

Introduction to PDEs and Numerical Methods Lecture 11.
Weighted residual methods -
Galerkin method, finite element method
Dr. Noemi Friedman, 10.01.2016.

Recap

Linear systems: strong form, weak form, minimization problem
If \mathbf{A} is symmetric positive definite
strong form:

- Direct solvers
(Gauß elimination, LU/chol decomposition)
- Iterative methods
(Jacobi, Gauß-Seidel...)
weak form:

minimization:

$$
\phi(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{A} \mathbf{x}-\mathbf{x}^{T} \mathbf{b}
$$

- CG
residual is orthogonal
w.r.t. the energy norm
to the approximating
Krylov subspace
equivalent

equivalent

FROM STRONG FORM TO WEAK FORM

Simmilarly

solving PDE \Leftrightarrow optimization of quadratic function
Instead of solving $L u=f$ (strong form) $L u=f, u \in D_{L}, f \in H \Rightarrow u_{0} \in D_{L}, L u_{0}=f$
minimize the quadratic function:

$$
F(u)=\frac{1}{2}\langle L u, u\rangle-\langle f, u\rangle \quad \text { (weak form) }
$$

This quadratic functional attains its stationary point precisely where $L u=f$, if L is symm (self-adjoint).

minimum point if L is pos. def. $\langle L u, u\rangle \geq 0$
and only zero for $\mathrm{u}=0$

FROM STRONG FORM TO WEAK FORM Steps of formulating the weak form (recipe)

$$
L u(x)=\mathrm{f}(\mathrm{x})
$$

1.) Multiply by test/weight function $v(x)$ and integrate

$$
\begin{aligned}
& \langle L u, v\rangle-\langle f, v\rangle=0 \quad \forall v \in V \\
& \int L u(x) v(x) d x-\int f(x) v(x) d x=0 \quad \forall v \in V
\end{aligned}
$$

2.) Reduce order of $\langle L u, v\rangle$ by using the integration by parts, or Green's theorem in higher dim.
3.) Apply boundary conditions

Check wether the PDE holds in the $v(x)$ weighted avarage sense over Ω
 functions then the PDE must hold

FROM STRONG FORM TO WEAK FORM Example in 1D

Strong formulation: find $u \in C^{2}(I)$

$$
\begin{aligned}
\qquad u^{\prime \prime}(x)+u(x) & =f(x) \text { on } I=(0,1) \\
u(0) & =0 \\
u^{\prime}(1) & =1
\end{aligned} \text { 1) Multiply by test/weight function } v(x) \text { and integrate }
$$

2.) Integration by parts

$$
-\int_{I} u^{\prime \prime}(x) v(x) d x=\int_{I} u^{\prime}(x) v^{\prime}(x) d x-\left.u^{\prime}(x) v(x)\right|_{0} ^{1}
$$

3.) Apply boundary conditions $\left(u^{\prime}(1)=1, v(0)=0\right)$

$$
\left.u^{\prime}(x) v(x)\right|_{0} ^{1}=v(1)
$$

FROM STRONG FORM TO WEAK FORM Example in 1D

$$
-\underbrace{\int_{I} u^{\prime \prime}(x) v(x) d x}+\int_{I} u(x) v(x) d x=\int_{I} f(x) v(x) d x
$$

Weak formulation: For $V=\left\{H^{1}(I) \mid u(0)=0\right\}$ find $u \in V$ such that

$$
\int_{I} u^{\prime}(x) v^{\prime}(x) d x+\int_{I} u(x) v(x) d x=\int_{I} f(x) v(x) d x+v(1) \quad \forall v \in V
$$

Abstract setting:

$$
\begin{gathered}
V=\left\{H^{1}(I) \mid u(0)=0\right\}, \quad a(u, v)=\int_{I} u^{\prime}(x) v^{\prime}(x) d x+\int_{I} u(x) v(x) d x, \quad l(v)=\int_{I} f(x) v(x) d x \\
a(u, v)=l(v) \quad \forall v \in V
\end{gathered}
$$

Existence and uniqueness of the solution of BVPs

Strong form:
$L u(\mathbf{x})=f(\mathbf{x}) \Rightarrow$
bilinear term linear term

