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Dr. Noemi Friedman, 08.11.2016.

Introduction to PDEs and Numerical Methods

Lecture 4: 

Fourier series

Analytical solution of ODEs and PDEs, 

The Finite Difference Method
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Overview of the course

 Introduction (definition of PDEs, classification, basic math, 

introductory examples of PDEs)

 Analytical  solution of elementary PDEs, uniqueness and existence

of the solution

 Numerical solutions of PDEs:

 Finite difference method

 Finite element method
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Overview of this lecture

 I. Fourier series in the complex domain, further notes on projection theory

 II. Solving PDEs, analytical solution of ODEs

 About existence and uniqueness of linear PDEs

 Solution methods

 Spectral method (Fourier analysis)

 Essesntial ODEs

 Solving homogenous second order ODEs

 From homogenous to inhomogenous equation

 Converting higher order ODEs to system of first order ODEs

 Solving system of ODEs
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I.

Some more information on

norms, inner products and projection theory



Chose inner product by preserving validity of Pithagoream-

theorem in the real valued function space
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We define the inner product to be:

The orthogonality condition in L2[0,1] has to be

= 0

The Pithagorean-theorem:

The Pithagorean-theorem for real value functions using the L2 norm:



Chose inner product by preserving validity of Pithagoream-

theorem in the complex valued function space
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Requirements for an inner product in the complex domain

First let’s restrict the function space to the Lebesgue functions satisfying:



Chose inner product by preserving validity of Pithagoream-

theorem in the complex valued function space
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We define the inner product to be:

The orthogonality condition in L2[0,1] can be = 0

The Pithagorean-theorem:

= 0

If and holds, then



Determination of the coefficients of the Fourier-series

of a function f(t) with period 1
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Get the coefficients of the Fourier-series of 𝑓(𝑡) with the projection theory:

 

𝑛=−𝑁

𝑁

𝑐𝑛 𝑒𝑛, 𝑒𝑚 = 𝑓, 𝑒𝑚

𝐺𝑛𝑚 𝑏𝑚

𝑒𝑚 𝑡 = 𝑒𝑖2𝜋𝑚𝑡 𝑚 = 0, ±1, ±2. .

Coefficients: 𝑐𝑛 =?

Basis functions:

We would like to write the function 𝑓(𝑡) as linear combination of exponentials with

different frequencies:

𝑓 𝑡 ≈  

𝑚=−𝑁

𝑁

𝑐𝑚𝑒𝑖2𝜋𝑚𝑡

As learned, by defining in such a way the coefficients (derived from orthogonality of 

the error to the approximating subspace) we minimise the norm of the error:

 

𝑚=−𝑁

𝑁

𝑐𝑚𝑒𝑖2𝜋𝑚𝑡 − 𝑓 𝑡

Please remember,

we defined the inner product to be: 𝑓, 𝑔 =  
0

1

𝑓 𝑡 𝑔 𝑡 𝑑𝑡

And the induced norm to be: 𝑔 = 𝑔, 𝑔 =  
0

1

𝑔 𝑡 𝑔 𝑡 𝑑𝑡



Determination of the coefficients of the Fourier-series

of a function f(t) with period 1
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By projection theory, we project the function f(t) to the approximating subspace

spanned by the basis functions: 

𝐺𝑛𝑚 =

𝐺𝑛𝑚 =

𝑛 ≠ 𝑚

𝑛 = 𝑚

The basis functions:

are orthonormal

𝑒𝑚 𝑡 = 𝑒𝑖2𝜋𝑚𝑡

The gramian 𝑮 is the identity matrix

𝐺𝑛𝑚 =



Determination of the coefficients of the Fourier-series

of a function f(t) with period 1
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𝑛=−𝑁

𝑁

𝑐𝑛 𝑒𝑛, 𝑒𝑚 = 𝑓, 𝑒𝑚

The gramian 𝑮 is the identity matrix

𝐺𝑛𝑚 𝑏𝑚

Coefficients: 

