

Lecture 4: Fourier series Analytical solution of ODEs and PDEs, The Finite Difference Method

Dr. Noemi Friedman, 08.11.2016.

Overview of the course

- Introduction (definition of PDEs, classification, basic math, introductory examples of PDEs)
- Analytical solution of elementary PDEs, uniqueness and existence of the solution
- Numerical solutions of PDEs:
 - Finite difference method
 - Finite element method

Overview of this lecture

- I. Fourier series in the complex domain, further notes on projection theory
- II. Solving PDEs, analytical solution of ODEs
 - About existence and uniqueness of linear PDEs
 - Solution methods
 - Spectral method (Fourier analysis)
 - Essesntial ODEs
 - Solving homogenous second order ODEs
 - From homogenous to inhomogenous equation
 - Converting higher order ODEs to system of first order ODEs
 - Solving system of ODEs

Some more information on

norms, inner products and projection theory

Ι.

Chose inner product by preserving validity of Pithagoreamtheorem in the real valued function space

The Pithagorean-theorem: $||f + g||^2 = ||f||^2 + ||g||^2$

The Pithagorean-theorem for real value functions using the L2 norm:

$$\int_{0}^{1} (f(t) + g(t))^{2} dt = \int_{0}^{1} f(t)^{2} dt + \int_{0}^{1} g(t)^{2} dt$$

$$\int_{0}^{1} (f(t)^{2} + 2f(t)g(t) + g(t)^{2}) dt = \int_{0}^{1} f(t)^{2} dt + \int_{0}^{1} g(t)^{2} dt$$

$$\int_{0}^{1} f(t)^{2} dt + 2\int_{0}^{1} f(t)g(t) dt + \int_{0}^{1} g(t)^{2} dt = \int_{0}^{1} f(t)^{2} dt + \int_{0}^{1} g(t)^{2} dt$$

$$= 0$$

$$\ell^{1}$$

The orthogonality condition in L2[0,1] has to be $\int_{0}^{1} f(t)g(t) dt = 0$

We define the inner product to be:

echnische

$$(f,g) = \int_0^1 f(t)g(t) \, dt \quad (f,f) = \int_0^1 f(t)^2 \, dt = \|f\|^2$$

08.11.2016. PDE lecture 4 Seite 15

Chose inner product by preserving validity of Pithagoreamtheorem in the complex valued function space

First let's restrict the function space to the Lebesgue functions satisfying:

 $\int_0^1 |f(t)|^2 \, dt < \infty$

Requirements for an inner product in the complex domain

1. $(f,g) = \overline{(g,f)}$ (Hermitian symmetry)

Technische

Braunschweig

- 2. $(f, f) \ge 0$ and (f, f) = 0 if and only if f = 0 (positive definiteness same as before)
- 3. $(\alpha f, g) = \alpha(f, g), \quad (f, \alpha g) = \overline{\alpha}(f, g)$ (homogeneity same as before in the first slot, conjugate scalar comes out if it's in the second slot)
- 4. (f + g, h) = (f, h) + (g, h), (f, g + h) = (f, g) + (f, h) (additivity same as before, no difference between additivity in first or second slot)

Chose inner product by preserving validity of Pithagoreamtheorem in the complex valued function space

The Pithagorean-theorem:

Technische

Braunschweig

The orthogonality condition in L2[0,1] can be

$$\int_{0}^{1} |f(t) + g(t)|^{2} = \int_{0}^{1} |f(t)|^{2} dt + \int_{0}^{1} |g(t)|^{2} dt$$

$$\int_{0}^{1} |(f(t)|^{2} + 2\operatorname{Re}\{f(t)\overline{g(t)}\} + |g(t)|^{2}) dt = \int_{0}^{1} |f(t)|^{2} dt + \int_{0}^{1} |g(t)|^{2} dt$$

$$\int_{0}^{1} |f(t)|^{2} dt + \frac{2\operatorname{Re}\left(\int_{0}^{1} f(t)\overline{g(t)} dt\right)}{1 + \int_{0}^{1} |g(t)|^{2} dt} = \int_{0}^{1} |f(t)|^{2} dt + \int_{0}^{1} |g(t)|^{2} dt$$
The orthogonality condition in L2[0,1] can be

$$\int_{0}^{1} f(t)\overline{g(t)} dt = 0$$
We define the inner product to be:

$$(f,g) = \int_{0}^{1} f(t)\overline{g(t)} dt$$

~1

~1

~1

$$(f,f) = \int_0^1 f(t)\overline{f(t)} \, dt = \int_0^1 |f(t)|^2 \, dt = \|f\|^2$$

