove the tightness while obtaining the weak
convergence.

Condition iv) is only required to make sure that the bias of µ̂(t) is in the
order o

(
n−

1
2

)
.

Conditions iii) and iv) together imply

n = o
(

N4 1−2d
3−2d

)
(0 < d < 0.5). (7)
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7 Contrast transformation

Denote by 1 = (1, ..., 1)T and let c·1, ..., c·n−1 ∈ Rn (c·i = (c1i, ..., cni)
T )be

such that 〈1, c·i〉 = 0, 〈c·i, c·i′〉 = δii′ . We then define n− 1 contrast series Yc
ij

by

Yc
ij = 〈c·i,Y·j〉 =

n∑
s=1

csiYsj.

Then

Yc
ij =

p∑
l=1

ξc
ilφl(tj) + εc

i (j) (i = 1, · · · , n− 1; j = 1, · · · ,N) (8)

with

ξc
il =

n∑
s=1

csiξsl, εc
i (j) =

n∑
s=1

csiεs(j).
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7 Contrast transformation

Under the Gaussian assumption and the equidistant assumption, Yc
ij =d Yij

with µ(t) = 0. In the following we assume that µ(t) = 0, i.e.

Yij :=

p∑
l=1

ξilφl(tj) + εi(j), (9)

and the covariance estimator (5) can be replaced by

Ĉ(s, t) =
1

(Nb)2

N∑
j,k=1

K2

(
s− tj

b
,

t − tk
b

)
n−1

n∑
i=1

YijYik. (10)
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8 Weak Convergence of Ĉ(s, t)

Theorem 2

Suppose:

0) Yij = Yc
ij given by (9) be defined by (1), (2) and (3) (with µ(t) ≡ 0),

i) (K1), (K2), (K3), (K4), (K5) hold,

ii) C(s, t) ∈ C2[0, 1]2,

iii) n→∞, N →∞, b = bN → 0, such that

lim inf Nb1+2/(1−2d) > q ∈ R+.

Then:
√

n
(

Ĉ(s, t)− E
[
Ĉ(s, t)

])
⇒ Z1(s, t) + Z2(s, t) (s, t ∈ [0, 1]),

where Z1, Z2 are zero mean Gaussian processes that are independent from
each other.
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8 Weak Convergence of Ĉ(s, t)

Remark 2

For
√

n
(

Ĉ(s, t)− C(s, t)
)

, the bias term of O(b2) is more difficult to handle.
Since it stems from properties of C(s, t) and the K2(s, t) only, this problem can
be resolved by imposing additional differentiability assumptions on C(s, t)
and using higher order kernels.
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8 Weak Convergence of Ĉ(s, t)

Theorem 3

Suppose:

0) Yij = Yc
ij given by (9) be defined by (1), (2) and (3) (with µ(t) ≡ 0),

i) (K1), (K2), (K3), (K4), (K5), (K6) with v ≥ 2 hold,

ii) C(s, t) ∈ C2v+2[0, 1]2,

iii) n→∞, N →∞, b = bN → 0, such that

Nb2v+1 →∞, nb4v → 0, lim inf Nb1+2/(1−2d) > q ∈ R+.

Then:
√

n
(

Ĉ(s, t)− C(s, t)
)
⇒ Z1(s, t) + Z2(s, t) (s, t ∈ [0, 1]).

where Z1, Z2 are as in Theorem 2.
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8 Weak Convergence of Ĉ(s, t)

Remark 3
(K6)+ii)+iii) imply

n = o
(

min
{

N
4v

2v+1 ,N4v 1−2d
3−2d

})
. (11)

Condition (11) is much better than (7). For instance, for fixed d, we may
choose v > 1

1−2d , thus we have,

n = o
(

N
4v

2v+1

)
.
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9 Asymptotic Properties of λ̂l and φ̂l(t)

Theorem 4

Suppose:

0) λ̂l and φ̂l(t) are estimated from (6),

i) Assumptions of Theorem 3 hold,

ii) For some m ∈ N, λ1 > λ2 > ... > λm > λm+1 > 0,

iii) sign
(
〈φ̂l, φl〉

)
= 1 for l = 1, ...,m.

Then: for each l ∈ {1, ...,m},
√

n
(
λ̂l − λl

)
→d
√

2λlζll,

√
n
(
φ̂l(t)− φl(t)

)
⇒∑

k:k>l
√
λlλk(λl − λk)

−1φk(t)ζlk +
∑

k:k<l
√
λlλk(λl − λk)

−1φk(t)ζkl.
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9 Asymptotic Properties of λ̂l and φ̂l(t)

Remark 4
The weak convergence of covariance operator is needed.

ii) can be generalized: for cλ > 0, let I = {l1, ..., lk} denote the set of
indices such that λl > cλ and λl > λl+1.

The asymptotic distribution of λ̂l and φ̂l(t) does not depend on d.