In accordance to the Lax-Milgram Lemma if:
$l(\cdot) \quad$ bounded, linear functional
a(\cdot, \cdot) bounded, V-elliptic bilinear functional and V a Hilbert space

\[

\]

Some more fundamentals of functional analysis Dense and complete spaces

A subset W of a space V is called dense (in V) if every point v in V either belongs to W or arbitrarily "close" to a member of W

Cauchy sequence

$x_{1}, x_{2}, x_{3}, \ldots$
For every positive real number ε, there is a positive integer N such that for all $\mathrm{m}, \mathrm{n}>\mathrm{N}$

$$
\left\|x_{m}-x_{n}\right\|<\varepsilon
$$

A normed space V is called complete (or a Cauchy space) if every Cauchy sequence of points in V has a limit that is also in V or, alternatively, if every Cauchy sequence in V converges in V

Some more fundamentals of functional analysis Important vector spaces

Banach space: complete, normed vector space examples:

- Lp spaces
- Hilbert space with norm $\|x\|_{H}=\sqrt{\langle x, x\rangle}$,

Hilbert space: complete, inner product space examples

- L_{2} space
- Sobolev spaces

Lebesque space (Lp)
with the norm: $\|f\|_{p}=\left(\int_{\Omega} f(x)^{p} \mathrm{dx}\right)^{\frac{1}{p}}$
L2 space (square-integrable functions): $\int_{\Omega} f(x)^{2} \mathrm{dx}<\infty$
inner product: $\quad\langle f, g\rangle=\int_{\Omega} f(x) g(x) \mathrm{dx} \quad$ norm: $\quad\|f\|_{2}=\sqrt{\langle f, f\rangle}=\sqrt{\int_{\Omega} f(x)^{2} \mathrm{dx}}$

Some more fundamentals of functional analysis Important vector spaces

Sobolev space (Hp)

norm: combination of Lp-norms of the function itself and its derivatives up to p order derivatives: weak derivatives \rightarrow complete space \rightarrow Banach space
Examples:

$$
\begin{gathered}
H_{1}(\mathbb{R})=\left\{u \mid u, u^{\prime} \in L_{2}(\mathbb{R})\right\} \\
H_{1}\left(\mathbb{R}^{2}\right)=\left\{u \mid u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} \in L_{2}(\mathbb{R})\right\} \\
H_{2}(\mathbb{R})=\left\{u \mid u, u^{\prime}, u^{\prime \prime} \in L_{2}(\mathbb{R})\right\} \\
H_{2}\left(\mathbb{R}^{2}\right)=\left\{u \mid u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial^{2} u}{\partial x^{2}}, \frac{\partial^{2} u}{\partial y^{2}}, \frac{\partial^{2} u}{\partial x \partial y} \in L_{2}(\mathbb{R})\right\} \\
H_{p}{ }^{0}(\mathbb{R})=\left\{u\left|u, u^{\prime} \in L_{2}(\mathbb{R}), u\right|_{\Gamma_{D}}=0\right\}
\end{gathered}
$$

Some more fundamentals of functional analysis Bilinear functionals, and its properties

A functional a, mapping from $U x V$ into a scalar \mathbb{R}, is bilinear if

$$
\begin{gathered}
a(u+w, v)=a(u, v)+a(w, v) \quad \forall u, w \in U, v \in V \\
a(u, v+w)=a(u, v)+a(u, w), \quad \forall u \in U, v, w \in V \\
a(\alpha u, v)=\alpha a(u, v) \quad \forall \alpha \in \mathbb{R}, u \in U, v \in V \\
a(u, \alpha v)=\alpha a(u, v) \quad \forall \alpha \in \mathbb{R}, u \in U, v \in V
\end{gathered}
$$