𝑐𝑚 = 𝑓, 𝑒𝑚 =  
0

1

𝑓 𝑡 𝑒𝑖2𝜋𝑚𝑡𝑑𝑡 =  
0

1

𝑓 𝑡 𝑒−𝑖2𝜋𝑚𝑡𝑑𝑡

1
1

⋱

𝑐−𝑁

𝑐−𝑁−1

⋮
=

𝑓, 𝑒−𝑁

𝑓, 𝑒−𝑁

⋮

𝑮 𝒄 𝒃

Please note, common notation for the Fourier-coefficient 𝑐𝑛 of 𝑓(𝑡) is  𝑓 𝑛 :

𝑓 𝑡 ≈  

𝑚=−𝑁

𝑁

 𝑓 𝑛 𝑒𝑖2𝜋𝑚𝑡  𝑓 𝑛 =  
0

1

𝑓 𝑡 𝑒−𝑖2𝜋𝑚𝑡𝑑𝑡
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II.

Existence, uniqueness, esssential of ODEs, solution

methods, the spectral method



08.11.2016.| Dr. Noemi Friedman | PDE lecture | Seite 12

Essential ODEs

solving linear systems↔analytical solution of linear ODEs

𝐀𝐱 = 𝐛

Existence:

𝐿𝑢 = 𝑓 𝐿𝐷𝑢 =
𝜕2𝑢

𝜕𝑥2
example:

𝐛 ∈ 𝑅(𝐂) (𝐛 is in the range of 𝐀) 

Uniqueness:

let’s suppose 𝐲 and 𝒛 are both solutions:

𝐀𝐲 = 𝐛 𝐀𝐳 = 𝐛

𝐀(𝐲 − 𝐳) = 𝟎 if 𝐲 ≠ 𝒛 nontrivial

solution

In other words, the nullspace of 𝐀 is nontrivial.

The system has only unique solution if the

nullspace of 𝐀 is trivial, that is the only solution

of
𝐀𝐱 = 𝟎 is 𝐱 = 𝟎

𝑢 ∈ 𝑅(𝐿) (𝑓 is in the range of 𝐿) 

Uniqueness:

let’s suppose y and z are both solutions:

if 𝑦 ≠ 𝑧 nontrivial

solution
𝐿(𝑦 − 𝑧) = 0

𝐿𝑦 = 𝑓 𝐿𝑧 = 𝑓

The system has only unique solution if the

nullspace of 𝐿 is trivial, that is the only solution

of

𝐿𝑢 = 0 is the zero function

Existence:
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Essential ODEs

solving linear systems↔analytical solution of linear ODEs

𝐀𝐱 = 𝐛

Solution:

𝐿𝑢 = 𝑓

𝐀𝐰 = 𝟎

𝐀𝐳 = 𝐛
𝐀 𝐳 + 𝛼𝐰 = 𝐀𝐳 + 𝛼𝐀𝐰 = 𝐛

𝐳 + 𝛼𝐰 is also a solution

If 𝑁(𝐀) is nontrivial, and if it has a solution, it

has infinitely many:

𝐿𝑤 = 0

𝐿𝑧 = 𝑓

Solution:

If 𝑁(𝐿) is nontrivial, and if it has a solution, it

has infinitely many:

𝐿 𝑧 + 𝛼𝑤 = 𝐿𝑧 + 𝛼𝐿𝑤 = 𝑓

𝑧 + 𝛼𝑤 is also a solution

If 𝑁(𝐀) is nontrivial, it has only solution if it

satisfies a certain compatibility solution:

Adjoint operator: 𝐀T → 𝐀𝐱, 𝐲 = 𝐱, 𝐀T𝐲

𝐀T𝐰 = 𝟎 𝐰 ∈ 𝑁(𝐀T)

𝐰 ∙ 𝐛 = 𝟎

If 𝑁(𝐿) is nontrivial, it has only solution if it

satisfies a certain compatibility solution.

