

Dr. Noemi Friedman, 08.11.2016.

Overview of the course

- Introduction (definition of PDEs, classification, basic math, introductory examples of PDEs)
- Analytical solution of elementary PDEs, uniqueness and existence of the solution
- Numerical solutions of PDEs:
- Finite difference method
- Finite element method

Overview of this lecture

- I. Fourier series in the complex domain, further notes on projection theory
- II. Solving PDEs, analytical solution of ODEs
- About existence and uniqueness of linear PDEs
- Solution methods
- Spectral method (Fourier analysis)
- Essesntial ODEs
- Solving homogenous second order ODEs
- From homogenous to inhomogenous equation
- Converting higher order ODEs to system of first order ODEs
- Solving system of ODEs

Some more information on

norms, inner products and projection theory

Chose inner product by preserving validity of Pithagoreamtheorem in the real valued function space

The Pithagorean-theorem: $\|f+g\|^{2}=\|f\|^{2}+\|g\|^{2}$
The Pithagorean-theorem for real value functions using the L2 norm:

$$
\begin{aligned}
\int_{0}^{1}(f(t)+g(t))^{2} d t & =\int_{0}^{1} f(t)^{2} d t+\int_{0}^{1} g(t)^{2} d t \\
\int_{0}^{1} f(t)^{2} d t+\underbrace{1}_{=0}\left(f(t)^{2}+2 f(t) g(t)+g(t)^{2}\right) d t & =\int_{0}^{1} f(t)^{2} d t+\int_{0}^{1} g(t)^{2} d t \\
\int_{0}^{1} f(t) g(t) d t+\int_{0}^{1} g(t)^{2} d t & =\int_{0}^{1} f(t)^{2} d t+\int_{0}^{1} g(t)^{2} d t
\end{aligned}
$$

$=0$
The orthogonality condition in L2$[0,1]$ has to be $\int_{0}^{1} f(t) g(t) d t=0$
We define the inner product to be:

$$
(f, g)=\int_{0}^{1} f(t) g(t) d t \quad(f, f)=\int_{0}^{1} f(t)^{2} d t=\|f\|^{2}
$$

Chose inner product by preserving validity of Pithagoreamtheorem in the complex valued function space

First let's restrict the function space to the Lebesgue functions satisfying:

$$
\int_{0}^{1}|f(t)|^{2} d t<\infty
$$

Requirements for an inner product in the complex domain

1. $(f, g)=\overline{(g, f)} \quad$ (Hermitian symmetry)
2. $(f, f) \geq 0$ and $(f, f)=0$ if and only if $f=0 \quad$ (positive definiteness - same as before)
3. $(\alpha f, g)=\alpha(f, g), \quad(f, \alpha g)=\bar{\alpha}(f, g) \quad$ (homogeneity - same as before in the first slot, conjugate scalar comes out if it's in the second slot)
4. $(f+g, h)=(f, h)+(g, h),(f, g+h)=(f, g)+(f, h) \quad$ (additivity - same as before, no difference between additivity in first or second slot)

Chose inner product by preserving validity of Pithagoreamtheorem in the complex valued function space

The Pithagorean-theorem:

$$
\begin{aligned}
& \qquad \int_{0}^{1}|f(t)+g(t)|^{2}=\int_{0}^{1}|f(t)|^{2} d t+\int_{0}^{1}|g(t)|^{2} d t \\
& \underbrace{\int_{0}^{1}\left(|f(t)|^{2}+2 \operatorname{Re}\{f(t) \overline{g(t)}\}+|g(t)|^{2}\right) d t}_{=0}=\int_{0}^{1}|f(t)|^{2} d t+\int_{0}^{1}|g(t)|^{2} d t \\
& \int_{0}^{1}|f(t)|^{2} d t+\underbrace{2 \operatorname{Re}\left(\int_{0}^{1} f(t) \overline{g(t)} d t\right)}_{0}+\int_{0}^{1}|g(t)|^{2} d t=\int_{0}^{1}|f(t)|^{2} d t+\int_{0}^{1}|g(t)|^{2} d t
\end{aligned}
$$