Remark 5

In contrast to λ̂l and φ̂l(t), the rate of convergence and the asymptotic
distribution of ξ̂il differ distinctly between the cases of short and long memory,
see Beran and Liu (2014b).
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10 Test Statistics

Notations and assumptions:
0 < p = p(1) = p(2) ≤ ∞,
0 < m ≤ min

{
m(1),m(2), p

}
,

U = span
{
φ
(1)
1 (t), ..., φ(1)

m (t)
}

,

V = span
{
φ
(2)
1 (t), ..., φ(2)

m (t)
}

.

We would like to test:
Null hypothesis: H0 : U = V ,
Alternative hypothsis: HA : U 6= V .

Haiyan Liu ( Uni. Konstanz) FPCA with LRD Errors August 27-30, 2015 18 / 26



10 Test Statistics

Consider the residual functions

rl(t) = φ
(2)
l (t)−

m∑
i=1

ailφ
(1)
i (t) (l = 1, ...,m),

where {a1l, ..., aml} = argmin
{a1l,...,aml}

∥∥∥φ(2)l −
∑

ailφ
(1)
i

∥∥∥2
.

Under H0, we have rl(t) ≡ 0 and
∑m

i=1 ailail′ = δll′ .
Under HA, there is at least one l ∈ {1, ...,m} for which ‖rl‖2 > 0.
The standardized residuals are estimated by

r̃n,N;l(t) =

√
n(1)n(2)

n(1) + n(2)

[
φ̂
(2)
l (t)−

m∑
i=1

âilφ̂
(1)
i

]
,

with âil =
〈
φ̂
(1)
i (t), φ̂(2)l (t)

〉
.
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10 Test Statistics

Theorem 5

Suppose:

0) H0 is true,

i) Assumptions of Theorem 4 hold,

ii) There exists an η ∈ (0, 1) such that n(1)

n(1)+n(2) → η (as n(1), n(2) →∞),

iii) Define Λ
(r)
ij =

√
λ
(r)
i λ

(r)
j

(
λ
(r)
i − λ

(r)
j

)−1
for i 6= j ∈ {1, ..., p} r = 1, 2.

Then

r̃n,N;l ⇒ Zres;l,1 − Zres;l,2 =
√
η

p∑
k=m+1

Λ
(2)
lk

(
φ
(2)
k −

m∑
i=1

aikφ
(1)
i

)
ζ
(2)
lk ,

−
√

1− η
p∑

k=m+1

m∑
i=1

Λ
(1)
ik

(
aklφ

(1)
i + ailφ

(1)
k

)
ζ
(1)
ik .
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10 Test Statistics

Theorem 5 implies that under H0, for l ∈ {1, ...,m},∫ 1

0
r̃2

n,N;l(t)dt→
d

Ul =

∫ 1

0
(Zres;l,1(t)− Zres;l,2(t))2 dt.

Denote by α ∈ (0, 1) be the level of significance.

Denote by FUl the distribution function of Ul and by
qα,m;l = F−1

Ul
(1− α/m) its (1− α/m)−quantile.

A Bonferroni corrected rejection region can be defined by

Kα =
{

Y(k)
ij (k = 1, 2) : Un,N;l > qα,m;l for at least one l ∈ {1, ...,m}

}
.
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10 Test Statistics

Remark 6
Fremdt, Steinebach, Horváth, Kokoszka (2011) and Boente, Rodriguez,
Sued (2011): covariance operator & without errors.

Benko, Härdle and Kneip (2009): eigenvalues, eigenfunctions and
eigenspaces & without errors.

We focus on the equality of eigenspaces of two samples with dependent
errors.
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11 Simulation

Sample 1 Sample 2
Theoretical Model

Yij ξi1φ1(tj) + ξi2φ2(tj) + ξi3φ3(tj) + εi(j) ξi1φ1(tj) + ξi2φ2(tj) + ξi3φ3(tj) + εi(j)
n 416 416
N 500 500
εi farima(0, 0.3, 0) farima(0, 0.3, 0)
p 3 3

φ
(√

2 cosπt,
√

2 cos 2πt,
√

2 cos 6πt
) (

cosπt + cos 2πt, cosπt − cos 2πt,
√

2 cos 8πt
)

m 2 2

U = span
(√

2 cosπt,
√

2 cos 2πt
)

V = span (cosπt + cos 2πt, cosπt − cos 2πt)

λ (6, 4, 2) (6, 3, 1)
Simulated Results

Nsim 400 400
K1(t) 1

2 1{−1<t<1}
1
2 1{−1<t<1}

b 0.0185 0.0185
aveλ̂ (6.099, 3.993, 1.98) (6.015, 3.034, 0.926)
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11 Simulation
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11 Simulation

Rejection Probability
α 0.05 0.01
αU1 0.0425 0.005
αU2 0.045 0.005
αBonf 0.0275 0.005
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