A bilinear functional a, is symmetric if

$$
a(u, v)=a(v, u)
$$

A bilinear functional a, is positive definite if

$$
a(u, u) \geq 0, a(u, u)=0 \text { only if } u=0
$$

A bilinear functional a, is bounded if there exists an $M>0$ such that $\forall u \in U$ and $v \in V$

$$
a(u, v) \leq M\|u\|\|u\|
$$

A bilinear functional a, is V-elliptic if there exists a $\delta>0$ such that $\forall u \in U$

$$
a(u, u) \geq \delta\|u\|^{2}
$$

Some more fundamentals of functional analysis Lax-Milgram Lemma

Let
$a(\cdot, \cdot) \quad$ be a bounded, V-elliptic bilinear functional and
V a Hilbert space
Then for any $f \in V^{*}$ (that is, for any linear, bounded functionals mapping from V to \mathbb{R}) there is a unique solution $u \in V$ to the equation:

$$
a(u, v)=f(v)
$$

and moreover, this unique solution u depends continiously on f :

$$
\|u\|_{V} \leq \frac{1}{\delta}\|\mathrm{f}(u)\|_{V *}
$$

Energy inner product, energy norm

- If $a(\cdot, \cdot)$ is a bilinear functional that is
- bounded
- V-elliptic
positive definite
- symmetric
then it is an inner product, called the energy inner product:

$$
\langle u, v\rangle_{E}=a(u, v)
$$

The corresponding induced norm is called the energy norm:

$$
\|u\|_{E}=\sqrt{a(u, u)}
$$

Existence and uniqueness of the solution of BVPs examples

1. Poisson equation:

$$
-\Delta u(\mathbf{x})=f(\mathbf{x}) \Longrightarrow
$$

$$
\begin{aligned}
& \mathrm{F}(v)=\int f(\mathbf{x}) v(\mathbf{x}) \boldsymbol{d} \mathbf{x} \\
& \mathrm{a}(\cdot \cdot)=\int \nabla u(\mathbf{x}) \nabla v(\mathbf{x}) d \mathbf{x}
\end{aligned}
$$

$\mathrm{F}(\cdot) \quad$ linear functional, in H_{1}^{0} : bounded $\quad \Longrightarrow \quad$ unique solution $u \in H_{1}^{0}$
a($\cdot \cdot$) bilinear functional, in H_{1}^{0} : bounded, V-elliptic - $v \in H_{1}^{0}$
$\mathrm{a}(\cdot, \cdot)$ bilinear functional, in L_{2} : not bounded a (\cdot, \cdot) bilinear functional, in H_{1} : not V-elliptic
2. Plate equation

$$
-\Delta \Delta u(\mathbf{x})=f(\mathbf{x}) \Rightarrow \begin{aligned}
& \mathrm{F}(v)=\int f(\mathbf{x}) v(\mathbf{x}) \boldsymbol{d} \mathbf{x} \\
& \mathrm{a}(\cdot \cdot)=\int \Delta u(\mathbf{x}) \Delta v(\mathbf{x}) \mathbf{d} \mathbf{x}
\end{aligned}
$$

$\mathrm{F}(\cdot) \quad$ linear functional, in $H_{2}^{E}: \quad$ bounded $\quad \Longrightarrow \quad$ unique solution $u \in H_{2}^{E}$
$\mathrm{a}(\cdot, \cdot)$ bilinear functional, in H_{2}^{E} : bounded, V-elliptic $\quad v \in H_{2}^{E}$

Discretisation

Further simplifications (discretize to finite dimensional space)

- Approximate the solution with some basis/shape functions:

$$
u(x)=\sum_{i} u_{i} \Phi_{i}(x)
$$

- Instead of solving it for all $v(x) \in V$, select finite subspace for the weighting functions:

$$
v(x)=\sum_{i} u_{i} \varphi_{i}(x)
$$

How to choose the subspace? How to choose the weighting functions $v(x)$?

- True solution can be well approximated by an element of the subspace
- Efficient computation

Bubnov-Galerkin method $\left(\Phi_{i}=\varphi_{i}\right)$
FEM: Galerkin method with subspace of piecewise polynomial functions
Petrov-Galerkin method $\left(\Phi_{i} \neq \varphi_{i}\right)$
Pointwise collocation $\varphi_{i}=\delta\left(x-x_{i}\right)$
Subdomain collocation $\varphi_{i}=\chi_{\Omega_{i}}$