Adjoint operator 𝐿∗: 𝐿𝑢, 𝑣 = 𝑢, 𝐿∗𝑣
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Essential ODEs

solving linear systems↔analytical solution of linear ODEs

𝐿𝐷𝑢 = −𝛼
𝜕2𝑢

𝜕𝑥2

Uniqueness (example1):

−𝛼
𝜕2𝑢(𝑥)

𝜕𝑥2 = 𝑓(𝑥)

𝑢 0 = 0

𝑢 𝑙 = 0

𝑥 ∈ [0, 𝑙]

𝐿𝐷: 𝐶𝐷
2 0, 𝑙 → 𝐶[0, 𝑙]

−𝛼
𝜕2𝑢(𝑥)

𝜕𝑥2 = 0
The homogenous

system:

𝑢 𝑥 = 𝑎𝑥 + 𝑏 𝑢 0 = 0 𝑏 = 0

𝑢 𝑙 = 0 𝑎 = 0
𝑢 𝑥 = 0

the trivial solution

unique solution of 

𝐿𝐷𝑢 = 𝑓

−𝛼
𝑑2𝑢(𝑥)

𝑑𝑥2 = 𝑓(𝑥) 𝛼
𝑑𝑢(𝑥)

𝑑𝑥
= −  

0

𝑥

𝑓 𝑠 𝑑𝑠 + 𝑐1 𝛼𝑢 = −  
0

𝑥

𝐹 𝑠 𝑑𝑠 + 𝑐1𝑥 + 𝑐2

𝐹 𝑥

𝑢 0 = 0 𝑐2 = 0

𝑢 𝑙 = 0 𝑐1 =
1

𝑙
 

0

𝑙

 
0

𝑧

𝑓 𝑠 𝑑𝑠𝑑𝑧
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Essential ODEs

solving linear systems↔analytical solution of linear ODEs

𝐿𝑁𝑢 = 𝑓

Uniqueness (example2) :

−𝛼𝑢𝑥𝑥 = 𝑓(𝑥)

𝑢𝑥 0 = 0

𝑢𝑥 𝑙 = 0

𝑥 ∈ [0, 𝑙]

𝐿𝐷: 𝐶𝑁
2 0, 𝑙 → 𝐶[0, 𝑙]

−𝛼
𝜕2𝑢(𝑥)

𝜕𝑥2 = 0
The homogenous

system:

𝑢 𝑥 = 𝑎𝑥 + 𝑏 𝑢𝑥 0 = 0 𝑎 = 0

𝑢𝑥 𝑙 = 0
𝑢 𝑥 = 𝑏

non trivial solution

if there is a solution, it

is not unique

−𝛼
𝑑2𝑢(𝑥)

𝑑𝑥2 = 𝑓(𝑥) −𝛼
𝑑𝑢 𝑥

𝑑𝑥
0

𝑙

=  
0

𝑙

𝑓 𝑥 𝑑𝑥  
0

𝑙

𝑓 𝑥 𝑑𝑥 = 0
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Essential ODEs

solving linear systems↔analytical solution of linear ODEs

𝐀𝐱 = 𝐛

Solution:

𝐿𝑢 = 𝑓

Solution:
1) General solution

𝐀−1𝐀𝐱 = 𝐀−1𝐛 𝐱 = 𝐀−1𝐛

2) Direct solvers (Gauß elimination), 

iterative methods

3) Spectral method

If 𝐀T = 𝐀 (real eigenvalues)

1) Direct integration

Method of Green’s functions

2) Galerkin method/FD method

3) Fourier series𝐀𝐯i = λ𝑖𝐯i

𝐛 =  

𝑖

(𝐯𝐢∙ 𝐛)𝐯i 𝐱 =  

𝑖

(𝐯𝐢∙ 𝐱)𝐯i =  

𝑖

𝛼𝑖𝐯i

𝐀𝐱 = 𝐛 𝐀  

𝑖

𝛼𝑖𝐯i =  

𝑖

(𝐯𝐢∙ 𝐛)𝐯i

 

𝑖

𝛼𝑖  𝐀𝐯i

λ𝑖𝐯i

=  

𝑖

(𝐯𝐢∙ 𝐛)𝐯i
𝛼𝑖λ𝑖 = (𝐯𝐢∙ 𝐛)

𝐱 =  

𝑖

(𝐯𝐢∙ 𝐛)