The orthogonality condition in L2[0,1] can be $\int_{0}^{1} f(t) \overline{g(t)} d t=0$
We define the inner product to be: $\quad(f, g)=\int_{0}^{1} f(t) \overline{g(t)} d t$

$$
(f, f)=\int_{0}^{1} f(t) \overline{f(t)} d t=\int_{0}^{1}|f(t)|^{2} d t=\|f\|^{2}
$$

If $\quad \int_{0}^{1}|f(t)|^{2} d t<\infty \quad$ and $\quad \int_{0}^{1}|g(t)|^{2} d t<\infty \quad$ holds, then $\quad(f, g)<\infty$

Determination of the coefficients of the Fourier-series of a function $f(t)$ with period 1

We would like to write the function $f(t)$ as linear combination of exponentials with different frequencies:

$$
f(t) \approx \sum_{m=-N}^{N} c_{m} e^{i 2 \pi m t}
$$

Get the coefficients of the Fourier-series of $f(t)$ with the projection theory:

$$
\sum_{n=-N}^{N} c_{n} \underbrace{e_{n}, e_{m}}_{G_{n m}}\rangle=\underbrace{\left\langle f, e_{m}\right\rangle}_{b_{m}}
$$

Basis functions:

$$
e_{m}(t)=e^{i 2 \pi m t} \quad m=0, \pm 1, \pm 2 .
$$

Coefficients: $c_{n}=$?
As learned, by defining in such a way the coefficients (derived from orthogonality of the error to the approximating subspace) we minimise the norm of the error:

$$
\left\|\sum_{m=-N}^{N} c_{m} e^{i 2 \pi m t}-f(t)\right\|
$$

Please remember,
we defined the inner product to be: $\langle f, g\rangle=\int_{0}^{1} f(t) \overline{\overline{g(t)}} d t$
And the induced norm to be:

$$
\|g\|=\sqrt{\langle g, g\rangle}=\sqrt{\int_{0}^{1} g(t) \overline{\overline{g(t)}} d t}
$$

Determination of the coefficients of the Fourier-series of a function $f(t)$ with period 1

By projection theory, we project the function $f(\mathrm{t})$ to the approximating subspace spanned by the basis functions:

```
n = m
```

$G_{n m}=\left(e_{n}, e_{m}\right)=\int_{0}^{1} e^{2 \pi i n t} \overline{e^{2 \pi i m t}} d t=\int_{0}^{1} e^{2 \pi i n t} e^{-2 \pi i m t} d t=\int_{0}^{1} e^{2 \pi i(n-m) t} d t$

$$
\left.=\frac{1}{2 \pi i(n-m)} e^{2 \pi i(n-m) t}\right]_{0}^{1}=\frac{1}{2 \pi i(n-m)}\left(e^{2 \pi i(n-m)}-e^{0}\right)=\frac{1}{2 \pi i(n-m)}(1-1)=0
$$

$n=m$

$$
G_{n m}=\left(e_{n}, e_{n}\right)=\int_{\sim}^{1} e^{2 \pi i n t} \overline{e^{2 \pi i n t}} d t=\int_{\sim}^{1} e^{2 \pi i n t} e^{-2 \pi i n t} d t=\int_{0}^{1} e^{2 \pi i(n-n) t} d t=\int_{0}^{1} 1 d t=1
$$

$$
\square G_{n m}=\left(e_{n}, e_{m}\right)=\delta_{n m}= \begin{cases}1 & n=m \\ 0 & n \neq m\end{cases}
$$

The basis functions:
$e_{m}(t)=e^{i 2 \pi m t}$
are orthonormal

The gramian \boldsymbol{G} is the identity matrix

Determination of the coefficients of the Fourier-series of a function $f(t)$ with period 1

The gramian \boldsymbol{G} is the identity matrix

$$
\begin{aligned}
& \text { I } \\
& \sum_{n=-N}^{N} c_{n}\langle\underbrace{\left\langle e_{n}, e_{m}\right.}_{G_{n m}}\rangle=\langle\underbrace{\left.f, e_{m}\right\rangle}_{b_{m}} \longleftrightarrow\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & \ddots
\end{array}\right] \overbrace{\left[\begin{array}{c}
c_{-N} \\
c_{-N} \\
\vdots \\
\vdots
\end{array}\right]}=\left[\begin{array}{c}
\left\langle f, e_{-N}\right\rangle \\
\left\langle f, e_{-N}\right\rangle \\
\vdots \\
\vdots
\end{array}\right] \\
& \text { Coefficients: } \\
& c_{m}=\left\langle f, e_{m}\right\rangle=\int_{0}^{1} f(t) \overline{e^{i 2 \pi m t}} d t=\int_{0}^{1} f(t) e^{-i 2 \pi m t} d t
\end{aligned}
$$