If $\int_0^1 |f(t)|^2 \, dt < \infty$ and $\int_0^1 |g(t)|^2 \, dt < \infty$ holds, then $(f,g) < \infty$

08.11.2016. PDE lecture 4 Seite 15

Determination of the coefficients of the Fourier-series of a function f(t) with period 1

We would like to write the function f(t) as linear combination of exponentials with different frequencies:

$$f(t) \approx \sum_{m=-N}^{N} c_m e^{i2\pi m t}$$

Get the coefficients of the Fourier-series of f(t) with the projection theory:

$$\sum_{n=-N}^{N} \frac{c_n \langle e_n, e_m \rangle}{G_{nm}} = \langle \underline{f}, \underline{e_m} \rangle$$

$$\overbrace{b_m}$$
Coefficients: $c_n = ?$

Basis functions:

 $e_m(t) = e^{i2\pi mt}$ $m = 0, \pm 1, \pm 2...$

As learned, by defining in such a way the coefficients (derived from orthogonality of the error to the approximating subspace) we minimise the norm of the error:

$$\left\|\sum_{m=-N}^{N} c_m e^{i2\pi mt} - f(t)\right\|$$
Please remember,
we defined the inner product to be: $\langle f,g \rangle = \int_0^1 f(t)\overline{g(t)}dt$
And the induced norm to be: $\|g\| = \sqrt{\langle g,g \rangle} = \sqrt{\int_0^1 g(t)\overline{g(t)}dt}$
Technische

08.11.2016. | PDE lecture 4 | Seite 15

Determination of the coefficients of the Fourier-series of a function f(t) with period 1

By projection theory, we project the function f(t) to the approximating subspace spanned by the basis functions:

$$\begin{aligned} \underline{n \neq m} \\ G_{nm} &= (e_n, e_m) = \int_0^1 e^{2\pi i n t} \overline{e^{2\pi i m t}} \, dt = \int_0^1 e^{2\pi i n t} e^{-2\pi i m t} \, dt = \int_0^1 e^{2\pi i (n-m) t} \, dt \\ &= \frac{1}{2\pi i (n-m)} e^{2\pi i (n-m) t} \Big]_0^1 = \frac{1}{2\pi i (n-m)} \left(e^{2\pi i (n-m)} - e^0 \right) = \frac{1}{2\pi i (n-m)} (1-1) = 0 \end{aligned}$$

08.11.2016. | PDE lecture 4 | Seite 15

Determination of the coefficients of the Fourier-series of a function f(t) with period 1

The gramian G is the identity matrix

Technische

Braunschweig

Please note, common notation for the Fourier-coefficient c_n of f(t) is $\hat{f}(n)$:

$$f(t) \approx \sum_{m=-N}^{N} \hat{f}(n) e^{i2\pi m t} \qquad \qquad \hat{f}(n) = \int_{0}^{1} f(t) e^{-i2\pi m t} dt$$

08.11.2016. | PDE lecture 4 | Seite 15

Existence, uniqueness, esssential of ODEs, solution methods, the spectral method

Ax = b

Existence:

 $\mathbf{b} \in R(\mathbf{C})$ (**b** is in the range of **A**)

<u>Uniqueness:</u>

let's suppose y and z are both solutions:

Ay = b Az = b

 $A(y-z) = 0 \implies if y \neq z$ nontrivial solution

In other words, the nullspace of **A** is nontrivial. The system has only unique solution if the nullspace of **A** is trivial, that is the only solution of $\mathbf{A} = \mathbf{0}$ is $\mathbf{x} = \mathbf{0}$

 $Lu = f \qquad \text{example:} \quad L_D u = \frac{\partial^2 u}{\partial r^2}$ Existence: $u \in R(L)$ (f is in the range of L) Uniqueness: let's suppose y and z are both solutions: Ly = f Lz = f $L(y-z) = 0 \implies \text{if } y \neq z$ nontrivial solution The system has only unique solution if the nullspace of L is trivial, that is the only solution of

Lu = 0 is the zero function

Technische Universität Braunschweig

$(1, \omega, g)$ $(\omega, 1, 1, g)$ for all $\omega, g \in \Pi$

Essential ODEs solving linear systems⇔analytical solution of linear ODEs

Ax = b

Solution:

