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Dr. Noemi Friedman, 08.11.2016.

Introduction to PDEs and Numerical Methods

Lecture 4: 

Fourier series

Analytical solution of ODEs and PDEs, 

The Finite Difference Method
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Overview of the course

 Introduction (definition of PDEs, classification, basic math, 

introductory examples of PDEs)

 Analytical  solution of elementary PDEs, uniqueness and existence

of the solution

 Numerical solutions of PDEs:

 Finite difference method

 Finite element method
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Overview of this lecture

 I. Fourier series in the complex domain, further notes on projection theory

 II. Solving PDEs, analytical solution of ODEs

 About existence and uniqueness of linear PDEs

 Solution methods

 Spectral method (Fourier analysis)

 Essesntial ODEs

 Solving homogenous second order ODEs

 From homogenous to inhomogenous equation

 Converting higher order ODEs to system of first order ODEs

 Solving system of ODEs
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I.

Some more information on

norms, inner products and projection theory



Chose inner product by preserving validity of Pithagoream-

theorem in the real valued function space
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We define the inner product to be:

The orthogonality condition in L2[0,1] has to be

= 0

The Pithagorean-theorem:

The Pithagorean-theorem for real value functions using the L2 norm:



Chose inner product by preserving validity of Pithagoream-

theorem in the complex valued function space
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Requirements for an inner product in the complex domain

First let’s restrict the function space to the Lebesgue functions satisfying:



Chose inner product by preserving validity of Pithagoream-

theorem in the complex valued function space
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We define the inner product to be:

The orthogonality condition in L2[0,1] can be = 0

The Pithagorean-theorem:

= 0

If and holds, then



Determination of the coefficients of the Fourier-series

of a function f(t) with period 1
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Get the coefficients of the Fourier-series of 𝑓(𝑡) with the projection theory:

 

𝑛=−𝑁

𝑁

𝑐𝑛 𝑒𝑛, 𝑒𝑚 = 𝑓, 𝑒𝑚

𝐺𝑛𝑚 𝑏𝑚

𝑒𝑚 𝑡 = 𝑒𝑖2𝜋𝑚𝑡 𝑚 = 0, ±1, ±2. .

Coefficients: 𝑐𝑛 =?

Basis functions:

We would like to write the function 𝑓(𝑡) as linear combination of exponentials with

different frequencies:

𝑓 𝑡 ≈  

𝑚=−𝑁

𝑁

𝑐𝑚𝑒𝑖2𝜋𝑚𝑡

As learned, by defining in such a way the coefficients (derived from orthogonality of 

the error to the approximating subspace) we minimise the norm of the error:

 

𝑚=−𝑁

𝑁

𝑐𝑚𝑒𝑖2𝜋𝑚𝑡 − 𝑓 𝑡

Please remember,

we defined the inner product to be: 𝑓, 𝑔 =  
0

1

𝑓 𝑡 𝑔 𝑡 𝑑𝑡

And the induced norm to be: 𝑔 = 𝑔, 𝑔 =  
0

1

𝑔 𝑡 𝑔 𝑡 𝑑𝑡



Determination of the coefficients of the Fourier-series

of a function f(t) with period 1
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By projection theory, we project the function f(t) to the approximating subspace

spanned by the basis functions: 

𝐺𝑛𝑚 =

𝐺𝑛𝑚 =

𝑛 ≠ 𝑚

𝑛 = 𝑚

The basis functions:

are orthonormal

𝑒𝑚 𝑡 = 𝑒𝑖2𝜋𝑚𝑡

The gramian 𝑮 is the identity matrix

𝐺𝑛𝑚 =



Determination of the coefficients of the Fourier-series

of a function f(t) with period 1
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𝑛=−𝑁

𝑁

𝑐𝑛 𝑒𝑛, 𝑒𝑚 = 𝑓, 𝑒𝑚

The gramian 𝑮 is the identity matrix

𝐺𝑛𝑚 𝑏𝑚

Coefficients: 