λ𝑖
𝐯i

𝐿𝑣𝑖 = 𝜆𝑣𝑖

𝐿𝑢, 𝑣 = 𝑢, 𝐿𝑣 (real eigenvalues)

𝑓 =  

𝑖

𝑓𝑖𝑣𝑖(𝑥)

𝑢 =  

𝑖

𝑢𝑖𝑣𝑖(𝑥)
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Essential ODEs

solving linear systems↔analytical solution of linear ODEs

−𝛼
𝑑2𝑢

𝑑𝑥2
= 𝑓(𝑥)Solving ODEs with Fourier series - example

𝐿𝐷𝑣𝑖 = 𝜆𝑣𝑖(𝑥)

𝐿𝑢, 𝑣 = 𝑢, 𝐿𝑣 ?

1) Solve the eigenvalues-eigenfunctions (𝜆𝑖 , 𝑣𝑖(𝑥))

𝑢 =  

𝑖

𝑢𝑖 sin
𝑖𝜋𝑥

𝑙

a) Can eigenfunctions form an orthogonal basis (is the operator symmetric)?

𝑢 0 = 0

𝑢 𝑙 = 0
𝐿𝐷𝑢 = 𝑓(𝑥)

𝐿𝑢, 𝑣 = −𝛼  
0

𝑙 𝑑2𝑢 𝑥

𝑑𝑥2 𝑣 𝑥 𝑑𝑥 = −𝛼
𝑑𝑢 𝑥

𝑑𝑥
𝑣 𝑥

0

𝑙

+ 𝛼  
0

𝑙 𝑑𝑢 𝑥

𝑑𝑥

𝑑𝑣 𝑥

𝑑𝑥
𝑑𝑥

= 𝛼  
0

𝑙 𝑑𝑢 𝑥

𝑑𝑥

𝑑𝑣 𝑥

𝑑𝑥
𝑑𝑥 = 𝛼𝑢 𝑥

𝑑𝑣 𝑥

𝑑𝑥
0

𝑙

− 𝛼  
0

𝑙

𝑢 𝑥
𝑑𝑣 𝑥

𝑑𝑥2 𝑑𝑥 =

= 𝛼  
0

𝑙

𝑢 𝑥
𝑑𝑣 𝑥

𝑑𝑥2 𝑑𝑥 = 𝑢, 𝐿𝑣

b) Find eigenfunctions and eigenvalues

𝑣𝑖 = sin
𝑖𝜋𝑥

𝑙
We try to find the solution in the form
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Essential ODEs

solving linear systems↔analytical solution of linear ODEs

−𝛼
𝑑2𝑢

𝑑𝑥2
= 𝑓(𝑥)Solving ODEs with Fourier series - example

𝛼
𝑖2𝜋2

𝑙2 𝑢𝑖 = 𝑓𝑖

2) Project 𝑓 𝑥 to the space spanned by the eigenfunctions: 

𝑓(𝑥) =  

𝑖

𝑓𝑖 sin
𝑖𝜋𝑥

𝑙

𝑢 0 = 0

𝑢 𝑙 = 0
𝐿𝐷𝑢 = 𝑓(𝑥)

𝑓𝑖 =
𝑓𝑖 , sin

𝑖𝜋𝑥
𝑙

sin
𝑖𝜋𝑥
𝑙

, sin
𝑖𝜋𝑥
𝑙

3) Solve the ODE for 𝑢𝑖: 

−𝛼
𝑑2

𝑑𝑥2  

𝑖

𝑢𝑖 sin
𝑖𝜋𝑥

𝑙
= −𝛼  

𝑖

𝑢𝑖

𝑑2

𝑑𝑥2 sin
𝑖𝜋𝑥

𝑙
=  

𝑖

𝛼
𝑖2𝜋2

𝑙2 𝑢𝑖 sin
𝑖𝜋𝑥

𝑙
=  

𝑖

𝑓𝑖 sin
𝑖𝜋𝑥

𝑙

𝑢𝑖 =
𝑙2𝑓𝑖

𝑖2𝜋2𝛼
𝑢(𝑥) =  

𝑖

𝑢𝑖 sin
𝑖𝜋𝑥

𝑙