If $N(\mathbf{A})$ is nontrivial, it has only solution if it satisfies a certain compatibility solution: Adjoint operator: $\mathbf{A}^{\mathrm{T}} \rightarrow \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{A}^{\mathrm{T}}\mathbf{y} \rangle$

$$\mathbf{A}^{\mathrm{T}}\mathbf{w} = \mathbf{0} \implies \mathbf{w} \in N(\mathbf{A}^{\mathrm{T}})$$

 $\mathbf{w} \cdot \mathbf{b} = \mathbf{0}$

If $N(\mathbf{A})$ is nontrivial, and if it has a solution, it has infinitely many:

$$\begin{array}{c} \mathbf{A}\mathbf{w} = \mathbf{0} \\ \mathbf{A}\mathbf{z} = \mathbf{b} \end{array} \qquad \qquad \mathbf{A}(\mathbf{z} + \alpha \mathbf{w}) = \mathbf{A}\mathbf{z} + \alpha \mathbf{A}\mathbf{w} = \mathbf{b}$$

> $\mathbf{z} + \alpha \mathbf{w}$ is also a solution

Lu = f

Solution:

If N(L) is nontrivial, it has only solution if it satisfies a certain compatibility solution.

Adjoint operator L^* : $\langle Lu, v \rangle = \langle u, L^*v \rangle$

If N(L) is nontrivial, and if it has a solution, it has infinitely many:

$$Lw = 0$$

$$Lz = f$$
$$L(z + \alpha w) = Lz + \alpha Lw = f$$

 \implies $z + \alpha w$ is also a solution

Technische Universität Braunschweig

Uniqueness (example1):

$$L_{D}u = -\alpha \frac{\partial^{2}u}{\partial x^{2}} \implies -\alpha \frac{\partial^{2}u(x)}{\partial x^{2}} = f(x) \ x \in [0, l]$$

$$u(0) = 0$$

$$u(0) = 0$$

$$u(l) = 0$$

$$u(l) = 0$$

$$u(x) = \alpha + b \quad u(0) = 0 \implies b = 0$$

$$u(l) = 0 \implies a = 0$$

$$u(x) = 0 \implies \text{the trivial solution unique solution of }$$

$$L_{D}u = f$$

$$-\alpha \frac{d^{2}u(x)}{dx^{2}} = f(x) \implies \alpha \frac{du(x)}{dx} = -\int_{0}^{x} f(s)ds + c_{1} \implies \alpha u = -\int_{0}^{x} F(s)ds + c_{1}x + c_{2}$$

$$u(0) = 0 \implies c_{2} = 0$$

$$u(l) = 0 \implies c_{1} = \frac{1}{l}\int_{0}^{l}\int_{0}^{z} f(s)dsdz$$

$$(0, 11, 2016, | \text{ Dr. Noemi Friedman | PDE | lecture | Seite 14}$$

$$-\alpha \frac{d^2 u(x)}{dx^2} = f(x) \implies -\alpha \left[\frac{du(x)}{dx}\right]_0^l = \int_0^l f(x) dx \implies \int_0^l f(x) dx = 0$$

Technische

Universität Braunschw<u>eig</u>

Ax = b

Solution:

1) General solution

 $A^{-1}Ax = A^{-1}b$ $x = A^{-1}b$

2) Direct solvers (Gauß elimination), iterative methods

3) Spectral method If $\mathbf{A}^{\mathrm{T}} = \mathbf{A}$ (real eigenvalues) $\mathbf{A}\mathbf{v}_{\mathrm{i}} = \lambda_{i}\mathbf{v}_{\mathrm{i}}$ $\mathbf{b} = \sum_{i} (\mathbf{v}_{\mathrm{i}} \cdot \mathbf{b})\mathbf{v}_{\mathrm{i}} \quad \mathbf{x} = \sum_{i} (\mathbf{v}_{\mathrm{i}} \cdot \mathbf{x})\mathbf{v}_{\mathrm{i}} = \sum_{i} \alpha_{i}\mathbf{v}_{\mathrm{i}}$ $\mathbf{A}\mathbf{x} = \mathbf{b} \implies \mathbf{A} \sum_{i} \alpha_{i}\mathbf{v}_{\mathrm{i}} = \sum_{i} (\mathbf{v}_{\mathrm{i}} \cdot \mathbf{b})\mathbf{v}_{\mathrm{i}}$ $\sum_{i} \alpha_{i} \mathbf{A}\mathbf{v}_{\mathrm{i}} = \sum_{i} (\mathbf{v}_{\mathrm{i}} \cdot \mathbf{b})\mathbf{v}_{\mathrm{i}} \implies \alpha_{i}\lambda_{i} = (\mathbf{v}_{\mathrm{i}} \cdot \mathbf{b})$ $\mathbf{x} = \sum_{i} \frac{(\mathbf{v}_{\mathrm{i}} \cdot \mathbf{b})}{\lambda_{i}}\mathbf{v}_{\mathrm{i}}$ 3) Formula (2.1)