Please note, common notation for the Fourier-coefficient c_{n} of $f(t)$ is $\hat{f}(n)$:

$$
f(t) \approx \sum_{m=-N}^{N} \hat{f}(n) e^{i 2 \pi m t} \quad \hat{f}(n)=\int_{0}^{1} f(t) e^{-i 2 \pi m t} d t
$$

II.

Existence, uniqueness, esssential of ODEs, solution methods, the spectral method

Essential ODEs solving linear systems \leftrightarrow analytical solution of linear ODEs

$$
\mathrm{Ax}=\mathrm{b}
$$

$$
L u=f
$$

$$
\text { example: } \quad L_{D} u=\frac{\partial^{2} u}{\partial x^{2}}
$$

Existence:

$\mathbf{b} \in R(\mathbf{C})(\mathbf{b}$ is in the range of $\mathbf{A})$

Uniqueness:

let's suppose y and z are both solutions:

$$
\begin{aligned}
& \mathbf{A y}=\mathbf{b} \quad \mathbf{A z}=\mathbf{b} \\
& \mathbf{A}(\mathbf{y}-\mathbf{z})=\mathbf{0} \Rightarrow \text { if } \mathbf{y} \neq \mathbf{z} \text { nontrivial } \\
& \text { solution }
\end{aligned}
$$

In other words, the nullspace of \mathbf{A} is nontrivial.
The system has only unique solution if the nullspace of \mathbf{A} is trivial, that is the only solution of
$\mathbf{A x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$

Existence:
$u \in R(L)(f$ is in the range of $L)$

Uniqueness:

let's suppose y and z are both solutions:

$$
\begin{array}{ll}
L y=f & L z=f \\
L(y-z)=0 \Rightarrow \text { if } y \neq z & \begin{array}{l}
\text { nontrivial } \\
\text { solution }
\end{array}
\end{array}
$$

The system has only unique solution if the nullspace of L is trivial, that is the only solution of
$L u=0$ is the zero function

Essential ODEs solving linear systems \leftrightarrow analytical solution of linear ODEs

$$
A x=b
$$

Solution:

If $N(\mathbf{A})$ is nontrivial, it has only solution if it satisfies a certain compatibility solution:
Adjoint operator: $\mathbf{A}^{\mathrm{T}} \rightarrow\langle\mathbf{A x}, \mathbf{y}\rangle=\left\langle\mathbf{x}, \mathbf{A}^{\mathrm{T}} \mathbf{y}\right\rangle$

$$
\begin{aligned}
& \mathbf{A}^{\mathrm{T}} \mathbf{w}=\mathbf{0} \Rightarrow \mathbf{w} \in N\left(\mathbf{A}^{\mathrm{T}}\right) \\
& \mathbf{w} \cdot \mathbf{b}=\mathbf{0}
\end{aligned}
$$

If $N(\mathbf{A})$ is nontrivial, and if it has a solution, it has infinitely many:

$$
\begin{gathered}
\left.\begin{array}{l}
\mathbf{A w}=\mathbf{0} \\
\mathbf{A z}=\mathbf{b}
\end{array}\right\} \mathbf{A}(\mathbf{z}+\alpha \mathbf{w})=\mathbf{A z}+\alpha \mathbf{A w}=\mathbf{b} \\
\square \mathbf{z}+\alpha \mathbf{w} \text { is also a solution }
\end{gathered}
$$

$$
L u=f
$$

Solution:

If $N(L)$ is nontrivial, it has only solution if it satisfies a certain compatibility solution.