𝑐𝑚 = 𝑓, 𝑒𝑚 =  
0

1

𝑓 𝑡 𝑒𝑖2𝜋𝑚𝑡𝑑𝑡 =  
0

1

𝑓 𝑡 𝑒−𝑖2𝜋𝑚𝑡𝑑𝑡

1
1

⋱

𝑐−𝑁

𝑐−𝑁−1

⋮
=

𝑓, 𝑒−𝑁

𝑓, 𝑒−𝑁

⋮

𝑮 𝒄 𝒃

Please note, common notation for the Fourier-coefficient 𝑐𝑛 of 𝑓(𝑡) is  𝑓 𝑛 :

𝑓 𝑡 ≈  

𝑚=−𝑁

𝑁

 𝑓 𝑛 𝑒𝑖2𝜋𝑚𝑡  𝑓 𝑛 =  
0

1

𝑓 𝑡 𝑒−𝑖2𝜋𝑚𝑡𝑑𝑡
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II.

Existence, uniqueness, esssential of ODEs, solution

methods, the spectral method
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Essential ODEs

solving linear systems↔analytical solution of linear ODEs

𝐀𝐱 = 𝐛

Existence:

𝐿𝑢 = 𝑓 𝐿𝐷𝑢 =
𝜕2𝑢

𝜕𝑥2
example:

𝐛 ∈ 𝑅(𝐂) (𝐛 is in the range of 𝐀) 

Uniqueness:

let’s suppose 𝐲 and 𝒛 are both solutions:

𝐀𝐲 = 𝐛 𝐀𝐳 = 𝐛

𝐀(𝐲 − 𝐳) = 𝟎 if 𝐲 ≠ 𝒛 nontrivial

solution

In other words, the nullspace of 𝐀 is nontrivial.

The system has only unique solution if the

nullspace of 𝐀 is trivial, that is the only solution

of
𝐀𝐱 = 𝟎 is 𝐱 = 𝟎

𝑢 ∈ 𝑅(𝐿) (𝑓 is in the range of 𝐿) 

Uniqueness:

let’s suppose y and z are both solutions:

if 𝑦 ≠ 𝑧 nontrivial

solution
𝐿(𝑦 − 𝑧) = 0

𝐿𝑦 = 𝑓 𝐿𝑧 = 𝑓

The system has only unique solution if the

nullspace of 𝐿 is trivial, that is the only solution

of

𝐿𝑢 = 0 is the zero function

Existence:
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Essential ODEs

solving linear systems↔analytical solution of linear ODEs

𝐀𝐱 = 𝐛

Solution:

𝐿𝑢 = 𝑓

𝐀𝐰 = 𝟎

𝐀𝐳 = 𝐛
𝐀 𝐳 + 𝛼𝐰 = 𝐀𝐳 + 𝛼𝐀𝐰 = 𝐛

𝐳 + 𝛼𝐰 is also a solution

If 𝑁(𝐀) is nontrivial, and if it has a solution, it

has infinitely many:

𝐿𝑤 = 0

𝐿𝑧 = 𝑓

Solution:

If 𝑁(𝐿) is nontrivial, and if it has a solution, it

has infinitely many:

𝐿 𝑧 + 𝛼𝑤 = 𝐿𝑧 + 𝛼𝐿𝑤 = 𝑓

𝑧 + 𝛼𝑤 is also a solution

If 𝑁(𝐀) is nontrivial, it has only solution if it

satisfies a certain compatibility solution:

Adjoint operator: 𝐀T → 𝐀𝐱, 𝐲 = 𝐱, 𝐀T𝐲

𝐀T𝐰 = 𝟎 𝐰 ∈ 𝑁(𝐀T)

𝐰 ∙ 𝐛 = 𝟎

If 𝑁(𝐿) is nontrivial, it has only solution if it

satisfies a certain compatibility solution.