Solution:

- 1) Direct integration Method of Green's functions
- 2) Galerkin method/FD method
- 3) Fourier series $Lv_i = \lambda v_i$

 $\langle Lu, v \rangle = \langle u, Lv \rangle$ (real eigenvalues)

$$f = \sum_{i} f_{i} v_{i}(x)$$
$$u = \sum_{i} u_{i} v_{i}(x)$$

Technische Universität Braunschweig

Solving ODEs with Fourier series - example $-\alpha \frac{d^2 u}{dx^2} = f(x)$ u(0) = 0u(l) = 0 $L_D u = f(x)$

1) Solve the eigenvalues-eigenfunctions (λ_i , $v_i(x)$)

Technische

a) Can eigenfunctions form an orthogonal basis (is the operator symmetric)? $\langle Lu, v \rangle = \langle u, Lv \rangle$?

 $\langle Lu, v \rangle = -\alpha \int_{0}^{l} \frac{d^{2}u(x)}{dx^{2}} v(x) dx = \left[-\alpha \frac{du(x)}{dx} v(x) \right]_{0}^{l} + \alpha \int_{0}^{l} \frac{du(x)}{dx} \frac{dv(x)}{dx} dx$ $= \alpha \int_{0}^{l} \frac{du(x)}{dx} \frac{dv(x)}{dx} dx = \left[\alpha u(x) \frac{dv(x)}{dx} \right]_{0}^{l} - \alpha \int_{0}^{l} u(x) \frac{dv(x)}{dx^{2}} dx = \alpha \int_{0}^{l} u(x) \frac{dv(x)}{dx^{2}} dx = \alpha \int_{0}^{l} u(x) \frac{dv(x)}{dx^{2}} dx = \langle u, Lv \rangle$ b) Find eigenfunctions and eigenvalues $L_{D}v_{i} = \lambda v_{i}(x)$

 $v_i = \sin\left(\frac{i\pi x}{l}\right)$ \longrightarrow We try to find the solution in the form

$$u = \sum_{i} u_{i} \sin\left(\frac{i\pi x}{l}\right)$$

$(1, \omega, g)$ $(\omega, 1, 1, g)$ for $\omega_1, \omega, g \in \Omega$.

Essential ODEs solving linear systems⇔analytical solution of linear ODEs

Solving ODEs with Fourier series - example $-\alpha \frac{d^2 u}{dx^2} = f(x)$ u(0) = 0u(l) = 0 $L_D u = f(x)$

2) Project f(x) to the space spanned by the eigenfunctions:

$$f(x) = \sum_{i} f_{i} \sin\left(\frac{i\pi x}{l}\right) \qquad f_{i} = \frac{\left\langle f_{i}, \sin\left(\frac{i\pi x}{l}\right) \right\rangle}{\left\langle \sin\left(\frac{i\pi x}{l}\right), \sin\left(\frac{i\pi x}{l}\right) \right\rangle}$$

3) Solve the ODE for u_i :

$$-\alpha \frac{d^2}{dx^2} \sum_{i} u_i \sin\left(\frac{i\pi x}{l}\right) = -\alpha \sum_{i} u_i \frac{d^2}{dx^2} \sin\left(\frac{i\pi x}{l}\right) = \sum_{i} \alpha \frac{i^2 \pi^2}{l^2} u_i \sin\left(\frac{i\pi x}{l}\right) = \sum_{i} f_i \sin\left(\frac{i\pi x}{l}\right)$$

$$\alpha \frac{i^2 \pi^2}{l^2} u_i = f_i \qquad \qquad u_i = \frac{l^2 f_i}{i^2 \pi^2 \alpha} \qquad \qquad u(x) = \sum_i u_i \sin\left(\frac{i\pi x}{l}\right)$$