Adjoint operator $L^{*}:\langle L u, v\rangle=\left\langle u, L^{*} v\right\rangle$

If $N(L)$ is nontrivial, and if it has a solution, it has infinitely many:
$\left.\begin{array}{l}L w=0 \\ L z=f\end{array}\right\} L(z+\alpha w)=L z+\alpha L w=f$
$\Rightarrow z+\alpha w$ is also a solution

Essential ODEs
 solving linear systems \leftrightarrow analytical solution of linear ODEs

Uniqueness (example1):

The homogenous

$$
-\alpha \frac{\partial^{2} u(x)}{\partial x^{2}}=0
$$

system:

$$
L_{D}: C_{D}^{2}[0, l] \rightarrow C[0, l]
$$

$$
u(l)=0
$$

$$
\left.\Rightarrow u(x)=a x+b \begin{array}{l}
u(0)=0 \Rightarrow b=0 \\
u(l)=0 \Rightarrow a=0
\end{array}\right\} \Rightarrow u(x)=0 \Rightarrow \begin{aligned}
& \text { the trivial solution } \\
& \text { unique solution of } \\
& L_{D} u=f
\end{aligned}
$$

$$
\begin{aligned}
-\alpha \frac{d^{2} u(x)}{d x^{2}}=f(x) \Rightarrow \alpha \frac{d u(x)}{d x}=-\int_{0}^{x} f(s) d s+c_{1} & \Rightarrow \alpha u=-\int_{0}^{x} F(s) d s+c_{1} x+c_{2} \\
u(0)=0 & \Rightarrow c_{2}=0 \\
u(l)=0 & \Rightarrow c_{1}=\frac{1}{l} \int_{0}^{l} \int_{0}^{z} f(s) d s d z
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow-\alpha \frac{\partial^{2} u(x)}{\partial x^{2}}=f(x) x \in[0, l] \\
& u(0)=0
\end{aligned}
$$

Essential ODEs
 solving linear systems \leftrightarrow analytical solution of linear ODEs

Uniqueness (example2) :

$$
\left.\left.\begin{array}{c}
L_{N} u=f \longmapsto-\alpha u_{x x}=f(x) \quad x \in[0, l] \\
u_{x}(0)=0
\end{array}\right]\right\} L_{D}: C_{N}^{2}[0, l] \rightarrow C[0, l]
$$

The homogenous system:

$$
-\alpha \frac{\partial^{2} u(x)}{\partial x^{2}}=0
$$

$$
\left.\Rightarrow u(x)=a x+b \quad \begin{array}{l}
u_{x}(0)=0 \Rightarrow a=0 \\
u_{x}(l)=0
\end{array}\right\} \Rightarrow u(x)=b \Rightarrow \begin{aligned}
& \text { non trivial solution } \\
& \text { if there is a soluti } \\
& \text { is not unique }
\end{aligned}
$$

$$
-\alpha \frac{d^{2} u(x)}{d x^{2}}=f(x) \rightrightarrows-\alpha\left[\frac{d u(x)}{d x}\right]_{0}^{l}=\int_{0}^{l} f(x) d x \Rightarrow \int_{0}^{l} f(x) d x=0
$$

Essential ODEs solving linear systems \leftrightarrow analytical solution of linear ODEs

$$
A x=b
$$

Solution:

1) General solution

$$
\mathbf{A}^{-1} \mathbf{A x}=\mathbf{A}^{-1} \mathbf{b} \quad \mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
$$

2) Direct solvers (Gauß elimination), iterative methods
3) Spectral method

If $\mathbf{A}^{\mathrm{T}}=\mathbf{A}$ (real eigenvalues) $\quad \mathbf{A} \mathbf{v}_{\mathbf{i}}=\lambda_{i} \mathbf{v}_{\mathrm{i}}$
$\mathbf{b}=\sum_{i}\left(\mathbf{v}_{\mathbf{i}} \cdot \mathbf{b}\right) \mathbf{v}_{\mathbf{i}} \quad \mathbf{x}=\sum_{i}\left(\mathbf{v}_{\mathbf{i}} \cdot \mathbf{x}\right) \mathbf{v}_{\mathbf{i}}=\sum_{i} \alpha_{i} \mathbf{v}_{\mathbf{i}}$ $\mathbf{A x}=\mathbf{b} \Rightarrow \mathbf{A} \sum_{i} \alpha_{i} \mathbf{v}_{\mathbf{i}}=\sum_{i}\left(\mathbf{v}_{\mathbf{i}} \cdot \mathbf{b}\right) \mathbf{v}_{\mathbf{i}}$
$\sum_{i} \alpha_{i} \underbrace{\mathbf{A v}_{\mathbf{i}}}_{\lambda_{i} \mathbf{v}_{\mathbf{i}}}=\sum_{i}\left(\mathbf{v}_{\mathbf{i}} \cdot \mathbf{b}\right) \mathbf{v}_{\mathbf{i}} \Rightarrow \alpha_{i} \lambda_{i}=\left(\mathbf{v}_{\mathbf{i}} \cdot \mathbf{b}\right)$
$\underset{\mathbf{x}=\sum_{i} \frac{\left(\mathbf{v}_{\mathbf{i}} \cdot \mathbf{b}\right)}{\lambda_{i}} \mathbf{v}_{\mathbf{i}}}{ }$