Adjoint operator 𝐿∗: 𝐿𝑢, 𝑣 = 𝑢, 𝐿∗𝑣
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Essential ODEs

solving linear systems↔analytical solution of linear ODEs

𝐿𝐷𝑢 = −𝛼
𝜕2𝑢

𝜕𝑥2

Uniqueness (example1):

−𝛼
𝜕2𝑢(𝑥)

𝜕𝑥2 = 𝑓(𝑥)

𝑢 0 = 0

𝑢 𝑙 = 0

𝑥 ∈ [0, 𝑙]

𝐿𝐷: 𝐶𝐷
2 0, 𝑙 → 𝐶[0, 𝑙]

−𝛼
𝜕2𝑢(𝑥)

𝜕𝑥2 = 0
The homogenous

system:

𝑢 𝑥 = 𝑎𝑥 + 𝑏 𝑢 0 = 0 𝑏 = 0

𝑢 𝑙 = 0 𝑎 = 0
𝑢 𝑥 = 0

the trivial solution

unique solution of 

𝐿𝐷𝑢 = 𝑓

−𝛼
𝑑2𝑢(𝑥)

𝑑𝑥2 = 𝑓(𝑥) 𝛼
𝑑𝑢(𝑥)

𝑑𝑥
= −  

0

𝑥

𝑓 𝑠 𝑑𝑠 + 𝑐1 𝛼𝑢 = −  
0

𝑥

𝐹 𝑠 𝑑𝑠 + 𝑐1𝑥 + 𝑐2

𝐹 𝑥

𝑢 0 = 0 𝑐2 = 0

𝑢 𝑙 = 0 𝑐1 =
1

𝑙
 

0

𝑙

 
0

𝑧

𝑓 𝑠 𝑑𝑠𝑑𝑧
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Essential ODEs

solving linear systems↔analytical solution of linear ODEs

𝐿𝑁𝑢 = 𝑓

Uniqueness (example2) :

−𝛼𝑢𝑥𝑥 = 𝑓(𝑥)

𝑢𝑥 0 = 0

𝑢𝑥 𝑙 = 0

𝑥 ∈ [0, 𝑙]

𝐿𝐷: 𝐶𝑁
2 0, 𝑙 → 𝐶[0, 𝑙]

−𝛼
𝜕2𝑢(𝑥)

𝜕𝑥2 = 0
The homogenous

system:

𝑢 𝑥 = 𝑎𝑥 + 𝑏 𝑢𝑥 0 = 0 𝑎 = 0

𝑢𝑥 𝑙 = 0
𝑢 𝑥 = 𝑏

non trivial solution

if there is a solution, it

is not unique

−𝛼
𝑑2𝑢(𝑥)

𝑑𝑥2 = 𝑓(𝑥) −𝛼
𝑑𝑢 𝑥

𝑑𝑥
0

𝑙

=  
0

𝑙

𝑓 𝑥 𝑑𝑥  
0

𝑙

𝑓 𝑥 𝑑𝑥 = 0
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Essential ODEs

solving linear systems↔analytical solution of linear ODEs

𝐀𝐱 = 𝐛

Solution:

𝐿𝑢 = 𝑓

Solution:
1) General solution

𝐀−1𝐀𝐱 = 𝐀−1𝐛 𝐱 = 𝐀−1𝐛

2) Direct solvers (Gauß elimination), 

iterative methods

3) Spectral method

If 𝐀T = 𝐀 (real eigenvalues)

1) Direct integration

Method of Green’s functions

2) Galerkin method/FD method

3) Fourier series𝐀𝐯i = λ𝑖𝐯i

𝐛 =  

𝑖

(𝐯𝐢∙ 𝐛)𝐯i 𝐱 =  

𝑖

(𝐯𝐢∙ 𝐱)𝐯i =  

𝑖

𝛼𝑖𝐯i

𝐀𝐱 = 𝐛 𝐀  

𝑖

𝛼𝑖𝐯i =  

𝑖

(𝐯𝐢∙ 𝐛)𝐯i

 

𝑖

𝛼𝑖  𝐀𝐯i

λ𝑖𝐯i

=  

𝑖

(𝐯𝐢∙ 𝐛)𝐯i
𝛼𝑖λ𝑖 = (𝐯𝐢∙ 𝐛)

𝐱 =  

𝑖

(𝐯𝐢∙ 𝐛)