Essential ODEs

solving linear systems \leftrightarrow analytical solution of linear ODEs

Solving ODEs with Fourier series - example $-\alpha \frac{d^{2} u}{d x^{2}}=f(x) \quad$| $u(0)=0$ |
| :--- |
| $u(l)=0$ |$L_{D} u=f(x)$

1) Solve the eigenvalues-eigenfunctions $\left(\lambda_{i}, v_{i}(x)\right)$
a) Can eigenfunctions form an orthogonal basis (is the operator symmetric)? $\langle\langle L u, v\rangle=\langle u, L v\rangle$?

$$
\langle L u, v\rangle=-\alpha \int_{0}^{l} \frac{d^{2} u(x)}{d x^{2}} v(x) d x=\left[-\alpha \frac{d u(x)}{d x} v(x)\right]_{0}^{l}+\alpha \int_{0}^{l} \frac{d u(x)}{d x} \frac{d v(x)}{d x} d x
$$

$$
=\alpha \int_{0}^{l} \frac{d u(x)}{d x} \frac{d v(x)}{d x} d x=\left[\alpha u(x) \frac{d v(x)}{d x}\right]_{0}^{l}-\alpha \int_{0}^{l} u(x) \frac{d v(x)}{d x^{2}} d x=
$$

$$
=\alpha \int_{0}^{l} u(x) \frac{d v(x)}{d x^{2}} d x=\langle u, L v\rangle
$$

b) Find eigenfunctions and eigenvalues $L_{D} v_{i}=\lambda v_{i}(x)$
$v_{i}=\sin \left(\frac{i \pi x}{l}\right) \square$ We try to find the solution in the form $u=\sum_{i} u_{i} \sin \left(\frac{i \pi x}{l}\right)$

Essential ODEs

solving linear systems \leftrightarrow analytical solution of linear ODEs

Solving ODEs with Fourier series - example $-\alpha \frac{d^{2} u}{d x^{2}}=f(x) \quad \begin{aligned} & u(0)=0 \\ & u(l)=0\end{aligned} L_{D} u=f(x)$
2) Project $f(x)$ to the space spanned by the eigenfunctions:

$$
f(x)=\sum_{i} f_{i} \sin \left(\frac{i \pi x}{l}\right)
$$

$$
f_{i}=\frac{\left\langle f_{i}, \sin \left(\frac{i \pi x}{l}\right)\right\rangle}{\left\langle\sin \left(\frac{i \pi x}{l}\right), \sin \left(\frac{i \pi x}{l}\right)\right\rangle}
$$

3) Solve the ODE for u_{i} :
$-\alpha \frac{d^{2}}{d x^{2}} \sum_{i} u_{i} \sin \left(\frac{i \pi x}{l}\right)=-\alpha \sum_{i} u_{i} \frac{d^{2}}{d x^{2}} \sin \left(\frac{i \pi x}{l}\right)=\sum_{i} \alpha \frac{i^{2} \pi^{2}}{l^{2}} u_{i} \sin \left(\frac{i \pi x}{l}\right)=\sum_{i} f_{i} \sin \left(\frac{i \pi x}{l}\right)$

$$
\alpha \frac{i^{2} \pi^{2}}{l^{2}} u_{i}=f_{i} \leadsto u_{i}=\frac{l^{2} f_{i}}{i^{2} \pi^{2} \alpha} \quad u(x)=\sum_{i} u_{i} \sin \left(\frac{i \pi x}{l}\right)
$$