λ𝑖
𝐯i

𝐿𝑣𝑖 = 𝜆𝑣𝑖

𝐿𝑢, 𝑣 = 𝑢, 𝐿𝑣 (real eigenvalues)

𝑓 =  

𝑖

𝑓𝑖𝑣𝑖(𝑥)

𝑢 =  

𝑖

𝑢𝑖𝑣𝑖(𝑥)
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Essential ODEs

solving linear systems↔analytical solution of linear ODEs

−𝛼
𝑑2𝑢

𝑑𝑥2
= 𝑓(𝑥)Solving ODEs with Fourier series - example

𝐿𝐷𝑣𝑖 = 𝜆𝑣𝑖(𝑥)

𝐿𝑢, 𝑣 = 𝑢, 𝐿𝑣 ?

1) Solve the eigenvalues-eigenfunctions (𝜆𝑖 , 𝑣𝑖(𝑥))

𝑢 =  

𝑖

𝑢𝑖 sin
𝑖𝜋𝑥

𝑙

a) Can eigenfunctions form an orthogonal basis (is the operator symmetric)?

𝑢 0 = 0

𝑢 𝑙 = 0
𝐿𝐷𝑢 = 𝑓(𝑥)

𝐿𝑢, 𝑣 = −𝛼  
0

𝑙 𝑑2𝑢 𝑥

𝑑𝑥2 𝑣 𝑥 𝑑𝑥 = −𝛼
𝑑𝑢 𝑥

𝑑𝑥
𝑣 𝑥

0

𝑙

+ 𝛼  
0

𝑙 𝑑𝑢 𝑥

𝑑𝑥

𝑑𝑣 𝑥

𝑑𝑥
𝑑𝑥

= 𝛼  
0

𝑙 𝑑𝑢 𝑥

𝑑𝑥

𝑑𝑣 𝑥

𝑑𝑥
𝑑𝑥 = 𝛼𝑢 𝑥

𝑑𝑣 𝑥

𝑑𝑥
0

𝑙

− 𝛼  
0

𝑙

𝑢 𝑥
𝑑𝑣 𝑥

𝑑𝑥2 𝑑𝑥 =

= 𝛼  
0

𝑙

𝑢 𝑥
𝑑𝑣 𝑥

𝑑𝑥2 𝑑𝑥 = 𝑢, 𝐿𝑣

b) Find eigenfunctions and eigenvalues

𝑣𝑖 = sin
𝑖𝜋𝑥

𝑙
We try to find the solution in the form
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Essential ODEs

solving linear systems↔analytical solution of linear ODEs

−𝛼
𝑑2𝑢

𝑑𝑥2
= 𝑓(𝑥)Solving ODEs with Fourier series - example

𝛼
𝑖2𝜋2

𝑙2 𝑢𝑖 = 𝑓𝑖

2) Project 𝑓 𝑥 to the space spanned by the eigenfunctions: 

𝑓(𝑥) =  

𝑖

𝑓𝑖 sin
𝑖𝜋𝑥

𝑙

𝑢 0 = 0

𝑢 𝑙 = 0
𝐿𝐷𝑢 = 𝑓(𝑥)

𝑓𝑖 =
𝑓𝑖 , sin

𝑖𝜋𝑥
𝑙

sin
𝑖𝜋𝑥
𝑙

, sin
𝑖𝜋𝑥
𝑙

3) Solve the ODE for 𝑢𝑖: 

−𝛼
𝑑2

𝑑𝑥2  

𝑖

𝑢𝑖 sin
𝑖𝜋𝑥

𝑙
= −𝛼  

𝑖

𝑢𝑖

𝑑2

𝑑𝑥2 sin
𝑖𝜋𝑥

𝑙
=  

𝑖

𝛼
𝑖2𝜋2

𝑙2 𝑢𝑖 sin
𝑖𝜋𝑥

𝑙
=  

𝑖

𝑓𝑖 sin
𝑖𝜋𝑥

𝑙

𝑢𝑖 =
𝑙2𝑓𝑖

𝑖2𝜋2𝛼
𝑢(𝑥) =  

𝑖

𝑢𝑖 sin
𝑖𝜋𝑥

𝑙


